
1

A Path Relinking Method for the Joint Online Scheduling and Capacity Allocation
of DL Training Workloads in GPU as a Service Systems

Federica Filippini, Marco Lattuada, Michele Ciavotta, Arezoo Jahani, Danilo Ardagna, Edoardo Amaldi

Abstract—The Deep Learning (DL) paradigm gained remarkable popularity in recent years. DL models are used to tackle increasingly
complex problems, making the training process require considerable computational power. The parallel computing capabilities offered
by modern GPUs partially fulfill this need, but the high costs related to GPU as a Service solutions in the cloud call for efficient
capacity planning and job scheduling algorithms to reduce operational costs via resource sharing. In this work, we jointly address the
online capacity planning and job scheduling problems from the perspective of cloud end-users. We present a Mixed Integer Linear
Programming (MILP) formulation, and a path relinking-based method aiming at optimizing operational costs by (i) rightsizing Virtual
Machine (VM) capacity at each node, (ii) partitioning the set of GPUs among multiple concurrent jobs on the same VM, and (iii)
determining a due-date-aware job schedule. An extensive experimental campaign attests the effectiveness of the proposed approach in
practical scenarios: costs savings up to 97% are attained compared with first-principle methods based on, e.g., Earliest Deadline First,
cost reductions up to 20% are obtained with respect to a previously proposed Hierarchical Method and up to 95% against a dynamic
programming-based method from the literature. Scalability analyses show that systems with up to 100 nodes and 450 concurrent jobs
can be managed in less than 7 seconds. The validation in a prototype cloud environment shows a deviation below 5% between real
and predicted costs.

Index Terms—GPU as a Service, Scheduling, Capacity Allocation, Deep Learning training jobs.

✦

1 Introduction

Nowadays, Deep Learning (DL) algorithms are used to
tackle complex problems. These require to process mas-

sive datasets to train Neural Networks (NNs) with millions of
parameters, which need to be tuned so as to achieve reason-
able prediction accuracy and generality. Model compression
and acceleration techniques [1] are employed to reduce the
dimensionality of the training problems. However, they can
only mitigate the inherent complexity of the learning task.
The introduction of the General Purpose computation on
Graphic Processing Units (GPGPU), providing an interface
to massive parallelism, significantly extended the set of pre-
viously intractable problems that can be solved within a
reasonable computing time. Consequently, the market growth
for GPU as a Service systems is expected to be impetuous in
the next years, starting from over 700 million USD in 2018
and increasing with a compound annual rate of over 38% up
to 2025 [2]. GPU acceleration, especially the possibility of
efficiently performing matrix multiplication in parallel thanks
to highly specialized linear algebra libraries, is particularly
suited to DL training tasks, providing about one order of
magnitude reduction in the execution time with respect to
CPU systems [3]. Moreover, an additional performance gain
is ensured by the fact that Deep Neural Network models
are often designed specifically to be deployed on GPU-based
systems, taking full advantage of their architecture.

• F. Filippini, M. Lattuada, D. Ardagna and E. Amaldi are with
Politecnico di Milano. Milan, Italy
Email: {name.lastname}@polimi.it

• M. Ciavotta is with Università di Milano-Bicocca, Milan, Italy
Email: michele.ciavotta@unimib.it

• A. Jahani is with Sahand University of Technology, Tabriz, Iran
Email: a.jahani@sut.ac.ir

Despite the achieved progress, training DL models remains
a computationally intensive task. Furthermore, high perfor-
mance servers with support to GPU-accelerated applications
are characterized by considerably high costs (about 200k USD
for high-end systems like NVIDIA DGX A100 [4]). Conse-
quently, they are often unaffordable for the general public,
which includes small organizations. This growing demand
and the issues related to the accessibility of GPU-based
architectures caused, in the last years, a progression of cloud
services aiming at democratizing the access of those resources
in different contexts with pay-as-you-go pricing models.

Requiring no upfront investments and infrastructure
maintenance expenditures, GPU-enabled solutions became
accessible to a wider range of organizations. However, the
time-unit cost of GPU-based Virtual Machines (VMs) is still
remarkably high, being 5-8x more expensive than those of
VMs featuring only CPUs [5]. As a consequence, selecting
the most suitable resources to co-locate different DL training
workloads and determining efficient schedules is crucial for an
effective implementation of the GPU as a Service model.

To the best of our knowledge, most of the existing litera-
ture focuses on either the scheduling or the resource selection
aspect, relying on users’ requests in terms of resources (i.e.,
specifying the type and number of GPUs) to assign to the
submitted workloads (see, e.g., [6], [7]) or delegating the job
scheduling to simple mechanisms (e.g., First In First Out; see,
for instance, [8], [9]), respectively. In this work, we tackle
the online resource selection and job scheduling problems
jointly and from a higher level perspective, where users are
only asked to specify: (i) a due date for each DL training
job, (ii) a priority associated with the fulfillment of the due
date. The objective is to minimize the usage cost of cloud
VMs and the tardiness costs (i.e., penalty costs related to the
difference between jobs completion times and their due dates).
We envision a reference scenario where multiple workloads are

2

continuously submitted for execution on a dynamic cluster of
VMs. Individual nodes can be dynamically configured from
various VM types available in the cloud provider’s catalog,
each one featuring possibly several GPUs. A single node
can host more than one job, and, in this case, the available
resources are partitioned and statically allocated to avoid
interference. The set of jobs to be scheduled is not known in
advance: new jobs are submitted with different characteristics,
due dates, and tardiness penalties without any repetition
scheme, leading to an online problem. Finally, job preemption
is allowed to manage higher priority submissions.

Online decisions concern selecting the VM type for each
node, the order in which the jobs are executed, and how
resources are partitioned and assigned to each job. We for-
malize the optimization problem arising at each decision
point in time through a Mixed Integer Linear Programming
(MILP) formulation, which however is too challenging to be
solved directly in practical scenarios. Therefore, we develop
a heuristic algorithm based on randomized greedy and path
relinking [10]. This method is specifically designed and imple-
mented to be efficient while achieving high-quality solutions.
Our experimental campaign demonstrates its effectiveness
in practical scenarios, since solutions for systems with up
to 100 nodes and 450 concurrent jobs are obtained in less
than 7 seconds. Significant costs savings are attained by our
path relinking-based algorithm with respect to first-principle
methods (based on Earliest Deadline First, First In First
Out, Priority Scheduling), with an average percentage gain
between 23 and 97%. We obtain an average cost reduction
between 7 and 20% with respect to the Hierarchical Method
we developed in our previous work [11] as a first approach
to address the complexity of the problem. Finally, we reduce
the costs between 43 and 95% compared to a dynamic pro-
gramming (DP)-based method proposed in the literature [9]
purposely modified to adapt to our problem. The validation
of our approach in a cloud prototype environment based on
Microsoft Azure showed a deviation below 5% between real
and predicted costs.

The rest of the paper is organized as follows. Section 2
describes the reference framework for our work, focusing on
the characterization of the system architecture and of the
problem, and presenting the Machine Learning models used
to predict training jobs performance. Section 3 describes
the MILP formulation and the developed heuristic method.
Section 4 illustrates the experimental setup and compares the
results of the proposed algorithm with those obtained with
first-principle methods, our previous Hierarchical Method [11]
and the DP-based method [9]. Section 5 relates our work to
the literature. Conclusions are finally drawn in Section 6.

2 Cloud Framework and Problem Description
In this paper, we address the problem of scheduling DL
training jobs on GPU as a Service systems from the point
of view of the cloud end-users. We consider a complex system
involving multiple nodes that can be provisioned on-demand
in the cloud and configured with VMs of different types, each
one with a possibly different number of GPUs. The submitted
jobs can be executed concurrently on the assigned nodes; all
computational resources are shared except for GPUs, that are
dedicated to running single jobs. The considered problem and
the reference cloud system are presented in Section 2.1.

As a prerequisite to successfully address our problem (and,
in particular, to rightsize the type and amount of resources to
be assigned to the jobs), we must estimate the training time of
the DL applications reliably. This prediction is performed via
the Machine Learning (ML) models presented in Section 2.2.

2.1 System Architecture and Problem Statement
The problem we address encompasses three intertwined sub-
problems: (i) a job scheduling problem that consists in deter-
mining which jobs to run among those available and assigning
them to the available nodes; (ii) a capacity allocation problem
that consists in selecting the most appropriate number of
nodes and the best VM type for each node; (iii) a resource
partitioning problem, that consists, for each node, in parti-
tioning the available GPUs among the selected jobs.

This joint problem is solved in an online setting, i.e., every
time a new job is submitted or a running job completes.
Nevertheless, if none of these situations occurs, the system
is reconfigured after a fixed time interval, denoted in the
following by H. The value of H is conventionally set to one
hour since the cloud pricing models usually consider the hour
as the unit of billing [12], [13], while the average time required
by a DL training job is in the order of tens to hundreds of
hours. As in other literature proposals, we allow migration [7],
[14] and preemption [14], [15] of running jobs; therefore, all the
previously made decisions can be modified at any rescheduling
point. Specifically, running jobs can either continue their
execution with a possibly different configuration (in terms
of VM type and number of GPUs) or be preempted and
restarted from the last checkpoint in a future step. Saving
periodic snapshots of the model is common practice in DL
operations to increase fault tolerance, which comes at the cost
of some overhead. In this study, however, the checkpointing
time overhead is considered included in the job execution time
because: (i) the former is often negligible when compared to
the overall job duration, and (ii) the training time prediction
models presented in Section 2.2 are agnostic of the operations
performed by the application during the training process.

The online nature makes our problem even more complex
to tackle since, at each rescheduling point, no information is
available on the number and characteristics of jobs that will be
submitted in the future. In particular, the unknown job inter-
arrival time and resource requirements distribution make it
challenging to identify an effective strategy to minimize the
overall schedule expected cost, like in zero-data problems [16],
where the system cannot effectively characterize in advance
the incoming workload profile. Indeed, the ultimate goal is
to optimize the long-term execution cost in scenarios where
multiple jobs are submitted and executed at different points
over a long time horizon considering resource leasing costs and
due date violation penalties. In this context, the choices made
at each scheduling point can have unforeseen repercussions
on the system status at the next decision point due to the
partial execution of some applications. Thus, locally optimal
choices, which guarantee the lowest possible execution cost in
the current period, may lead to a worse outcome when the
overall schedule is considered.

Formally, our reference cloud system includes a set N =
{n1, n2, ..., nN } of processing units referred to as nodes, such
that N = |N |. Each node is a VM that can be configured on-
demand with a type selected from the cloud provider’s catalog,

3

Jobs submission queue Job
execution

logs
Jobs

submission

Job scheduling &
GPUs assignment

Historical data & job profiles

Estimated
execution

times

Controller &
Scheduler

Incoming
jobs

Jobs
pre-emption

ML models

- # iterations
- batch size

VMs partitions

Figure 1: Reference cloud framework. In the example, we consider three submitted jobs j1, j2, j3. The values of execution times tjvg are
chosen by way of example. Nodes n1 to nN can be equipped with three types of VMs: v1 with 4 GPUs and cost c1 = 0.2$/h, v2 with 4 GPUs
and c2 = 0.3$/h, and v3 with 8 GPUs and c3 = 0.5$/h. Jobs j2 and j3 are deployed on n1 with VM v2. In particular, j2 runs on 1 GPU, while
j3 on 3 GPUs. Job j1 is sent back to the queue and no other nodes are selected.

denoted by the set V. Each VM type v ∈ V is characterized
by a number Gv of available GPUs and by a time-unit cost
cv. The set of jobs available at a given time instant, including
the jobs in execution and in the waiting queue, is denoted by
J . Each job is characterized by its release time, its due date
dj , and by an estimated processing time tjvg (to perform a
fixed number of training iterations) that depends on the VM
type v and the number g of GPUs assigned to it, as described
in Section 2.2. The batch size and the number of iterations
performed by the jobs are considered as fixed and known. Jobs
are never rejected, but, as mentioned, they can be preempted
and postponed if a job with higher priority is submitted
and the available resources are insufficient to process all of
them. The priority of a job depends on the residual processing
time, the due date, and the associated tardiness penalty. The
tardiness of job j ∈ J is denoted by τj , and a weight ωj is
used to compute the tardiness cost, ωjτj .

The scheduling process is summarized in Figure 1. At any
time a new job j is submitted to the system or a running
job is completed (referred to as rescheduling point), the list
of incomplete jobs is virtually merged1 with the queue of
unstarted jobs, sorted by submission time, giving rise to
the queue J that will be the input of our scheduler. Then,
the estimated execution time of partially executed jobs is
updated, and the problem of determining the nodes to be

1. For the sake of simplicity, we consider in our method a unique
virtual queue J . In practice, jobs that are already in execution are
possibly stopped and reallocated only at the end of the scheduling
process, if the type or the amount of resources they receive should be
modified.

used and the best available configuration (VM type) to be
assigned to each selected node is solved. As in other literature
proposals [14], [17]–[19], we assume that multiple jobs can be
deployed on the same node, while, within each node, each job
receives for exclusive use a certain number of GPUs. As will
be observed in Section 4.6, the interference experienced among
jobs in the same VM is negligible in our setting. This does not
hold, however, when co-locating multiple jobs on the same
GPU, since the contentions significantly affect the runtime
performance. Therefore, we decided to consider GPU sharing
as part of our future work.

The jobs not selected for execution are kept in the queue
until the following rescheduling point. The job selection and
resource allocation processes aim at executing all jobs in J
before their due date and, simultaneously, at maximizing the
utilization of the selected nodes avoiding idle resources, thus
reducing the overall cost. The latter is given by the sum of
the execution costs of all jobs and of the tardiness cost of jobs
whose due date is violated.

The ML models used to predict job execution times, which
are described in the next section, are originally trained using
historical data and information coming from pre-profiling.
Execution logs of all the running jobs are collected and can
be used to periodically re-train the models, enhancing their
accuracy.

2.2 ML Models for Predicting Training Jobs Performance
To solve the scheduling and resource allocation problem de-
scribed in the previous section, it is paramount to lean on
reliable estimates of the execution time for each submitted

4

job on each available hardware configuration (i.e., on each
available combination of number and type of GPUs). The du-
ration of individual DL jobs depends on many factors, some of
which are deterministic, such as the type of the implemented
architecture, the batch size, the number of iterations, and the
stopping policy. Others, instead, have a random nature (the
initial distribution of the weights) or are hardly knowable a
priori (e.g., the characteristics of the training dataset). Thus,
it is not possible to know the job duration with certainty,
and performance estimation techniques are needed. Since the
considered problem must be solved online and in a reduced
amount of time, simulation-based methods are not feasible.

In this work, ML models are adopted to correlate job
and target VM features with the expected execution time. In
particular, as discussed in [20], linear regression can be used to
automatically build models that infer a deep network training
time on a particular type of VM. A different prediction model
is built in [20] for each type of neural network. The considered
features related to the characteristics of the training jobs are
the number of iterations and the batch size. Vice versa, the
considered features of the VMs are the nominal computational
power of the GPUs (in terms of GFLOPS), the number of
GPUs, and the performance of the disk (i.e., the time in
seconds to load 120k files of 192 kB from disk into the memory
of a GPU). These numerical features and their inverses are
combined to build an extended set that is filtered through
sequential forward feature selection [21] and used to feed the
ML models. It is worth noting that, since the models consider
the number of iterations of the training process, they can
be used not only to estimate the execution time for the full
execution of the job, but also to predict the time required to
complete the remaining iterations of an already started job,
even if it is migrated to a different VM type [20], [22].

As reported in [22], the worst-case mean absolute percent-
age error is below 11%, making the models accurate enough to
be exploited in the considered scenario (see also Section 4.6).

3 Problem Formulation and Solution
This section aims at presenting the optimization model and
the heuristic method we developed to tackle this joint Job
Scheduling (JS) and Capacity Allocation (CA) problem.

In Section 3.1 we describe our mathematical optimization
formulation, which accurately models the cost structure of the
problem arising at every rescheduling point. Its complexity, re-
flected by the very large number of variables and constraints,
calls for designing efficient heuristic algorithms to determine
good-quality solutions in reasonable computing time. Since at
each rescheduling point the optimization process may return
decisions that are myopically optimized for the current con-
text, in Section 3.2 we study an alternative objective function
with the goal of improving the results in the long run. Finally,
in Section 3.3 we propose a heuristic method for this problem,
which integrates a randomized greedy procedure and the path
relinking strategy [10].

3.1 Optimization Model
Due to the online nature of the problem, the formulation
presented in this work refers to the local optimization prob-
lem, as defined in Section 2.1, where the decisions made at
each scheduling point only take effect until the next event

Table 1: Problem parameters and variables

Parameters
J set of submitted jobs
N set of nodes
V set of VM types
Gv number of available GPUs on a VM of type v ∈ V
Gv set of available GPUs on a VM of type v ∈ V; Gv = {1, 2, ..., Gv}
cv time unit cost of a VM of type v ∈ V
dj due date of job j ∈ J
ωj tardiness weight of job j ∈ J
Mt

j maximum execution time of job j ∈ J
tjvg execution time of job j ∈ J on the VM type v ∈ V with g GPUs
M̂c

j maximum possible deployment cost for job j ∈ J
H scheduling time interval
µ penalty coefficient for idle GPUs
ρ penalty coefficient for postponed jobs
Variables
wn 1 if node n ∈ N is selected, 0 otherwise
ynv 1 if the VM type v ∈ V is selected on node n ∈ N , 0 otherwise
zjn 1 if job j ∈ J is executed on node n ∈ N , 0 otherwise
xjnvg 1 if job j ∈ J is executed on node n ∈ N with a VM of

type v ∈ V and g GPUs, 0 otherwise
τj tardiness of job j ∈ J
τ̂j worst-case tardiness of job j ∈ J when it is postponed
πjn deployment cost of job j ∈ J on node n ∈ N
αjn 1 if job j ∈ J is the first-ending job on node n ∈ N , 0 otherwise

occurs. This approach has significant consequences, primarily
on the local objective function used to guide the optimization
process toward a good quality global solution. For this reason,
the Mixed Integer Linear Programming (MILP) formulation
presented in this section is focused on the computation of the
deployment cost of the first-ending job. This is well-suited
to model the behavior of the online scheduling problem: the
system is reconfigured not only every time a new job is submit-
ted, but also every time a job is completed. Jobs completions
are the only predictable events in our online setting, and all
resources might be reallocated after a rescheduling; therefore,
it is reasonable to bind the overall cost of the schedule to the
deployment cost of the first-ending job on each node.

As already mentioned, we consider four input sets: the
set of candidate jobs J , the set of nodes N , the set of VM
types V (according to current cloud providers’ catalogues),
and the set of GPU partitions for each VM type v, denoted
by Gv. In particular, assuming homogeneous GPUs for all
v ∈ V, Gv = {1, . . . , Gv}, where Gv is the total number of
GPUs available on VM type v. The constant parameter H
represents the periodic scheduling time interval. The problem
parameters and variables are summarized in Table 1.

The proposed MILP formulation for the joint JS and CA
problem is as follows:

min
∑
j∈J

(ωjτj + ρωj τ̂j)+µ
∑
n∈N
v∈V

Gvynv −
∑
j∈J
g∈Gv

gxjnvg

+
∑
j∈J
n∈N

πjnαjn

(P1a)

subject to:∑
v∈V

ynv = wn ∀n ∈ N (P1b)

xjnvg ≤ ynv ∀j ∈ J , ∀n ∈ N , ∀v ∈ V, ∀g ∈ Gv (P1c)
xjnvg ≤ zjn ∀j ∈ J , ∀n ∈ N , ∀v ∈ V, ∀g ∈ Gv (P1d)∑
v∈V,g∈Gv

xjnvg ≤ wn ∀j ∈ J , ∀n ∈ N (P1e)∑
n∈N ,v∈V,g∈Gv

xjnvg =
∑
n∈N

zjn ∀j ∈ J (P1f)

5∑
j∈J ,g∈Gv

gxjnvg ≤ Gv ∀n ∈ N , ∀v ∈ V (P1g)∑
n∈N ,v∈V,g∈Gv

tjvgxjnvg ≤ dj + τj ∀j ∈ J (P1h)

(
H + M

t
j

)(
1 −
∑
n∈N

zjn

)
≤ dj + τ̂j ∀j ∈ J (P1i)∑

v∈V,g∈Gv

tjvgcvxjnvg ≤ πjn ∀j ∈ J , ∀n ∈ N (P1j)∑
j∈J

αjn = wn ∀n ∈ N (P1k)

αjn ≤ zjn ∀j ∈ J , ∀n ∈ N (P1l)∑
n∈N

zjn ≤ 1 ∀j ∈ J (P1m)∑
n∈N

wn = min {N, J} (P1n)

wn ∈ {0, 1} ∀n ∈ N (P1o)
ynv ∈ {0, 1} ∀n ∈ N , ∀v ∈ V (P1p)
zjn ∈ {0, 1}, πjn ≥ 0, αjn ∈ {0, 1} ∀j ∈ J , ∀n ∈ N (P1q)
τj ≥ 0, τ̂j ≥ 0 ∀j ∈ J (P1r)
xjnvg ∈ {0, 1} ∀j ∈ J , ∀n ∈ N , ∀v ∈ V, ∀g ∈ Gv (P1s)

Constraints (P1b) enforce that exactly one VM type v ∈ V
is selected for each open node n ∈ N . Notice that, here and
in the following, we denote a node n ∈ N as open if wn = 1,
i.e., the node has been selected. Since ynv = 1 only if a VM of
type v is deployed on node n, wn = 0 enforces ynv = 0 for all
v ∈ V. Conversely, when wn = 1,

∑
v∈V ynv can be 1 only if

exactly one VM type v is chosen on node n.
Constraints (P1c), (P1d), (P1e) and (P1f) prescribe that

each job j ∈ J can be assigned only to configurations (i.e.,
nodes, VMs and number of GPUs) that have actually been
selected. In particular, according to inequalities (P1c), xjnvg

can be equal to 1, i.e., job j can be executed on node n
with VM type v and g GPUs, only if ynv = 1, that is, node
n is open and equipped with a VM of type v. Constraints
(P1d) state, instead, that each job j can be deployed with any
configuration (v, g) on node n only if it has been assigned
to node n in the current time period, i.e., zjn = 1. The
sum at left-hand-side of Constraints (P1e) represents the total
number of configurations (v, g) selected for each job j on node
n. In particular, this must be 0 when node n is closed, i.e.,
when wn = 0. Conversely, when wn = 1 at most one of the
variables xjnvg can be equal to 1, i.e., one single configuration
(v, g) must be assigned to job j if it is deployed on node n,
while all xjnvg are 0 if job j is postponed or it is executed on
a different node. Moreover, according to Constraints (P1f), if
a job j is selected to run on node n, i.e., zjn = 1, exactly one
xjnvg must be 1, that is, the job must be deployed on one node
and assigned to a single configuration (v, g).

Constraints (P1g) enforce that the total number of GPUs
assigned to the jobs deployed on a given node n does not ex-
ceed the number of available GPUs on the VM type v selected
on the node. Since xjnvg = 1 only if job j is executed on
node n with exactly g GPUs, the left-hand-side of Constraints
(P1g) is equal to the total number of GPUs assigned to jobs
deployed on node n and VM v.

Constraints (P1h) and (P1i) are used to define the tar-
diness τj and worst-case tardiness τ̂j of all jobs j ∈ J . In
particular, the total execution time of job j ∈ J on the

selected configuration is bounded by the sum of its due date
and its tardiness if the job is executed (see Constraints (P1h)).
If, in turn, the job is postponed, i.e., the sum of zjn over all
nodes n ∈ N is equal to zero, the worst-case tardiness τ̂j is
defined by inequality (P1i) to be greater than or equal to the
sum between the maximum execution time of job j and the
scheduling interval H, minus the due date dj .

Constraints (P1j) enforce the deployment cost of job j
on node n, denoted by πjn, to be greater than or equal to
the execution cost of the job itself, expressed by the product
between the execution time on the selected configuration and
the cost of the selected VM type. Notice that, since the
variables πjn are multiplied by αjn ≥ 0 in the objective
function to be minimized, this set of constraints defines the
deployment costs. Constraints (P1k) and (P1l) state that, for
each open node n, exactly one job is selected among those that
complete first on n, while Constraints (P1m) prescribe that
each job must be assigned to at most one node. This locality
constraint is introduced in our model for the sake of simplicity.
Moreover, the analysis of production systems traces reported
in [23] and discussed in [14] highlights how almost 87% of the
jobs require a single GPU, and that the degree of interference
is higher for jobs that are distributed on many different
servers. It is observed that accessing GPUs from multiple
VMs may introduce significant communication overheads in
general, and it is therefore considered as an antipattern when
the overall number of required GPUs is small enough to fit in a
single node. In particular, these considerations are considered
in [14] as incentives to exploit jobs migration and packing
to improve resource utilization. More recently, [24] points
out that 85% of the jobs can be deployed on single servers
hosting up to 8 GPUs, as in the scenarios we considered in the
experiments (see Section 4.1). However, as the DL models
are growing fast, doubling their size every 3.4 months [25],
distributed training is unavoidable for some applications. The
extension of model (P1) to situations where multiple servers
can be used to deploy a job is left as part of our future work.

Having denoted with J and N the cardinality of J and
N , respectively, Constraints (P1n) require that a suitable
number of nodes is used, so that as many submitted jobs as
possible are executed. Since jobs that are postponed become
closer to their due date and, therefore, require more (and
possibly more expensive) resources to be completed without
tardiness, it is reasonable to run all jobs as soon as resources
are available to reduce the overall execution costs. In an online
framework, with unpredictable arrival times and new jobs
characteristics, the resource assignment at a given time may
affect the effectiveness of the solution in the following periods.
However, preemption mitigates this issue by allowing, at any
decision point, to revise the resource assignment considering
newcomer jobs. Finally, Constraints (P1o)-(P1s) define the
decision variables domain.

The objective function (P1a) includes three terms. The
first represents the sum over all jobs j ∈ J of the tardiness
cost and the worst-case tardiness cost. The latter occurs
when the job is postponed and is used to penalize delaying
a job. Although, when considering the long-term scenario,
postponed jobs may still be completed within the due date,
the local decision-maker cannot foresee the future system
state and aims at identifying a robust solution considering
the worst-case scenario. Both τj and τ̂j are multiplied by

6

the tardiness weight ωj that denotes the priority of each job:
violating the due date of high-priority jobs implies a higher
penalty. Moreover, τ̂j is multiplied by a coefficient ρ > 1,
which further penalizes jobs postponements.

The second term in the objective function (P1a) represents
the difference between the number of assigned GPUs and the
number of available GPUs on all nodes. Thus, through the
positive constant µ, it penalizes solutions with idle resources.
In particular, for each node n, only the variable ynv corre-
sponding to the selected VM type is equal to 1. Therefore,∑

n,v Gvynv is the total number of available GPUs on the
chosen nodes. The second term

∑
j,g gxjnvg is equal, as in

Constraints (P1g), to the number of GPUs assigned to jobs
deployed on node n. Thus, the difference gives the total
number of idle GPUs.

The third term corresponds to the total execution cost:
for each node n ∈ N , the variable αjn is 1 if job j is the
first-ending job on n, according to the assigned configuration.
The execution cost on node n is computed as the deployment
cost of the first-ending job on that node. This is reasonable
since, as soon as a job is completed, the system is fully recon-
figured, thus the resources assigned to all jobs may change.
Note that we neglect the reconfiguration costs of the running
nodes, as well as the costs due to preemption overheads, since
both events are orders of magnitude faster than DL training
time(few minutes against several hours or days). Due to the
last term of the objective function, the resulting optimization
model (P1) is nonlinear. The linearization is available as
Appendix A in the additional material.

As a final consideration, the huge number of variables and
constraints makes Problem (P1) beyond the reach of the state-
of-the-art MILP solvers, even for small-size instances of the
problem. While the mathematical formulation is crucial to
formalize the problem, heuristic methods are required to de-
termine good-quality solutions within a reasonable computing
time. As mentioned before, an attempt to exploit the MILP
formulation had been made in [11], where the set of jobs J
and the set of nodes N were partitioned and managed by a
set K of local controllers. Jobs were assigned to controllers
according to a round robin policy while each local controller
was in charge of solving very small instances (with |N | ≤ 5)
of a MILP problem equivalent to (P1) using a state-of-the-
art solver. This divide-et-impera approach, despite delivering
some good-quality solutions in a reasonable computing time,
explores only a limited portion of the solution space. Conse-
quently, the optimality gap of its solutions is generally wide
and grows very steeply with J . In this work, we consider
the problem in a centralized framework and we tackle it
through the heuristic algorithm proposed in the next sections.
The experimental results reported in the following sections
prove how a centralized, albeit heuristic, method outperforms
significantly the previous approach [11], both in terms of
solution quality and scalability.

3.2 Alternative Proxy Function
As mentioned in Section 2.1, our ultimate goal is to optimize
the costs of a long-term scenario, including multiple job
submissions and executions. The total costs of the candidate
solutions obtained with our heuristic algorithm, described
in the following section, are evaluated through the function

fOBJ, that implements the objective function reported in
Equation (P1a). Since this function is also exploited to make
local scheduling decisions that over time build up the global
schedule, we often refer to fOBJ as a proxy function. This base-
line proxy function focuses on cost minimization during the
current scheduling step. This approach provides high-quality
local solutions but proves to be short-sighted in terms of the
long-term scenario. Indeed, being conservative in the use of
resources (favoring the cheapest available configuration), it
runs the risk of increasing the pressure of jobs waiting to
be processed to the point of having to compensate for them
through costly configurations.

In order to partially address this issue, we developed a
different proxy function to be used in place of fOBJ, that will
be denoted in the following as f̄OBJ:

f̄OBJ = max
∑
j∈J

Mt
j

πj + ωjτj

. (1)

It aims at favoring the schedules that use the resources
most efficiently, pursuing a trade-off between maximizing the
number of completed jobs and minimizing the operational
costs. The maximum processing time M t

j at the numerator
is used as a scaling factor to weight the importance of all jobs
in the queue, favoring long-running jobs. The denominator is
composed of two terms: the deployment cost πj of each job and
the penalty cost ωjτj associated with the due date violation.

Such definition shifts the focus to resource efficiency:
each term decreases as the processing time and the tardiness
increase. Consequently, the model tries to keep these values
small for all jobs. As we shall see in Section 4.3, f̄OBJ provides
better experimental results when applied in the centralized
heuristic scheme, based on path relinking, described in the
next section.

3.3 Proposed Algorithmic Solution
We developed a heuristic algorithm to swiftly identify good-
quality solutions for the optimization problem presented in
Section 3.1, combining and adapting randomized greedy and
path relinking schemes. The proposed method is based on the
following assumptions:

• Jobs are sorted by their pressure ∆j , which measures how
close they are to the due date when executed with the
fastest configuration. The pressure is defined as:

∆j = Tc + min
v∈V,g∈Gv

{tjvg} − dj , (2)

where Tc denotes the current rescheduling point.
• The optimal configuration (v, g) ∈ V × Gv for each

selected job is either (i) the cheapest configuration such
that the job is executed before its due date, if such a
configuration exists, or (ii) the fastest available configu-
ration if, independently from the selected setup, it is not
possible to execute the job before its due date.
In our framework, the time-unit deployment cost of a job
on any available configuration is always lower than the
penalty incurred if the job due date is violated. Therefore,
such assumption allows to minimize costs also when due
dates are violated, completing the job execution as fast
as possible to reduce the corresponding penalty.

• Deployment costs increase linearly with the number of
GPUs (see the cloud providers pricing models [12], [13]).

7

• Processing times speed-up is sublinear in the number of
GPUs (as observed in, e.g., [22]).

The proposed method includes three main steps. In the
preprocessing step, the pressure of all candidate jobs is com-
puted as defined in Equation (2). Then, the optimization step
implements a randomized construction procedure where the
best available configuration is selected for all jobs in the
pressure-sorted virtual queue J , followed by a step of path
relinking. Finally, the postprocessing step aims at reducing
the amount of idle resources. Specifically, if a VM v with gv

available GPUs is selected on a node n, but only a fraction
g < gv of them is used, we try to substitute it with a v′ ∈ V
that hosts GPUs of the same type and whose number is
such that g ≤ gv′ < gv. Moreover, if this update cannot be
performed or if, after having completed it, there are still nodes
with idle GPUs, the idle resources on node n are allocated to
the job with the highest speed-up among those deployed on n.

We empirically evaluated the impact of the two com-
ponents of the optimization step by means of an ablation
study (presented in Section 4) in which we elicited variants
considering the complete scheme (called Path Relinking), the
method obtained by disabling the path relinking procedure
(called Randomized Greedy) and finally the greedy algorithm
obtained by removing also the randomization (Greedy). In
a context where scalability is crucial to manage large-scale
systems, it is important to highlight the benefits of each
approach, since more complex algorithms require longer ex-
ecution times. The costs of the scheduling decisions made by
the algorithm are evaluated using a proxy function fP . This
corresponds to the objective function fOBJ of Equation (P1a)
in the case of the pure Greedy or the Randomized Greedy
method, and to the function f̄OBJ defined in Equation (1)
in the complete algorithm including the path relinking strat-
egy. The overall costs of the proposed solutions are finally
computed exploiting fOBJ (Equation (P1a)) at the end of
a long-term scenario involving multiple submissions and the
complete execution of all jobs. This allows us to compare also
the results obtained with methods exploiting different proxy
functions.

The optimization step is described in details in the follow-
ing.

3.3.1 Optimization Step
The optimization step consists of two substeps that are
executed sequentially. It starts with a randomized greedy
construction procedure that is used to build a set S∗ of
good-quality candidate solutions, obtained by optimizing the
proxy function fP . This set is taken as a starting point for
a path relinking procedure that improves the best candidate
solution by iteratively identifying and combining features of
the other solutions in S∗. In the following, these procedures
are presented in detail.

Randomized Construction Procedure
The randomized construction procedure is reported in Algo-
rithm 1. At each iteration, a new candidate solution S is built
through a randomized greedy method. If it has a better fP

value than any other solution currently stored in S∗, the set is
updated, possibly removing the worst-valued solution to keep
its cardinality under a fixed value σ. Each candidate solution
S ∈ S∗ represents a data structure carrying information about

Algorithm 1 Randomized construction procedure
1: function randomized_construction(J , MaxItRG)
2: iter = 0
3: S∗ ← ∅
4: while iter < MaxItRG do ▷ MaxItRG: maximum number

of random iterations
5: S ← empty schedule ▷ S: current schedule
6: Js ← sort_jobs_list(J , ∆) ▷ ∆ : pressures of all jobs
7: for all j ∈ Js do ▷ Js : sorted queue
8: D∗

j = {(v, g) s.t. tjvg + Tc < dj}
9: (v∗, g∗)← select_best_configuration(j, D∗

j)
10: assigned← assign_to_existing_node(j, (v∗, g∗),NO)
11: if not assigned then
12: if |NO| < N then
13: Select ν′ with VM type v∗ and Gv∗ GPUs
14: NO ← NO ∪ {ν′}
15: S ← S ∪ (j, ν′, v∗, g∗)
16: else
17: assign_to_suboptimal(j, S,NO)
18: end if
19: else
20: S ← S ∪ (j, ν∗, v∗, g∗)
21: end if
22: Js ← Js \ {j}
23: end for
24: if fP (S) is better than fP (S′) for any S′ ∈ S∗ then
25: S∗ ← S∗ ∪ {S}
26: S∗ ← S∗ \ {S′} if |S∗| > σ
27: end if
28: iter← iter + 1
29: end while
30: return S∗

31: end function

the running jobs and the relative configuration. Specifically,
each element of S is a tuple (j, n, v, g), where j is the current
job and n, v, g are the node, VM type, and number of GPUs
assigned to it, respectively.

Algorithm 1 proceeds as follows: at line 6, the set J
of submitted jobs is sorted producing as output a new set
denoted by Js. Note that job j precedes job k in Js only if
∆j > ∆k, i.e., job j is more likely to violate its due date. As
a first randomization step, some jobs in Js can be swapped,
with probability inversely proportional to their priority.

For every job j in the sorted list Js, the set of configura-
tions such that the job can be fully processed within its due
date is defined, at line 8, as:

D∗
j = {(v, g) ∈ V × Gv : Tc + tjvg < dj} .

The set D∗
j is used to identify a high-quality configuration

for job j, according to the following rules. Since one of the
main contributions to the schedule total cost is given by
the penalties for due date violations, the algorithm always
tries to select configurations that guarantee to complete the
jobs within the due dates or to minimize the total weighted
tardiness. Therefore, the configuration to be selected is:(

v
∗

, g
∗
)

=

{
argminD∗

j
{tjvgcv} if D∗

j ̸= ∅
argminv∈V,g∈Gv

{tjvg} otherwise.

The algorithm explores the space of possible configurations
by introducing some randomness in the selection process.
Instead of choosing the configuration according to the rule
defined above, it selects as a candidate configuration for job
j one of the (v, g) with lower cost, with probability inversely
proportional to the cost itself.

Let (v∗, g∗) be the selected configuration for job j and NO

the set of open nodes; the assignment proceeds as follows:

8

1) First, the algorithm tries to assign job j to an open node,
following a best-fit approach. Since one of the main goals
of our method is to minimize the amount of idle resources,
open nodes whose VM type is equal to the one required
by the current job are sorted according to the following
rule. For each node ν ∈ NO equipped with a VM of type
v∗ and such that it hosts enough free resources to assign
g∗ GPUs to the job j, we compute the number ĝν of
GPUs remaining idle after having deployed job j on ν
with the required configuration (v∗, g∗). Nodes are sorted
in decreasing order of ĝν , generating a new set N ∗

j ⊆ NO.
Job j should be assigned to a node in N ∗

j with the aim
of saturating, as much as possible, the node resources,
so that the overall number of idle GPUs is minimized.
To introduce randomness, the algorithm assigns j to one
of the open nodes ν ∈ N ∗

j with probability inversely
proportional to the corresponding ĝν .

2) If the assignment to an already open node is not feasible,
but |NO| < N , a new node ν′ is opened, with VM type v∗

and the maximum number Gv∗ of available GPUs. Job j
is then assigned to ν′ with configuration (v∗, g∗) and the
number of available GPUs on ν′ is updated accordingly.

3) If (v∗, g∗) does not fit in any open node and all nodes
are already open (NO = N), job j is assigned to a node
ν ∈ NO with a suboptimal configuration. This procedure
follows a best-fit approach and assigns the given job to
the best among the suboptimal configurations available
on open nodes. As in the previous cases, the best subopti-
mal configuration is the cheapest available configuration
that allows the node to execute the job before the due
date or, if such a configuration does not exist, the one
that minimizes the tardiness.

4) Finally, if also the assignment at the previous point is not
feasible because all the resources are saturated, the job
remains in the queue until the next scheduling point.

Path Relinking Procedure

Path relinking is typically used as an intensification strategy
to enhance the expected quality of results returned by other
heuristic methods. This is achieved by exploring trajectories
(sequences of alterations in the structure of a solution) con-
necting good-quality solutions [26], [27]. We adapted this gen-
eral approach to our context (see Algorithm 2), implementing
a procedure that receives as input the set of elite solutions
S∗ returned by the randomized construction procedure. It
extracts from S∗ the candidate solution Ss with best fP

value, generates and explores paths connecting Ss to the other
elite solutions in S∗, to find better solutions by incorporating
attributes that characterize good-quality solutions.

The procedure is based on the concept of move, which
denotes any atomic change that can be performed to move
from the source solution Ss in the direction of a target solution
St ∈ S∗, St ̸= Ss. The new candidate solution obtained by
applying a move m to the current solution Ss is denoted by
Ss ◦ m. In our algorithm, a sequence of moves is performed,
either until St is reached or until a maximum number of moves
is performed. In our context, a move from the source Ss to
the target St is defined as any pair (j, n) such that job j is
assigned to node n in St, while it is assigned to a different

Algorithm 2 Path relinking procedure
1: function path_relinking(S∗, MaxItPR)
2: Ss ← solution in S∗ with best fP (Ss) ▷ Ss: source solution
3: for all St ∈ S∗, St ̸= Ss do ▷ St: target solution
4: iter = 0
5: while Ss ̸= St and iter < MaxItPR do
6: M← get_moves(Ss, St)
7: ME ← ∅ ▷ME : set of explored moves
8: (m∗, c∗)← (empty move, fP (Ss))
9: for all m ∈M do

10: if m /∈ME then
11: (m∗, c∗)← explore_step(Ss, St, m)
12: ME ←ME ∪ {m}
13: end if
14: end for
15: if m∗ is not empty then
16: Ss ← (Ss ◦m∗)
17: end if
18: iter← iter +1
19: end while
20: end for
21: return (Ss, fP (Ss))
22: end function

node n′ in Ss
2. More specifically, the function GET_MOVES

called at line 6 of Algorithm 2 determines which configuration
(vt, gt) is assigned to job j in the target solution St. If this
configuration is different in terms of VM type or of number of
GPUs from the one selected for job j in the source solution Ss,
the algorithm looks for a node n that, in solution Ss, has VM
type vt and at least gt free GPUs. If such a node exists, (j, n)
is added to the set M of candidate moves. It is worth noting
that either n′ or n can be empty, if the job is not executed
either in the source solution or in the target one.

Given the set M of feasible moves, the method explores all
possible m ∈ M looking for a move that yields a solution with
a better proxy function value than fP (Ss), denoted in line 8
by c∗. The exploration of a move m, performed at line 11 of
Algorithm 2, consists in applying m to the source solution Ss,
generating a new candidate solution denoted by S′ = Ss ◦ m,
and in evaluating the function fP , obtaining c = fP (S′). If
the value c is better than the value c∗ (i.e., if the current move
m yields an improvement), the value of the best move m∗,
initially empty, is updated accordingly.

To deepen the exploration of the space around Ss, the
function EXPLORE_STEP is implemented as follows. Instead of
considering only the single move m given as input, it proceeds
recursively by determining the new set M′ of moves leading
from S′ = Ss ◦ m to the target solution St and exploring all
m′ ∈ M′ to determine a new candidate solution S′′ = S′ ◦ m′.
If the value fP (S′′) is better than c∗, m becomes the new
best move m∗. This recursive step strongly affects the quality
of the final solution returned by the algorithm, since it allows
the procedure to explore a wider range of candidate moves and
solutions. In particular, it may happen that a move m would
be rejected if we were considering a single-step exploration
because fP (S′) = fP (Ss◦m) did not provide a better outcome
than c∗. However, the new candidate solution S′ may lead in
the second step to a new solution S′′ = S′ ◦ m′ such that
fP (S′′) is better not only than fP (S′) but also than c∗, and

2. Notice that, if the VM type selected on n and n′ is the same and
job j is executed, in Ss and St, with the same number of GPUs, the
two solutions are equivalent, for our purposes, even if the indices of
the nodes are different. Thus, we perform the next steps only when j
has a different configuration in the two solutions.

9

the move m is accepted as new m∗. Once the exploration of the
set M is completed, if m∗ is not empty, meaning that we found
a move providing a better value c∗, the solution Ss is updated
by applying m∗ (see line 16) and the algorithm proceeds with
the next iteration, having as new source solution Ss ◦ m∗.

3.3.2 Algorithm Complexity
Let J be the cardinality of the list of jobs J , N the cardinality
of the set of nodes N , and C =

∑
v∈V Gv the cardinality of the

set V × Gv, i.e., the total number of available configurations.
Finally, let σ denote the number of candidate good-quality
solutions saved in the set S∗. The overall complexity of our
method can be written as:

O (MaxItRG (J log J + JN log N) + σ MaxItPR M J N) .

The complete derivation is omitted here for space limits
but it is reported in Appendix B.

4 Experimental Analysis
We evaluated the heuristic methods proposed in Section 3.3
through an extensive experimental campaign, focusing both
on the solution quality and on efficiency. We randomly gen-
erated a large set of scenarios as described in Section 4.1.
The evaluation methodology, including the description of the
alternative approach we adapted from the literature [9], is
detailed in Section 4.2 whereas the obtained results are
extensively discussed in Section 4.3. As to efficiency, a scala-
bility analysis is reported in Section 4.4. For a fair comparison
with alternative methods, we also considered in Section 4.5
scenarios where first-principle methods and the approach
proposed in [9] can access a larger number of nodes. Finally,
we evaluated Path Relinking in a prototype system deployed
on Microsoft Azure; the deviation between the expected and
real costs (including VMs and tardiness costs) is discussed in
Section 4.6. The algorithm source code and all the results are
available as open data at [28].

4.1 Randomly Generated Instances
As representatives of long-running DL training jobs, we se-
lected different neural networks training tasks for image and
speech recognition, namely Alexnet, Resnet, VGG [22], and
DeepSpeech [29], implemented with different DL frameworks
(i.e., PyTorch and Tensorflow). A significant heterogeneity
characterizes them in terms of resource usage; thus, they can
be seen as emblematic samples of the architectures used in
practice for image classification and video processing. We con-
sidered several instances of the listed DL training workloads,
with different epochs and batch sizes and, therefore, different
expected execution times, estimated via the Machine Learning
models presented in [22] and discussed in Section 2.2. Such
models have been trained using data from profiling runs of the
target applications, with an average percentage error below
11% (for detailed accuracy results, see [20]).

The considered VM catalog (see Table 2) includes 8 dif-
ferent types. Six of them (NC6, NC12, NC24, NV6, NV12,
NV24) are based on Nvidia K80 and M60 and are available
on Microsoft Azure. The last ones (NC48∗ and NV48∗) are
synthetic VM types obtained from the NC24 and NV24,
doubling the number of available GPUs and their hourly costs,
in line with the current cloud providers pricing models.

Table 2: Characteristics of the Target Nodes

Cost
VM type GPU type #GPU [$/h]
NC6 K80 1 0.56
NC12 K80 2 1.13
NC24 K80 4 2.25
NV6 M60 1 0.62
NV12 M60 2 1.24
NV24 M60 4 2.48
NC48∗ K80 8 4.48
NV48∗ M60 8 4.96

To verify the effectiveness and generality of our heuristic
method, we generated a set of random problem instances
using the parameters described in the following. We varied
the number N of available nodes in the cluster from 10 to 100,
while the number of jobs in each instance is set to J = 10N .
Job inter-arrival times were generated as follows:

• In the first instance set, inter-arrivals were drawn, as
in other literature proposals (see. e.g., [6]), from an
exponential distribution, with mean equal to 75, 000s/N .
The mean decreases as the cluster size increases so that
the average per-node workload remains almost constant.

• In the other instances, inter-arrival times were generated
as described in [9]. Arrivals are sampled from a Poisson
distribution, considering three possible rates. Let λ be
a base rate defined as the reciprocal of the minimum
expected completion time given the configurations avail-
able in the catalog. The high rate is set to ε kmax λ,
while the low rate is ε kmax λ/4. We defined kmax as
the number of nodes in the system multiplied by the
maximum number of GPUs that can be assigned to each
job. We tuned the parameter ε to match the peak load of
the system to real-life scenarios reported in [30], of nearly
135 job submissions per hour in a system involving few
thousands of GPUs. Finally, we obtained the mixed rate
by alternating high and low distributions approximately
every 10 submissions (similarly to the work in [9]). Since,
however, the results achieved under the mixed rate are
very close to those obtained under exponential inter-
arrival times, they are not reported in the following
sections but are available at [28].

The distributions of jobs arrivals for a scenario featur-
ing N = 1000 and J = 10000 are reported in Figure 2.
We used the aforementioned job traces to simulate a long-
term scenario, involving multiple submissions. The costs are
evaluated at the end of the simulation, when all jobs have
been completely executed, and include the execution costs
depending on the chosen VMs and the tardiness costs of jobs
that complete their execution after the due date.

For each value of cluster size and each arrival rate, we
generated three problem instances, changing the random seed.
The remaining parameters are set as follows. The periodic
scheduling time interval H is set to one hour. The due date
dj for each job is sampled from a uniform distribution in
the range [minvg{tjvg}, 3 minvg{tjvg}]. The tardiness weights
ωj are extracted with uniform probability from the interval
[0.003, 0.015], so that the penalty for a time-unit due date
violation is about 10 times larger than the time-unit cost of
cloud resources. For what concerns the worst-case tardiness,
the parameter ρ that, multiplied by ωj in the objective func-
tion (see Equation (P1a)), penalizes the postponement of jobs,

10

Figure 2: Job submissions under different workloads

is set to 100. Finally, the parameter µ is set equal to 1 (given
the objective function, any positive value forces the use of all
the available GPUs).

4.2 Evaluation Methodology
As in other literature proposals (see. e.g., [6]), we compared
the results of the proposed heuristic methods against those ob-
tained with first-principle methods, namely First in First out
(FIFO), Earliest Deadline First (EDF), and Priority Schedul-
ing (PS). Moreover, we performed comparisons against the
Hierarchical Method we presented in [11], and with a Dynamic
Programming (DP)-based method adapted from [9]. The over-
all method described in Section 3.3, including the randomized
construction process and path relinking, and exploiting the
new proxy function presented in Section 3.2, is referred to in
the following as Path Relinking algorithm. To highlight the
contributions of the different components of our algorithm
(ablation study), as mentioned in Section 3.3, we compared it
with the results obtained with a Randomized Greedy method,
implemented by disabling the path relinking procedure, and
with a pure Greedy method, implemented as a deterministic
version of the previous one. Both these methods use the
original proxy function fOBJ, i.e., Equation (P1a). The results
of the Randomized Greedy and pure Greedy methods with
the alternative proxy function f̄OBJ defined in Equation (1),
as well as the results of the Path Relinking method exploiting
fOBJ (leading to lower quality solutions) are not reported for
space limits.

The comparison is performed by considering the total costs
given by the sum of the VM usage costs and the tardiness costs
for due date violations, computed after executing all jobs, and
the percentage cost reduction obtained by Path Relinking with
respect to any other method. The latter is defined as:

pcr = Calgo − CP R

Calgo
· 100%, (3)

where CP R denotes the cost obtained by Path Relinking,
and Calgo is the cost achieved by any other method. Note that,
to be conservative, we decided to divide the difference between
costs at the numerator by Calgo, which is expected to be larger
than CP R in all the considered scenarios.

Details about how we adapted the DP-based method to
our problem, as well as about software and hardware settings,
are provided in the next sections.

4.2.1 A Dynamic Programming-Based Alternative Method
To assess the effectiveness of our approach, we adapted to
our problem a Dynamic Programming (DP)-based method
initially proposed in [9] and from now on referred to as DP
algorithm. [9] presents a resource allocation strategy for DL
training jobs that leverages DP to determine, for each job, the
number of GPUs to be allocated to it and its optimal batch
size. Jobs are then scheduled by applying a FIFO mechanism,
such that one single job can be executed on each node. The
optimizer is called periodically, with time period ∆t, and jobs
execution can be stopped and resumed from a checkpoint to
account for changes in the allocated resources.

We extended the DP algorithm by introducing the selec-
tion of the VM type v ∈ V for each available node n ∈ N ,
which was considered as a physical, non-virtualized machine
in [9].

The DP algorithm works as follows. For all jobs j ∈ J :
1) the optimal configuration is selected according to the

value of a proxy function F1 (defined in the following),
2) the cost of executing the job with the selected configura-

tion and the cost of postponing the job to the following
scheduling step are computed according to a possibly
different proxy function F2,

3) for all numbers n̂ of available nodes in N , the total
cost due to the execution or postponement of the job is
computed, assuming that n̂ − 1 nodes are already used to
run all the previous jobs. The optimal choice for the job
is selected accordingly.

The modified DP algorithm considers the binary variables
ynv, which, as mentioned in Section 3.1, assume value 1 if the
VM type v ∈ V is selected on node n ∈ N , and zjn, which is
1 if job j ∈ J is deployed on node n. Moreover, we introduce,
for each job j ∈ J , a new binary variable rj , which is equal to
1 if j is not executed in the current scheduling step.

To guarantee a fair comparison with our method, we im-
plemented several versions of the DP algorithm, which differ
in terms of the proxy functions F1 and F2.

The first version, denoted as DP(WCT), is characterized
by F1 = F2 = FW CT , where:

FW CT =
∑

j∈J ,v∈V,n∈N

zjnynvωjτj +
∑

n∈N ,v∈V

ynvcv∆t +
∑
j∈J

rj τ̂j . (4)

It mimics our proxy function defined in Section 3.1, since
the first term represents the penalty for due date violations,
the second one measures the operational costs related to VMs
usage, and the third one is used to penalize the postponement
of jobs via the worst-case tardiness τ̂j .

We developed alternative proxy functions to enhance the
performance of DP(WCT). In particular, focusing on the
selection of the best setup, we defined F1 to select as optimal
configuration the one that guarantees the lowest execution
time. This is particularly effective in high-load scenarios,
which are the most challenging ones as pointed out in the
next sections. Such choice was coupled with two alternatives
for F2. In the first version, denoted as DP(FastWCT), we
kept F2 = FW CT . In the second version, denoted instead as
DP(FastB), we defined FB by replacing the worst-case tardi-
ness τ̂j from Equation (4) with a positive constant B. Indeed,
if the due date of a job j is very large, the corresponding τ̂j

becomes 0, which means that the job may be postponed with
no impact on the proxy function value. This, however, affects

11

the performance in the long term, since postponed jobs risk to
violate their due dates if resources are not enough to execute
them in the near future.

Finally, we decided to couple F2 = FW CT with a modified
function F1 given by:

F̃ =
∑

j∈J ,v∈V,n∈N

zjnynvωj τ̃j +
∑

n∈N ,v∈V

ynvcv∆t +
∑
j∈J

rjB. (5)

The first term of Equation (5) is obtained by substituting
the tardiness τj with an adjusted tardiness τ̃j = max{0, Tc +
tjvg − dj}, where Tc is the current time and tjvg is the execu-
tion time of job j with the configuration it is assigned to. This
updated term measures the delay of job j with respect to its
due date if it is fully executed with the current configuration
(i.e., assuming that no migration will occur in the following
scheduling steps), thus penalizes slow configurations even if
no tardiness occurs at the end of the current scheduling step.
The method obtained exploiting F1 = F̃ and F2 = FW CT is
denoted by DP(AdjWCT).

4.2.2 Software and Hardware Settings
As mentioned above, the Hierarchical Method partitions
the set of jobs into K subsets and solves in parallel the
MILP formulation presented in Section 3 for small subsets
of nodes and jobs, using a state-of-the-art solver. In the
experiments, Gurobi Optimizer 9.0 is used, with the mixed-
integer programming gap (i.e., the difference between the
current upper and lower bounds of the MILP solver) set to
5%. We considered a number of local controllers K = N/5,
so that each local controller has to manage a system of fixed
size, involving 5 nodes and 50 jobs, and solving each MILP
formulation required between 1.5 and 33 seconds on average
in the different scenarios.

The first-principle methods and the heuristic algorithm
described in Section 3.3, as well as the DP-based methods
presented in Section 4.2.1, are implemented in C++. This
guarantees, as discussed in Section 4.4, good scalability prop-
erties and fast execution times. As for the Randomized Greedy
and Path Relinking algorithms, we set MaxItRG = 1000,
MaxItPR = N , and the number σ of elite solutions built in
the randomized construction procedure to 10. For the DP-
based methods, we tested different values of the time elapsed
between two scheduling steps, ∆t. For the sake of space, we
discuss in the following section only the best results, obtained
with ∆t = 15 min.

We performed the experiments with 10 different random
seeds for each job trace, for a total number of nearly 700
tests. The server time required to complete the experimental
campaign (on an Ubuntu 18.04 VM based on a dual Intel Xeon
Silver 4114 CPU at 2.20GHz with overall 40 cores and 64GB
of memory) is of about one week.

4.3 Experimental Results
To compare the results obtained with the different methods,
we considered, as previously mentioned, the total costs given
by the sum of the VM usage costs and the tardiness costs
for due date violations, computed after executing all jobs.
This approach guarantees fair comparisons across the different
methods, even if they pursue the optimization of different
proxy functions. Moreover, we computed the ratio between
the average total cost obtained with all the proposed methods

for each considered scenario and the average total cost of
Earliest Deadline First (EDF), which is, among the first-
principle methods, the one yielding the best performance.
The results under exponential inter-arrival times, high and
low rates are shown in Figures 3a, 3b and 3c, respectively,
where we can observe that the Path Relinking method leads
to solutions with the lowest costs in all analyzed scenarios.

For what concerns the percentage cost reduction (pcr)
defined in Equation 4.2, Figure 4 reports the minimum (or-
ange bar), maximum (green bar) and average (blue bar)
value of the pcr obtained across all instances, under different
load scenarios. We observe that the Path Relinking method
achieves a significant percentage cost reduction, between 23%
and 97% on average, with respect to EDF, between 7 and 20%
compared with the Hierarchical Method, and between 43 and
95% against the best among the versions presented in Sec-
tion 4.2.1 (DP(AdjWCT) in the low rate scenario, DP(FastB)
in all the others). The fact that, in the low rate scenario, all
heuristic methods variants obtain a less significant percentage
cost reduction when compared to EDF (of about 23% on
average for Path Relinking) is motivated by the fact that,
in this context, the system load is reduced; consequently, it is
easier to meet the due dates even with simpler strategies.

We performed the Analysis of Covariance (ANCOVA) [21],
[31]–[33] to assess the statistical significance of the observed
differences among the proposed algorithms. The extensive
discussion of the tests is not reported here for space limits,
but it is available as Appendix C in the additional material.

4.4 Scalability Analysis
To better evaluate the performance of the proposed heuristic
method and its simplified variants, we analyzed the time
required to solve a single instance of the problem formalized
in the previous sections. By inspection, we observed that the
maximum number of concurrent jobs in a system with 100
available nodes is around 450 for the high rate scenario, and
around 250, 200 and 150 for the exponential, mixed and low
rates, respectively. The results in all the considered scenarios
are shown in Figure 5. Notice that Path Relinking, Ran-
domized Greedy and pure Greedy, albeit addressing the full
problem, exhibited a lower execution time than what required
by each local controller of the Hierarchical Method in all the
scenarios and independently of the problem size. The speed-
up obtained with the Path Relinking algorithm is of one order
of magnitude on average when considering exponential inter-
arrival times and when considering high or mixed rates. It is
slightly reduced in the case of low rate, since the optimization
problem instances are usually easier to solve. An even more
significant speed-up, between 3 and 4 orders of magnitude on
average, is obtained by the pure Greedy algorithm, which,
as shown in Section 4.3, yields solutions whose quality is
comparable to those produced by the Hierarchical Method.

4.5 Analysis with a Larger Number of Nodes
First-principle methods as EDF, as well as the dynamic
programming-based algorithms of Section 4.2.1, work under
the assumption that only one job can be deployed on each
node. Moreover, EDF does not allow jobs rescheduling: the
resources that they receive remain fixed until the complete
execution. These aspects may have a strong impact on the

12

(a) Exponential inter-arrival times (b) High rate (c) Low rate

Figure 3: Average total costs obtained with all methods

Gr
ee

dy
Ra

nd
om

Gr
ee

dy
Hi

er
ar

ch
ica

lM
et

ho
d

ED
F

DP
(W

CT
)

DP
(Fa

st
W

CT
)

DP
(Fa

st
B)

DP
(A

dj
W

CT
)0

20

40

60

80

100

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

avg
min
max

(a) Exponential inter-arrival times

Gr
ee

dy
Ra

nd
om

Gr
ee

dy
Hi

er
ar

ch
ica

lM
et

ho
d

ED
F

DP
(W

CT
)

DP
(Fa

st
W

CT
)

DP
(Fa

st
B)

DP
(A

dj
W

CT
)0

20

40

60

80

100

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

avg
min
max

(b) High rate

Gr
ee

dy
Ra

nd
om

Gr
ee

dy
Hi

er
ar

ch
ica

lM
et

ho
d

ED
F

DP
(W

CT
)

DP
(Fa

st
W

CT
)

DP
(Fa

st
B)

DP
(A

dj
W

CT
)0

20

40

60

80

100

Pe
rc

en
ta

ge
 c

os
t r

ed
uc

tio
n

avg
min
max

(c) Low rate

Figure 4: Percentage cost reduction obtained by Path Relinking with respect to the other methods

20 40 60 80 100
Number of nodes

10 3

10 2

10 1

100

101

Ex
ec

ut
io

n
tim

e
[s

]

Greedy
EDF
RandomGreedy
PathRelinking
HierarchicalMethod

(a) Exponential inter-arrival times

20 40 60 80 100
Number of nodes

10 3

10 2

10 1

100

101

Ex
ec

ut
io

n
tim

e
[s

]

Greedy
EDF
RandomGreedy
PathRelinking
HierarchicalMethod

(b) High rate

20 40 60 80 100
Number of nodes

10 3

10 2

10 1

100

101

Ex
ec

ut
io

n
tim

e
[s

]

Greedy
EDF
RandomGreedy
PathRelinking
HierarchicalMethod

(c) Mixed rate

20 40 60 80 100
Number of nodes

10 3

10 2

10 1

100

Ex
ec

ut
io

n
tim

e
[s

]

Greedy
EDF
RandomGreedy
PathRelinking
HierarchicalMethod

(d) Low rate

Figure 5: Average execution times with the different methods

system costs, since under heavy load resources get saturated
quickly, often leading to due date violations. To mitigate the
effect of such constraints, which limit the overall number of

GPUs that may be used, we compared the result achieved
by our methods in each run exploiting N available nodes
with the ones obtained by EDF, DP(WCT), DP(FastWCT),

13

DP(FastB) and DP(AdjWCT) in a scenario involving the
same job trace, but 2N , 4N or 8N nodes. Specifically, systems
with 8N nodes were considered because 8 is the maximum
number of GPUs available in a VM and, therefore, at most 8
jobs can be co-located in a node by our algorithms.

The detailed plots of average total costs and percentage
cost reductions obtained with the different methods are re-
ported in Appendix D. It is worth noting that the results in
the 4N and 8N scenarios are almost identical: the number
of available nodes in the 4N setting is large enough to exe-
cute all the concurrent jobs, therefore the proposed solution
found is the best solution that can be achieved by the dif-
ferent algorithms. Moreover, in the 4N and 8N scenarios the
DP(AdjWCT) method always yields lower costs with respect
to the other variants presented in Section 4.2.1. Indeed, the
adjusted tardiness τ̃j considered in the objective function
leads to a more effective resource management: when there
are enough available resources to run all jobs, there is no need
to necessarily select the fastest configuration (which is usually
the most expensive), thus DP(FastB) and DP(FastWCT) are
less suited to such scenarios. In the 2N case, this happens
in the mixed and low rate settings, where the system load
is lower, while it does not happen in the high rate setting,
because the system is still subject to a higher pressure.

Despite the larger amount of resources considered by EDF
and the DP-based methods, Path Relinking yields better
results in all the considered scenarios, even if the average
percentage gain is reduced, in the worst case, from 96% to
10% with respect to EDF and from 39% to 8% with respect to
DP(AdjWCT).

It is worth noting that exploiting a higher number of nodes
could be financially burdensome, especially when relying on
reserved instances, which include additional yearly costs to
have a reduced resources hourly cost (as an example, the AWS
entry level T4 instances have an upfront payment of about
1000 USD per year per node at the time of writing [34]).
Therefore, methods that yield lower or equivalent costs re-
quiring less resources are to be preferred.

4.6 Validation in a Cloud Cluster
To validate the results obtained by the Path Relinking
method, we deployed on Microsoft Azure a prototype system
including six different applications. Their characteristics in
terms of network types, epochs and batch sizes are summa-
rized in Table 3. We set the inter-arrival time to 300s, while
we generated the due dates dj and tardiness weights ωj for
all jobs as described in Section 4.1. The considered scenario
is accelerated, in terms of submission frequency and average
execution times of applications, to limit cloud operations
costs. This does not affect the solution effectiveness since the
workload assigned to the available nodes is comparable to
practical situations. The system is composed of two nodes,
while the considered cloud provider catalog includes the first
six types of VMs, with two types of GPUs, listed in Table 2.

The results provided by the Path Relinking algorithm are
reported in Figure 6. The schedule obtained at each step
was implemented and run on a real system to compare the
expected performance with the actual one. A discrepancy in
execution and completion times of jobs was expected because
the time required to deploy and boot the VMs on the system

Table 3: Applications submitted to the system

Job Application Files Epochs Batchsize
JJ1 DeepSpeech (TensorFlow) 64 158 4
JJ2 VGG19 (PyTorch) 130,000 1 32
JJ3 VGG19 (TensorFlow) 130,000 1 32
JJ4 AlexNet (PyTorch) 130,000 12 256
JJ5 ResNet50 (PyTorch) 130,000 3 64
JJ6 ResNet50 (TensorFlow) 130,000 3 64

Figure 6: Real System - For each job, the index of the node and the
number of assigned GPUs are reported one on top of the other.

and the time required to migrate applications from one VM
instance to another are not negligible due to the accelerated
time setting of the experiment. Moreover, the execution times
used to build the schedule and to compute the expected
results were are estimated, as reported in Section 4.1, through
Machine Learning models and are, therefore, prone to errors.

Table 4: Predicted and actual costs on the system

Slot Predicted costs [$] Actual costs [$]
1 0.09 0.09
2 0.39 0.39
3 0.32 0.32
4 0.53 0.53
5 0.53 0.53
6 1.54 1.88
7 2.72 2.47
8 2.37 2.39
9 3.33 3.68
10 1.28 1.37
11 2.93 3.06
Sum 16.03 16.72
Difference 4.31%

A comparison between the predicted and actual costs in
all scheduling slots is reported in Table 4. Notice a difference
between the predicted and the actual values due to a discrep-
ancy in all slot durations starting from the sixth one. The
difference, lower than 5%, can be motivated by the mentioned
overhead due to the rebooting of the VMs and to the fact
that training jobs migrated from one VM to another must be
re-executed from the last checkpoint. Furthermore, this devia-
tion is computed considering a small system that run less than
three hours, while the training time for real applications is,
usually, considerably longer. Errors attributable to rebooting
and migration times appear less significant in larger settings,
promoting the applicability of the proposed approach.

5 Related Work
Considering the relatively slow increase of per-core computa-
tion power witnessed in the last decade, the natural way to
get an actual computation speed-up nowadays is to resort

14

to a higher degree of parallelism, like the one achievable
using one or more GPUs. Nevertheless, while GPU farms
deliver unprecedented computing power, such potential is still
difficult to harness [35], and new challenges arise in GPU as
a Service environments. Among others, job scheduling calls
for both a robust theoretical framework and viable, practical
solutions [36]. To the best of our knowledge, our work repre-
sents one of the first attempts to tackle the joint problem of
online DL job scheduling and resource allocation on multiple
virtualized GPUs. As mentioned in Section 1, most of the
available literature proposals focus on either the scheduling
or the resource selection aspect, leaving the decisions on the
number and type of GPUs to the users (e.g., [6], [7]) or
delegating the job scheduling to simple mechanisms as FIFO
or EDF (e.g., [8], [9]), respectively. Therefore, we will briefly
review part of the existing literature in the two scenarios.

Jobs Scheduling
A greedy algorithm for GPU workloads scheduling is proposed
in [6]. It exploits two graphs to represent jobs communication
requirements and the GPU topology, and allows jobs co-
location on the basis of performance interference, preferen-
tially placing as many jobs tasks as possible on the same node
to reduce communication overheads. Gandiva [7] is mainly
focused on workloads characterized by multiple submissions,
where users exploit early feedback to dynamically prioritize
or kill a subset of jobs. The proposed scheduler operates in
reactive mode, exploiting a job placement policy with over-
subscription to deal with job arrivals, departures and failures,
and/or in introspective mode, continuously monitoring and
adapting jobs placement to improve GPUs and nodes usage
and reduce jobs completion time. The same goal is pursued by
Harmony [17], a deep reinforcement learning-based scheduler
that evaluates the impact of co-location to reduce interference.
The minimization of renting costs in public cloud, which is
the goal of our approach, is considered also in [37]. How-
ever, in this work jobs are subject to hard deadlines and
Virtual Machines are rented from the public cloud to scale
the available resources and avoid violations. A data-driven
Dynamic Voltage Frequency Scaling method is exploited in [8]
to guide a deadline-aware scheduling algorithm based on an
EDF approach, aiming to maximize the energy efficiency of
a cluster. Inter-user fairness is the main goal pursued by
Gandivafair [14]. It exploits a central, gang-aware scheduler
for large jobs that span multiple servers, and a local, per-
server, gang-aware scheduler for small jobs. Job migration is
considered as a key to achieve load balancing, since it allows
to pack multiple applications that require a single GPU on
the same server when resources become available. Fairness is
crucial also for Themis [18], where a round-by-round partial
allocation auction is exploited to allow applications to specify
their placement preferences, providing Pareto efficiency and
maximizing sharing incentive.

Finally, ρ competitive algorithms for online non-
clairvoyant job scheduling and resource allocation problems in
virtualized clusters are studied in [38] and [39]. However, the
problems considered, while having some features in common
with the one addressed in this paper, are considerably simpler
and thus more suitable to be analyzed with the tool of
competitive analysis [40]. In this framework, online algorithms
are analyzed and ranked based on their worst-case behavior

compared to the solution of an optimal offline algorithm.
Furthermore, the evaluation must consider an infinite set of in-
stances. For this reason, the competitive analysis applies only
to small-size and easily characterizable problems. An alter-
native approach entails using simulation [41] to estimate the
difference between the optimal offline value of the objective
function and the expected value of the online algorithm. The
latter approach is not feasible either since the optimal solution
for a complex optimization problem like the one presented
in this paper cannot be found in a reasonable computing
time with the currently available technologies, even at each
rescheduling point.

Resource Selection
For what concerns resource allocation of DL jobs, DL2 [30]
combines an offline supervised learning and an online rein-
forcement learning-based approach for resource selection, set-
ting the number of workers/parameter servers (PS) to adopt
for DL training jobs. The MXNet framework is improved
to support the dynamic "hot" scheduling, i.e., to adapt the
resource assignment without stopping the jobs’ execution. Op-
timus [15] proposes a mathematical formulation coupled with
a heuristic algorithm based on marginal gains to dynamically
allocate the number of workers/PS that minimizes the jobs’
completion time, while the amount of resources required by
each worker/PS is specified by the user. In order to reduce
communication overheads, jobs are executed on the minimum
number of servers that allow to place an equal amount of
workers/PS. A resource allocation strategy for DL training
jobs is proposed in [9]. The authors develop an optimization
formulation where the optimal job batch size is set according
to their scaling efficiency. Moreover, they propose a dynamic
programming-based heuristic algorithm to determine an ef-
fective resource allocation, while jobs are scheduled relying
on a FIFO mechanism. Finally, an interference-aware and
prediction-based resource manager is proposed in [19], where
GPU utilization is identified as a proxy metric that allows to
determine good placement decisions.

6 Conclusions
This paper proposes a heuristic method, developed by in-
tegrating randomized greedy and path relinking algorithms,
to tackle the online joint capacity allocation and scheduling
problem for DL training jobs in GPU as a Service systems.
An extensive experimental campaign proves the effectiveness
of the proposed method both in terms of scalability and
solution quality. Significant cost savings, between 23 and
97% on average, were obtained compared to first-principle
methods in all the considered scenarios. Moreover, an average
percentage cost reduction between 7 and 20% is attained with
respect to the Hierarchical Method in [11], and between 43 and
95% against a dynamic programming-based method adapted
from [9]. The scalability analysis shows that the solution for
systems with up to 100 nodes and 450 concurrent jobs can be
computed in less than 7 seconds, proving the effectiveness of
our approach for practical scenarios. Validating our results in
a cloud prototype environment showed a deviation between
real and predicted costs below 5%.

In our research agenda we plan to consider the joint
capacity allocation and scheduling problem in data center

15

environments with disaggregated resources, as well as in
distributed cloud-edge architectures. Future work will also
consider scenarios where GPU sharing among multiple jobs
and distributed training across multiple servers are allowed.
Finally, for a simplified version of the problem an analysis to
characterize the optimality gap of the proposed solution could
be also performed.

Acknowledgments
Federica Filippini and Danilo Ardagna’s work has been funded
by the European Commission under the H2020 grant N.
101016577 AI-SPRINT: AI in Secure Privacy pReserving
computINg conTinuum.

References
[1] L. Deng, G. Li, et al., “Model compression and hardware

acceleration for neural networks: A comprehensive sur-
vey,” Proceedings of the IEEE, vol. 108, no. 4, pp. 485–
532, 2020.

[2] GlobalMarketInsights, “Gpu as a service
market size by product,” [Online]. Available:
https://www.gminsights.com/industry-analysis/gpu-as-
a-service-market (visited on 04/10/2021),

[3] R. E. Shawi, A. Wahab, et al., “Dlbench: A compre-
hensive experimental evaluation of deep learning frame-
works,” Cluster Computing, vol. 24, no. 3, pp. 2017–
2038, 2021.

[4] V. Anand, “Nvidia dgx a100,” [Online]. Available:
https://www.hardwarezone.com.sg/tech-news-nvidia-
dgx-a100-supercomputer-super-performance-fight-covid-
19 (visited on 04/10/2021),

[5] NVIDIA, “Nvidia virtual gpu technology,” [Online].
Available: https://www.nvidia.com/en-us/design-
visualization/technologies/virtual-gpu/ (visited on
04/10/2021),

[6] M. Amaral, J. Polo, et al., “Topology-aware gpu
scheduling for learning workloads in cloud environ-
ments,” in HPCNSA Proc., ACM, 2017.

[7] W. Xiao, R. Bhardwaj, et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in USENIX OSDI,
2018.

[8] S. Ilager, R. Muralidhar, et al., “A data-driven fre-
quency scaling approach for deadline-aware energy ef-
ficient scheduling on graphics processing units (gpus),”
in IEEE/ACM CCGRID, 2020, pp. 579–588.

[9] V. Saxena, K. R. Jayaram, et al., “Effective elastic
scaling of deep learning workloads,” in MASCOTS pro-
ceedings, 2020, pp. 1–8.

[10] M. Gendreau and J.-Y. Potvin, Eds., Handbook of Meta-
heuristics, ser. International Series in Operations Re-
search & Management Science. Springer International
Publishing, 2019.

[11] F. Filippini, M. Lattuada, et al., “Hierarchical
scheduling in on-demand gpu-as-a-service systems,” in
SYNASC2020, 2020, pp. 125–132.

[12] Amazon web service pricing list, 2021. [Online]. Avail-
able: https : / / aws . amazon . com / ec2 / pricing / on -
demand/?nc1=h_ls.

[13] Azure cloud services pricing list, 2021. [Online]. Avail-
able: https : / / azure . microsoft . com / en - us / pricing /
details/cloud-services/.

[14] S. Chaudhary, R. Ramjee, et al., “Balancing efficiency
and fairness in heterogeneous gpu clusters for deep
learning,” in EUROSYS, 2020.

[15] Y. Peng, Y. Bao, et al., “Optimus: An efficient dynamic
resource scheduler for deep learning clusters,” in EU-
ROSYS, 2018.

[16] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data
learning of new tasks,” vol. 2, Jan. 2008, pp. 646–651.

[17] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job
placement in distributed machine learning clusters,” in
IEEE INFOCOM 2019, Apr. 2019, pp. 505–513.

[18] K. Mahajan, A. Balasubramanian, et al., “Themis:
Fair and efficient GPU cluster scheduling,” in USENIX
(NSDI 20), 2020, pp. 289–304.

[19] G. Yeung, D. Borowiec, et al., “Horus: Interference-
aware and prediction-based scheduling in deep learning
systems,” IEEE TPDS, vol. 33, no. 1, pp. 88–100, 2022.

[20] M. Lattuada, E. Gianniti, et al., “Performance predic-
tion of deep learning applications training in GPU as
a service systems,” Cluster Computing, vol. 25, no. 2,
pp. 1279–1302, 2022.

[21] G. James, D. Witten, et al., An Introduction to Statisti-
cal Learning, ser. Springer Texts in Statistics. Springer-
Verlag New York, 2013.

[22] E. Gianniti., L. Zhang., and D. Ardagna., “Performance
prediction of gpu-based deep learning applications,” in
CLOSER, vol. 1, 2019, pp. 279–286.

[23] M. Jeon, S. Venkataraman, et al., “Analysis of large-
scale multi-tenant GPU clusters for DNN training work-
loads,” in USENIX ATC 19, 2019, pp. 947–960.

[24] Q. Hu, P. Sun, et al., “Characterization and prediction
of deep learning workloads in large-scale GPU datacen-
ters,” CoRR, vol. abs/2109.01313, 2021.

[25] M. R. Azghadi, C. Lammie, et al., “Hardware imple-
mentation of deep network accelerators towards health-
care and biomedical applications,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 14, no. 6,
pp. 1138–1159, 2020. doi: 10 . 1109 / TBCAS . 2020 .
3036081.

[26] M. G. Resende and C. C. Ribeiro, “Grasp with path-
relinking: Recent advances and applications,” in Meta-
heuristics: Progress as Real Problem Solvers. Springer
US, 2005, pp. 29–63.

[27] M. Resende and C. Ribeiro, “Greedy randomized adap-
tive search procedures: Advances and applications,”
Handbook of Metaheuristics, Jan. 2010.

[28] F. Filippini, M. Lattuada, et al., Ai-sprint gpu scheduler,
version V1, Zenodo, Dec. 2021. doi: 10.5281/zenodo.
5760962. [Online]. Available: https://doi.org/10.5281/
zenodo.5760962.

[29] A. Hannun, C. Case, et al., Deep speech: Scaling up end-
to-end speech recognition, 2014. arXiv: 1412.5567.

[30] Y. Peng, Y. Bao, et al., “Dl2: A deep learning-driven
scheduler for deep learning clusters,” IEEE TPDS,
vol. 32, no. 08, pp. 1947–1960, 2021.

[31] B. Huitema, The Analysis of Covariance and Alter-
natives: Statistical Methods for Experiments, Quasi-

https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://doi.org/10.1109/TBCAS.2020.3036081
https://doi.org/10.1109/TBCAS.2020.3036081
https://doi.org/10.5281/zenodo.5760962
https://doi.org/10.5281/zenodo.5760962
https://doi.org/10.5281/zenodo.5760962
https://doi.org/10.5281/zenodo.5760962
https://arxiv.org/abs/1412.5567

16

Experiments, and Single-Case Studies, ser. Wiley Series
in Probability and Statistics. Wiley, 2011.

[32] S. S. Shapiro and M. B. Wilk, “An analysis of variance
test for normality (complete samples),” Biometrika,
vol. 52, no. 3/4, pp. 591–611, 1965.

[33] G. W. Snedecor and W. G. Cochran, Statistical Methods
- 8th Edition. Iowa State University Press, 1989.

[34] Amazon ec2 reserved instances pricing, 2021. [Online].
Available: https : / / aws . amazon . com / ec2 / pricing /
reserved-instances/pricing/.

[35] M. Steinberger, “On dynamic scheduling for the gpu
and its applications in computer graphics and beyond,”
IEEE CGA, vol. 38, no. 3, pp. 119–130, 2018.

[36] H. Tan, Y. Tan, et al., “A virtual multi-channel gpu fair
scheduling method for virtual machines,” IEEE TPDS,
vol. 30, no. 2, pp. 257–270, 2019.

[37] J. Zhu, X. Li, et al., “Scheduling stochastic multi-stage
jobs to elastic hybrid cloud resources,” IEEE TPDS,
vol. 29, no. 6, pp. 1401–1415, 2018.

[38] S. M. Khorandi and M. Sharifi, “Non-clairvoyant online
scheduling of synchronized jobs on virtual clusters,” The
Journal of Supercomputing, vol. 74, no. 6, pp. 2353–
2384, 2018.

[39] Y. Li, X. Tang, and W. Cai, “Dynamic bin packing
for on-demand cloud resource allocation,” IEEE TPDS,
vol. 27, no. 1, pp. 157–170, 2015.

[40] A. R. Karlin, M. S. Manasse, et al., “Competitive
snoopy caching,” Algorithmica, vol. 3, no. 1, pp. 79–119,
1988.

[41] F. Dunke and S. Nickel, “Simulative algorithm analy-
sis in online optimization with lookahead,” Simulation
in Produktion und Logistik: Entscheidungsunterstützung
von der Planung bis zur Steuerung, pp. 405–416, 2013.

Federica Filippini is a Ph.D. student at Politec-
nico di Milano where she received in April 2020
the Master degree in Mathematical Engineer-
ing. Her research interests include optimization
problems applied to scheduling in Cloud and
distributed environments.

Marco Lattuada received the Master and the
Ph.D. degrees in Computer Engineering from Po-
litecnico di Milano in 2006 and 2010 respectively.
His research interests include methodologies for
performance estimation of big data applications
running on cloud cluster and methodologies for
performance estimation and automatic genera-
tion of code for multiprocessor embedded het-
erogeneous architectures.

Michele Ciavotta received the Ph.D. degree in
automation and computer science from Roma
Tre, Italy in 2008. He is researcher at the Univer-
sity of Milano - Bicocca since 2017. His research
work focuses on the modeling and optimization
of highly constrained combinatorial problems
mainly arising in the fields of scheduling and
resource management of distributed systems.

Arezoo Jahani is Assistance Professor at Sa-
hand University of Technology (SUT), Tabriz,
Iran. She received the Ph.D. degree in Informa-
tion Technology in 2019 and master degree in
Computer Engineering in 2014, from University
of Tabriz. Her research interests include virtual
network embedding in data centers, optimization
algorithms, and cloud resource management.

Danilo Ardagna is Associate Professor at Po-
litecnico di Milano, DEIB. He received a Ph.D.
degree in computer engineering in 2004 from
Politecnico di Milano. His work focuses on the
design, prototype, and evaluation of optimization
algorithms for resource management of cloud
computing and big data systems.

Edoardo Amaldi is a Full Professor of Opera-
tions Research at Politecnico di Milano, DEIB.
He received a "Diplôme" (M.Sc.) in Mathemat-
ical Engineering and a "Doctorat ès Sciences"
(Ph.D.) from the Swiss Federal Institute of Tech-
nology (EPFL). His main research interests are in
Mathematical Optimization with an emphasis on
Network Optimization and with applications in,
among others, telecommunications, data mining,
energy and transportation.

https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/

	Introduction
	Cloud Framework and Problem Description
	System Architecture and Problem Statement
	ML Models for Predicting Training Jobs Performance

	Problem Formulation and Solution
	Optimization Model
	Alternative Proxy Function
	Proposed Algorithmic Solution
	Optimization Step
	Algorithm Complexity

	Experimental Analysis
	Randomly Generated Instances
	Evaluation Methodology
	A Dynamic Programming-Based Alternative Method
	Software and Hardware Settings

	Experimental Results
	Scalability Analysis
	Analysis with a Larger Number of Nodes
	Validation in a Cloud Cluster

	Related Work
	Conclusions
	Biographies
	Federica Filippini
	Marco Lattuada
	Michele Ciavotta
	Arezoo Jahani
	Danilo Ardagna
	Edoardo Amaldi

