
Accurate and highly interpretable prediction 
of gene expression from histone modifications
Fabrizio Frasca1,2*, Matteo Matteucci1, Michele Leone1, Marco J. Morelli3 and Marco Masseroli1 

Abstract 

Background:  Histone Mark Modifications (HMs) are crucial actors in gene regula-
tion, as they actively remodel chromatin to modulate transcriptional activity: aberrant 
combinatorial patterns of HMs have been connected with several diseases, including 
cancer. HMs are, however, reversible modifications: understanding their role in disease 
would allow the design of ‘epigenetic drugs’ for specific, non-invasive treatments. 
Standard statistical techniques were not entirely successful in extracting representative 
features from raw HM signals over gene locations. On the other hand, deep learning 
approaches allow for effective automatic feature extraction, but at the expense of 
model interpretation.

Results:  Here, we propose ShallowChrome, a novel computational pipeline to model 
transcriptional regulation via HMs in both an accurate and interpretable way. We attain 
state-of-the-art results on the binary classification of gene transcriptional states over 
56 cell-types from the REMC database, largely outperforming recent deep learning 
approaches. We interpret our models by extracting insightful gene-specific regula-
tive patterns, and we analyse them for the specific case of the PAX5 gene over three 
differentiated blood cell lines. Finally, we compare the patterns we obtained with the 
characteristic emission patterns of ChromHMM, and show that ShallowChrome is able 
to coherently rank groups of chromatin states w.r.t. their transcriptional activity.

Conclusions:  In this work we demonstrate that it is possible to model HM-modulated 
gene expression regulation in a highly accurate, yet interpretable way. Our feature 
extraction algorithm leverages on data downstream the identification of enriched 
regions to retrieve gene-wise, statistically significant and dynamically located features 
for each HM. These features are highly predictive of gene transcriptional state, and 
allow for accurate modeling by computationally efficient logistic regression models. 
These models allow a direct inspection and a rigorous interpretation, helping to formu-
late quantifiable hypotheses.

Keywords:  Gene expression regulation, Histone modifications, Epigenetics, 
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Background
Introduction

The regulation of gene expression is the main process allowing cells with identical 
genome to exhibit substantially different phenotypes. The complexity of this process, 
reflected in the cellular variety, relies upon a combination of mechanisms that start with 
the regulation of gene expression [1]. Here, a pivotal role is played by chemical modifica-
tions targeting the constituents of nucleosomes, i.e., histone proteins, which are strongly 
correlated with the alterations in the accessibility of the DNA [2]. These histone modifi-
cations (HMs) can be associated with the chromatin structure on the regulating site on 
the genome, to either enable or block the binding of protein complexes required for gene 
transcription.

In the last years, aberrations in the combinatorial pattern of HMs have been shown 
to be connected with several diseases, among which cancer [3]. However, unlike DNA 
sequence mutations, histone modifications are reversible [4, 5], paving the way to tar-
geted therapies, aimed at developing ‘epigenetic drugs’ to treat cancer in a specific and 
non-invasive manner [6]. Towards this goal, it is paramount to shed light on the mecha-
nisms relating histone modifications to downstream gene regulation; in this direction, 
several studies measured HMs with high-resolution data, now cheaply and quickly 
achievable with Next-Generation Sequencing (NGS) technologies [7–9]. Correlating 
gene-related HM signals with measured expression levels, such studies have not only 
performed statistical analyses, but have also built computational predictive models. 
The best results have been obtained by sophisticated deep learning techniques [10, 11], 
which attempt to include spatial and compositional inductive biases.

With the present work, we mark a step in a different direction w.r.t. recent compu-
tational approaches, and show that it is not necessary—and perhaps not desirable—to 
resort to complex and hardly interpretable deep learning approaches to effectively model 
epigenetic transcriptional regulation. Our proposed approach, named ‘ShallowChrome’, 
consists of a fully interpretable and computationally efficient modeling approach built on 
top of the well-established pre-processing technique of ‘peak calling’ for ChIP-sequenc-
ing data; it is able to obtain state-of-the-art performance in the task of binary classifica-
tion of gene transcriptional states without using any ‘deep’ technique.

By efficiently computing point statistics on processed and de-noised input signals 
downstream the peak-calling procedure, our method constructs features that summa-
rise the epigenetic histone activity from a set of contiguous input genomic bins; further-
more, the position of such bins is not enforced a priori as in previous approaches, but is 
dynamically chosen according to the significance that peak calling attributes them. While 
delivering effective predictive performance, our method additionally benefits from being 
highly interpretable; contrary to recent deep learning approaches, not only the feature 
extraction procedure is intuitive and explainable per se, but also the extracted features 
are significant enough to be effectively used by a simple logistic regression model, whose 
parameters can be easily interpreted.

The main contributions of this paper can be summarised as follows: 

1	 We introduce ShallowChrome, a fully interpretable computational model solving 
the binary classification of gene activity, based on histone modification features, 
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extracted from de-noised epigenetic signals and used as inputs to logistic regression 
classifiers;

2	 We show that ShallowChrome outperforms the state-of-the-art deep learning 
approaches presented in [10, 11], with dramatic improvements exhibited over the 
great majority of the analyzed cell-types/tissues (epigenomes);

3	 We present a straightforward procedure to directly inspect the fitted linear classi-
fication models and to generate explicative patterns to visually identify the relation 
between gene-specific epigenetic activity, transcriptional expression and parameters 
learnt by the model;

4	 We evaluate the biological relevance of the extracted patterns by both manual 
inspection and computational comparison with those from the broadly acknowl-
edged ChromHMM model [12].

Related work

In the past decade, several pieces of work leveraged on the large amount of NGS data 
to study the relation between gene-related HM signals and measured expression levels. 
Besides performing statistical analyses, such studies have also built computational pre-
dictive models for regression [13–15] and classification [10, 11, 15].

In regression studies, a function is estimated to predict a real-value measure of gene 
expression, whilst, in classification, the function is learnt to discriminate between the 
two classes of active and inactive genes, these being derived by setting some activation 
threshold over the measured value of gene expression. In both cases, inputs are always 
considered to be (functions of ) the HM signals measured in relevant gene-associated 
genomic locations, usually those surrounding the genes’ Transcription Start and Termi-
nation Sites (respectively, TSS and TTS). In the following, we name these locations as 
input-fields. A common choice for input-fields is to mimic ‘promoter elements’ on the 
genome, e.g., setting them as symmetric windows of length 10k base pairs around genes’ 
TSSs [10, 11].

Early studies shared the approach of an epigenetic characterization of genes via feature 
vectors obtained by stacking together a single real-value feature for each of the histone 
modifications considered. In this perspective, a crucial design problem is choosing, for 
every HM, the optimal way of collapsing a signal spanning the entire input-fields into a 
real number. In [13] and [14] the mean values of the signals over the whole input-fields 
are taken, whereas in [15] and [16] a ‘binning’ approach is instead adopted. In this last 
case, input-fields are ‘binned’ into consecutive smaller intervals and then every inde-
pendent model is learnt on each separate bin, or the signal from the bin with the highest 
correlation with the gene expression is taken as input to a single model.

These ‘featurisation’ approaches present some limitations: in the case of mean aggre-
gation, a point statistics is unlikely to convey enough information when computed over 
raw/untransformed measured signals; binning approaches, on their side, are not able to 
aggregate the signal from multiple adjacent bins and make use of bins that are statically 
located over all input-fields. This choice can be limiting, as the most predictive informa-
tion might be concealed in positions that dynamically depend on the specific HM-gene 
combination.
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Leveraging on these early attempts, recent works [10, 11, 17] have tackled the ‘fea-
ture design’ issue from a different perspective. Embracing the spirit of ‘deep learning’, the 
‘feature extraction’ stage has been directly included in the learning process. Raw signals 
throughout the whole input-fields are fed into models that learn the best-suited input 
representations to the current prediction task. Sharing inductive biases similar to those 
commonly adopted in image recognition and natural language processing, models are 
built by the composition of established building blocks, e.g., convolutional layers and 
long short-time memory cells, and consistently with architectural patterns common in 
the deep learning community.

These models have all shown to attain better results, yet their predictive performance 
is somehow traded with the ease of interpretability, in particular in the case of [10]. Fol-
lowing works [11, 17] have made a significant improvement leveraging on attention 
mechanisms [18]; however, even though they allow to explain “what” and “where” a 
model focuses on when making a prediction, it remains difficult to grasp “why” it focuses 
on specific features and locations of the input signal. In other words, it is not possible to 
relate inputs with model parameters in a straightforward manner. Last, these methods 
usually use a large number of parameters, which have to be learnt; thus, they imply a 
high computational burden and an inherent high variance, which can be mitigated only 
when a large number of samples is available.

Methods
Problem setting and raw data type considered

Before illustrating our ShallowChrome feature extraction and overall model fitting, as 
well as its interpretation pipeline, we formalise here the problem our approach solves 
and the related data types considered.

Our aim is to model gene activity in a given condition/cell-type/tissue through related 
epigenetic histone modifications; thus, based on these epigenetic features, our compu-
tational goal is to solve the binary classification problem of discriminating active genes, 
i.e., those with low to high measured transcriptional activity, from inactive genes, i.e., 
those with null to (very) low transcription. In particular, we focus on distinct instantia-
tions of such classification problem, with each single instance being specific to a cell line 
or human tissue.

Gene activity is quantified in terms of related messenger RNA (mRNA) abundance 
through RNA-sequencing experiments. Such quantifications are expressed as Reads-
Per-Kilobase-Million (RPKM) and a hard threshold is typically set to determine the 
genes’ class: let t̄ ∈ [0.0,+∞) be the class threshold, then gene g, with measured mRNA 
abundance tg , is assigned to class τg = �0 (‘OFF’) if tg ≤ t̄ , or to class τg = �1 (‘ON’) 
otherwise. We choose the class threshold to be problem-instance specific; in particular, 
we select it as the median value of the mRNA abundances observed within the specific 
cell line or tissue. This approach is in accordance with [15], where it was first proposed, 
and is adopted in [10, 11], which are considered state-of-the-art baselines. Nonetheless, 
we also investigate the possibility of a different and somewhat more sensible approach in 
Supplementary Section S5, Additional file 1.

Histonic activity is assayed by means of Chromatin ImmunoPrecipitation (ChIP)-
sequencing experiments. The output from these experiments is a tag-align track, i.e., 
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a genome-wide signal conveying, for each position along the genome, the number of 
locally aligned read tags; thus, it represents the experimentally measured average pres-
ence of a specific histone mark in the cell population. The tag-align signals for all the 
accounted histone modifications represent the raw input that can be used for any classi-
fication task; these signals, taken at gene-related input-fields, are directly fed in input to 
the deep learning models in [10, 11, 17]. In accordance to these articles, we consider the 
same 5 ‘core’ histone modifications defined by [19]; they are reported in Table 1 along 
with their biological characterisation.

Feature extraction

While the recently-proposed deep learning methods automatically learn the processed 
input features best suited for the task at hand, our method adopts instead a standard fea-
ture-engineering step performed as a pre-processing step prior to model learning. The 
main concepts behind our approach are detailed below.

First, many well-known processing techniques can be applied on raw tag-align sig-
nals to significantly enhance the information value they convey around gene promoter 
regions, and to characterise their epigenetic conditions. Peak calling algorithms are the 
most suited to this task: they allow the identification (“call”) of genomic locations where 
aligned tags are significantly enriched, accounting for background noise and correcting 
for several sequencing artifacts [20]. Second, by generating de-noised and high confi-
dence output signals, peak calling enables the use of scalar operators on the estimated 
peak enrichment scores to generate discriminating input features for downstream sim-
ple classifiers. In particular, the max operator is a good candidate, as it selects the most 
relevant epigenetic events occurring in dynamic positions within genes’ input-fields, 
conversely to static locations of bin-based approaches. We show in the following sec-
tions that our simple and explicit approach is particularly effective in attaining strong 
classification results across all epigenomes.

Our ShallowChrome’s feature extraction consists of the subsequent steps of Peak call-
ing, Localisation and Extraction; they are detailed below and depicted in Fig. 1.

Peak calling. In the first stage of our pipeline, a peak calling algorithm is applied to 
the ChIP-sequencing signal for each of the considered histone mark modifications. 
Inputs to the peak calling algorithm are the raw ChIP-seq tag-align tracks and, when 
available, control samples of sonicated chromatin or of non-binding antibody sig-
nal. Input controls are valuable to properly eliminate background biases and reliably 

Table 1  The 5 histone modifications considered in this study along with their known biological 
characterisation (Table from [10])

Histone Associated with Functional
Modification category

H3K4me3 Promoter regions Promoter mark

H3K4me1 Promoter/Enhancer regions Regulating mark

H3K36me3 Transcribed regions Structural mark

H3K9me3 Heterochromatin regions Repressor mark

H3K27me3 Polycomb repression Repressor mark
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identify read-enriched genomic regions; nevertheless, several peak calling algorithms 
provide alternative approaches to cope with the absence of control samples, when 
they are not available. The output of the peak calling step is a genome-wide track in 
bed format [21] enumerating the called peaks—i.e., those passing a pre-specified sig-
nificance threshold—along with their genome location, significance and enrichment 
score.

Localisation. The second stage of our pipeline takes as inputs the genome-wide 
bed tracks downstream of the peak calling step and reduces them to the gene-related 
regions identified by the specified input-fields, which we choose to symmetrically span 
l = 10 k base pairs (bp) around each TSS (5k bp upstream, 5k bp downstream), mimick-
ing expanded gene promoters. This choice was performed in accordance to our refer-
ence deep learning baselines [10, 11]; it finds justification in the observation that most 
chromatin modifications regulating gene expression happens in promoters [22–24]. Fur-
thermore, it has been shown in [15] that histonic measurements in promoters are more 
informative to predict gene expression than those in gene bodies or around the TTSs. 
In particular, for a gene g and a histone mark h, the Localisation stage outputs a vector 
x
g ,h ∈ R

+l representing a real-valued signal over the whole input-field (l base pairs). If a 
peak has been called over the g’s i-th input-field position, the xg ,hi  value is its enrichment 
(bed “signalValue” field); it is set to the null value 0.0 otherwise.

Extraction. In the Extraction stage, the localised bed tracks from all the considered his-
tone mark modifications of the considered condition/cell-type/tissue are jointly taken to 
compute input feature vectors for all the genes of interest. For a generic gene g, its input 
feature vector is defined to be a vector φg ∈ R

+m , where m is the number of considered 
histone mark modifications and the element φg

h in the vector summarises the activity of 
the histone mark h in the input-field of gene g. We compute φg

h as φg
h = maxi x

g ,h
i  , with 

i the i-th input-field position of g. We choose the non-linear max operator because it 
only retains the most relevant epigenetic activity within a gene input-field in a dynami-
cally localised position. In this sense, our approach builds on top of the ‘best-bin’ idea 
proposed in [15] that the most predictive information is concealed in localised regions 
within input fields; however, instead of having a fixed, pre-specified, position, it is 

Fig. 1  Feature extraction stages for histone mark h over gene g: ChIP-seq raw and processed signals for h 
are in blue, while the input-field for g is depicted in solid, thick grey. (1) Peak calling: ChIP-seq raw reads are 
fed as inputs to a peak calling algorithm to reliably extract read-enriched genomic regions. (2) Localisation: 
Genome-wide peak signals are localised within the defined genes’ input fields. (3) Extraction: The max peak 
enrichment value is extracted as h’s value into g’s feature vector
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dynamically located where the strongest epigenetic signal is measured for a specific 
gene-HM pair.

Model fitting and analysis

As resulting from the last stage of the feature extraction procedure, for a given condi-
tion/cell-type/tissue each gene g is described by an input feature vector φg along with 
its binary class τg . Input feature vectors and target classes can be gathered in the input 
matrix � ∈ R

+n×m and target vector T ∈ {0, 1}n , for n genes and m histone marks, to 
form a supervised learning dataset D = ��,T� , which can be properly split in training, 
validation and test sets to learn and evaluate a classification model.

In principle, any standard classification algorithm can be learnt on D; here, we choose 
the logistic regression classifier. This choice is motivated by the fact that logistic models 
have small variance, are fast to train, and are inherently interpretable. Even though, in 
principle, these models suffer from larger bias w.r.t. more complex models, we show in 
the following that the quality of the extracted input features is sufficient to generally out-
perform state-of-the-art deep learning models.

The use of logistic regression allows us to interpret the result of model training 
by jointly relating input signals and model weights. In this kind of models each train-
able weight-parameter is specifically tied to a single input feature; thus, it is possible to 
directly investigate the role and importance of each histone mark in determining class 
predictions. Therefore, HMs can be related directly to the sign and magnitude of the 
learnt parameters. Importantly, statistical tests on model weights can be additionally 
performed to assess whether a particular histone mark has a significant contribution in 
determining the activation status of genes. These kinds of statistical analyses, especially 
when compared across epigenomes, are particularly valuable to understanding the fun-
damental mechanisms by which epigenetic markers act to regulate the activity of genes. 
Methods to interpret ensemble or neural network models have been recently developed, 
with remarkable results by approaches based on Shapley additive explanations [25] or 
paired-input knockoffs strategies [26]. Nonetheless, simpler and more direct interpreta-
tion is possible in the case of generalised linear models, for which well studied and devel-
oped statistical methods for inference on coefficients are available. At a more specific 
level, the role and importance of HMs is conveyed by gene-wise patterns constructed 
by the element-wise product of learnt weights with input feature values. Let φg ,e be the 
feature vector for gene g and epigenome e, and we be the vector of model weights learnt 
on e. We define the weighted input vector for g on e as ψg ,e = φg ,e ⊙ w

e and refer to it, 
more generally, as g’s regulative pattern. Notice that, if be is the learnt bias parameter for 
a model, output logits are given by yg ,e = be +

∑m
i=1 ψ

g ,e
i  , with i indexing the considered 

histone marks. The weighted input vectors are therefore an effective means to assess the 
relative importance of single histone marks in determining the predicted response value.

Implementation

We implemented the described ShallowChrome method in Python programming lan-
guage. At https://​github.​com/​DEIB-​GECO/​Shall​owChr​ome the source code is available 
together with already preprocessed data and Jupyter notebooks to reproduce all paper 
results. The notebooks also allow for interactive analyses of the models.

https://github.com/DEIB-GECO/ShallowChrome
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Results
Binary classification of gene transcriptional states

In this Section we demonstrate the effectiveness of the feature extraction and mod-
eling scheme of ShallowChrome by discussing the results obtained on a series of 
experiments.

Setup

In order to compare ShallowChrome with state-of-the-art approaches, we verbatim 
followed the experimental setting of [10, 11]. In particular, we instantiated the binary 
classification problem described above over the same 56 human epigenomes (i.e., cell-
types/tissues, see Supplementary Table S1, Additional file 1) and 19,802 protein cod-
ing genes, assigning gene class labels based on a median threshold over RPKM gene 
expression measurements and describing the epigenetic activity via the five core his-
tone marks reported in Table 1. Following [10, 11], the training/validation/test split-
ting scheme assigns approximately one third of genes to each set, with 6601 genes for 
training, 6601 for validation and 6600 for test. In order to provide reliable estimates 
on the performance of our method, for each epigenome we randomly generate 10 of 
the above splits and compute average test performance along with its standard devia-
tion. Classification performance is measured as the Area Under Receiver Operating 
Characteristic curve (AUROC). Results are also reported in terms of F1-score and 
Area Under Precision Recall curve (AUPR) in Supplementary Section S3, Additional 
file 1.

Data

In accordance to [10, 11], all datasets related to histone mark activity and gene 
expression quantification have been retrieved from the database of Roadmap Epig-
enomics Mapping Consortium (REMC) [27], a public resource of human epigenomic 
data produced from hundreds of cell-types. In REMC, the considered HMs have been 
uniformly profiled across all the epigenomes in this study, and gene expression has 
been quantified over the whole human genome. Importantly, while we collect the 
same RPKM abundance measurements as in [10, 11], for ChIP-seq data, instead of 
retrieving tag-align tracks to quantify the activity of the chosen HMs, we start from 
processed data after peak calling, according to our proposed approach.

REMC provides bed files for peaks called on raw alignments with the MACSv2 [20] 
software for different calling configurations, resulting in the three following output 
formats: ‘bed NarrowPeak’, ‘bed BroadPeak’ and ‘bed GappedPeak’. While ‘bed Nar-
rowPeak’ processed measurements capture narrow continuous regions of enrichment 
in histone ChIP-seq signals, the remaining formats allow for broader domains of 
enrichment, or even subsets of domains in the case of the ‘bed GappedPeak’. Within 
the scope of the ShallowChrome pipeline, the output peak configuration (whether 
narrow, broad or gapped) and all other peak calling parameters (such as the Poisson 
p-value thresholds in MACS) are amenable to hyperparameters; their choice is usu-
ally specific to each considered input histone mark and epigenome, and can be driven 
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by domain knowledge or simply be the result of model selection procedures. For fur-
ther details on the peak calling procedure applied in REMC we refer the reader to 
https://​egg2.​wustl.​edu/​roadm​ap/​web_​portal/​proce​ssed_​data.​html.

Other than HM processed alignments in the form of called peaks, in input to the 
Localisation phase of our feature extraction are the input-fields for the considered genes, 
which we defined as symmetric windows spanning 10k bp over each TSS. We took 
the same exact TSS annotations as in [10, 11], which were shared by the authors. The 
Localisation phase requires joining gene input-fields with the bed track for each HM; 
this was performed via the publicly available GenoMetric Query Language (GMQL) [28, 
29] toolkit1, which provides access to a high-level, declarative language allowing scalable 
genomic queries over heterogeneous data formats.

Models and hyperparameters

As introduced above, we fit a simple logistic regression model for each of our experi-
ments. The only hyperparameters considered were thus the peak format (‘narrowPeak’, 
‘broadPeak’ or ‘gappedPeak’) for the chosen input HMs.

In [10, 11], given a training/validation/test split, the best set of hyperparameters, H, 
is chosen amongst the possible configurations H as the one optimizing validation per-
formance. Here, we follow the same approach, but, as previously mentioned, we inde-
pendently run the tuning and evaluation procedure over k = 10 different randomly 
generated dataset splits, and report mean and standard deviation statistics over the 
obtained test AUROCs. Details about H are in Supplementary Section S2, Additional 
file  1, while Supplemetary Section S3 of the same file reports model performance in 
terms of F1-score and AUPR.

Performance analysis

ShallowChrome resulted performing, on average, significantly better than the state-of-
the-art deep learning models in [10, 11]. Figure 2 illustrates the performance attained 
by ShallowChrome, AttentiveChrome and DeepChrome [10] for each considered epig-
enome, while Table 2 reports mean, median, maximum and minimum test performance 
across all the considered epigenomes. In the following, we will compare the performance 
of our proposed approach with that of DeepChrome on a per-epigenome basis, and, as 
for AttentiveChrome, in an aggregated fashion.

ShallowChrome is consistently more accurate than DeepChrome: its AUROC sig-
nificantly outperforms DeepChrome one on 50 out of 56 classification tasks (i.e., epig-
enomes), with a performance gap of 14.57% on epigenome E084 (“Fetal_Intestine_Large” 
tissue); in the 6 epigenomes where ShallowChrome does not outperform DeepChrome, 
the difference in performance ranges between only 0.04% and 2.39% (1.15% on average). 
Interestingly, we notice that, while DeepChrome exhibits a significant performance deg-
radation on certain tissues, with a difference of  24% between the top and the worst scor-
ing epigenomes, our model is consistently more robust, with a mean test AUROC always 
above 0.8.

1  http://​www.​bioin​forma​tics.​deib.​polimi.​it/​GMQLs​ystem/.

https://egg2.wustl.edu/roadmap/web_portal/processed_data.html
http://www.bioinformatics.deib.polimi.it/GMQLsystem/
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ShallowChrome compares more than favourably also against AttentiveChrome [11]. 
We observe from Table 2 that our method has the best mean (6.04% gap), median (6.86% 
gap) and minimum test scores (8.47% gap), and is only slightly behind baselines just for 
the maximum test performance (0.29% gap). These aggregated results further demon-
strate the superiority of our proposed approach, which in addition is consistently more 
robust and provides much more easily interpretable results than deep learning state-of-
the-art approaches.

Additional sensitivity analyses are enclosed in Supplementary Section S3, Additional 
file 1. We investigate the use of alternative evaluation metrics and study the impact of 
several design choices, including that of using only subsets of input signals, aggregation 
statistics different than max, and a more expressive classifier. The interesting upshot 
from these analyses is that our feature selection strategy of applying a max aggregator 
over signals downstream of peak calling accounts for most of the predictive accuracy 
of our pipeline. We iterate that the use of a simple logistic regression model allows to 

Fig. 2  Test AUROC scores for DeepChrome, AttentiveChrome and ShallowChrome. Results are reported on 
the 56 considered epigenomes, indicated with their respective REMC code (see Supplementary Table S1, 
Additional file 1, for association between REMC codes and epigenomes). Results for AttentiveChrome have 
been manually reproduced by the authors of this manuscript. It was not possible to reproduce the result 
on epigenome E059, thus none about it is reported in the present figure. See Supplementary Section S8, 
Additional file 1, for further details

Table 2  Aggregated statistics on the test results for DeepChrome, AttentiveChrome and 
ShallowChrome computed across the 56 considered epigenomes

Values reported for AttentiveChrome are those corresponding to the model configuration attaining best result statistic. 
ShallowChrome statistics are computed over mean test performances for each epigenome

Statistic DeepChrome AttentiveChrome ShallowChrome

Mean 0.8008 0.8133 0.8737

Median 0.8009 0.8143 0.8829

Max 0.9225 0.9218 0.9196

Min 0.6854 0.7237 0.8084
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ease intepretation at best, still retaining reasonable and extremely robust performance 
across epigenomes. We refer readers to Supplementary Sections S3.5, S3.6 in particular 
for details on this last set of experiments.

Finally, let us remark that the employed data splitting scheme assigns approximately 
one third of genes to each training, validation and test set; accordingly, the training set 
contains exactly 6601 samples/genes. This strategy was originally adopted by the authors 
of the DeepChrome and AttentiveChrome state-of-the-art models and thus guarantees 
fairness in our result comparison. However, we reckon that this may represent a con-
servative splitting strategy. If, on one hand, it is valuable to assess the behavior of pre-
dictive models in scenarios of higher data scarcity, on the other hand, more complex 
deep learning models may benefit from larger training datasets. It would be interesting 
to perform comparative performance analyses for increasing amounts of available train-
ing data, and also using validation data, after hyperparameter tuning, for the final model 
fit before assessing accuracy on test data. We defer these endeavours to the future devel-
opment of this work.

Biological interpretation and evaluation

Besides accuracy and robustness, our method has the advantage of being easily inter-
pretable. To this aim, in this section we analyze the regulative HM patterns Shallow-
Chrome generates for a gene that is differentially expressed across three different 
epigenomes. Additionally, we verify the validity of the extracted patterns by comparing 
them with chromatin-state characterisations from the widely acknowledged Chrom-
HMM model [12].

Gene‑wise regulative patterns

The PAired boX 5 (PAX5) is a key gene responsible for the regulation of B-cell com-
mitment. Within the haematopoietic system, it controls the differentiation, function 
and identity of B lymphocytes [30], and is reported to be exclusively expressed from the 
pro-B to the mature B cell stage [31]. Similarly to [11], we consider this gene as a test-bed 
example, and investigate the HM regulative patterns extracted by our model across the 
epigenomes H1-hESC, GM12878 and K562, where PAX5 is, respectively, in ‘OFF’, ‘ON’ 
and ‘OFF’ state.

Weighted input-patterns for PAX5 were generated according to the procedure 
described in Section “Model fitting and analysis”; additionally, we conducted statistical 
fitting tests (Z-tests) to assess the significance of the contribution for each of the input 
HM signals. For each of the three considered epigenomes, we chose a gene split where 
PAX5 appeared in the test set, and took the ShallowChrome model trained on the cor-
responding training set. This ensured PAX5 to have no contribution in the estimation 
of the model weights used to generate its HM pattern. We also augmented the weighted 
input patterns by reporting the model bias: this learnt parameter conveys a prior on 
the prediction of gene state that is independent on epigenetic regulations and helps in 
interpreting the absolute contribution of histonic signals in determining transcription 
activation.
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Figure 3 depicts the results of the described interpretation procedure: the PAX5 reg-
ulative patterns from ShallowChrome coherently recapitulate the interplay of the con-
sidered HMs in determining PAX5 transcriptional activity. In H1-hESC and K562 cell 
lines, where the gene is not expressed, the contribution of repressor mark H3K27me3 is 
prominent. Furthermore, in H1-hESC the presence of marks H3K36me3 and H3K4me3 
on PAX5 promoter suggests the chromatin to be open and ready to be activated, i.e., the 
gene to be in a poised (bivalent) state. Transitioning from H1-hESC to the differentiated 
GM12878, the repressor mark H3K27me3 does not perform any significant regulation, 
while a critical role is played by the promoter mark H3K4me3 that clearly explains the 
activation of PAX5. We remark that the ‘repressor’ and ‘activator’ roles for H3K27me3 
and H3K4me3, respectively, correspond to the sign of the associated weights, which have 
been autonomously inferred from the data by our model. Interestingly, the model has 
consistently learnt a negative bias in all the cases: this can be interpreted as an ‘activa-
tion threshold’, and captures a tendency for genes to remain in a default inactive state in 
the cases where no epigenetic activity is measured [32]. Applying ShallowChrome on an 
appropriate dataset, this analysis can be repeated on any gene of interest, thus dissecting 
the exact contribution of the different HMs to the expression of the gene in the specific 
context where the experiment is performed.

Matching regulative patterns with chromatin states

To further investigate the validity of ShallowChrome, we compared our extracted gene-
wise regulative patterns to chromatin characterisations inferred from the ChromHMM 
model [12] across all the 56 epigenomes considered.

ChromHMM is a widely adopted [33–35] multivariate hidden Markov model that 
explicitly models the combinatorial presence or absence of histone marks along the 
genome. Unsupervisedly trained on multiple epigenomic tracks over many cell lines, it 
learns to characterise “hidden” chromatin states and the relation among them. In par-
ticular, chromatin states are associated with emission vectors defining discrete enrich-
ment probability distributions over the input epigenetic markers.

Our validation consists in matching extracted gene-wise regulative patterns against 
ChromHMM emission vectors, and in studying their correlation with gene activation 
predictions in output from our model. To this aim, we selected a 15-state ChromHMM 
model trained on the same core set of HMs considered in our work, which is publicly 

Fig. 3  Normalised regulative patterns extracted for gene PAX5 on epigenomes H1-hESC, GM12878 and 
K562; model bias is included to ease interpretation. Relative contributions to gene activation are in red when 
negative (repressors), in green when positive (activators) and in grey when found not to be statistically 
significant (Z-test p-value > 0.0001)
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available in the REMC repository. This model has been learnt on the virtual concat-
enation of highest-quality consolidated data corresponding to 60 epigenomes. Further 
details on the model, input data and parameters can be found on the REMC website2. 
As for our model, we retained the same dataset split as in Section “Gene-wise regula-
tive patterns”, and extracted gene-wise regulative patterns as weighted input vectors over 
all test genes for each epigenome. Given ChromHMM emission vectors and Shallow-
Chrome regulative patterns, we then proceed as follows (see the pipeline depicted in 
Supplementary Figure S4, Additional file 1): (1) State Matching: we associate each test 
gene with the chromatin state whose emission pattern maximises the Pearson’s correla-
tion with the extracted ShallowChrome one (i.e., the cosine similarity computed between 
the two mean-centered vectors); (2) Activation Prediction: for each test gene, we com-
pute the output logit as yg ,e = be +

∑m
i=1 ψ

g ,e
i  (see Section “Model fitting and analysis” 

); (3) Gathering: for each of the 15 considered chromatin states, we collect the output 
logits of all the matched genes and compute their mean; (4) Ranking: for each epige-
nome, we rank chromatin states according to their associated mean output logit. This 
gives us an informative overview on the expression characterisation our model assigns 
to such states, and indirectly allows us to validate our approach: matching our extracted 
regulative patterns with ChromHMM emission vectors gives them a semantic interpre-
tation that can be verified a posteriori in terms of the associated gene activation rank. 
We remark that we study rankings instead of plain model logits so to be consistent with 
the model performance evaluation metric reported in the previous sections (AUROC).

In Fig. 4 we show an aggregated visualisation of the chromatin state rankings across 
the 56 considered epigenomes. To build such visualisation, chromatin states were clus-
tered into 4 semantically consistent groups, and ranks were directly computed at this 
coarser level. This grouping was done to account for the inherent resolution gap between 
the ChromHMM and ShallowChrome models: the former one is trained to perform 
inference over 15 distinct chromatin characterisations at the level of 200 bp-long seg-
ments; the latter one is optimised to solve the binary classification of transcription states 

Fig. 4  Aggregated ranking visualisation for chromatin state groups across the 56 considered epigenomes

2  https://​egg2.​wustl.​edu/​roadm​ap/​web_​portal/​chr_​state_​learn​ing.​html#​core_​15sta​te

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
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from an aggregated gene-wise signal spanning 10k bp (the group assignments as well as 
the ranking finer visualization are, respectively, in Supplementary Table S8 and Figure 
S5, Additional file 1).

In Fig. 4, for each group we report a histogram summarising the ranks scored across 
epigenomes. We observe that ShallowChrome strongly agrees with ChromHMM. The 
“Active” group, which includes all states associated with active transcription, attains the 
highest rank in all except one epigenome; whereas the “Repressed” group, which gath-
ers all the states of transcriptionally inactive chromatin, always attains the lowest pos-
sible rank. Finally, the “Bivalent” chromatin and “Enhancers” groups show variability in 
the attained ranks, generally scoring in between activated and repressed states. This is 
exactly what is expected for the “Bivalent” group, where histone marks of activation and 
repression coexist to represent currently repressed genes, which have however a pre-
assembled transcription machinery on their promoters, and therefore able to activate in 
very short time. This result has a different interpretation in the case of enhancer marks, 
which are distal regulation sites, whose influence is looser than that of the correspond-
ing gene promoters, and therefore can tolerate a higher variability in the levels of the 
histone marks.

Discussion
Throughout this work we showed how, building on top of established tools such as ‘peak 
calling’ algorithms, it is possible to model epigenetic trancriptional regulation meeting 
both the desiderata of accuracy and interpretability. The predictive power of the features 
extracted by our approach allows to achieve state-of-the-art results with well-studied 
statistical models (logistic regression), which can be directly inspected.

A relevant contribution of our work therefore lies in demonstrating how the applica-
tion of complex deep learning modeling approaches may not always be the best choice, 
especially in problems where inductive biases are less intuitively evident, clear model 
interpretation is critical, and valuable domain-specific analysis and pre-processing 
tools are available. We believe that different modeling approaches could be more 
or less suitable depending on the specifics of the task at hand. Aiming at achieving 
an optimal trade-off between model bias and variance, their choice must be driven 
by a careful understanding of the problem and the available data (quantity, diversity, 
resolution).

Although deep learning architectures may not represent the best approach for 
the specific problem studied in this work, their application could be, on the contrary, 
more appropriate in other settings. For example, these techniques have been success-
fully applied to predict gene expression directly from the genomic sequence, such as the 
model in [36]. Other works include [37], where a sequence-based attention model addi-
tionally predicts chromatin accessibility, [38], where long range interactions between 
promoters and distant (non-coding) DNA sequences are considered, and [39], which 
further studies relational information in the form of promoter-enhancers associations. 
We note that many of these works could potentially be integrated with our Shallow-
Chrome pipeline.

Finally, we also remark the importance of modeling assumptions and problem setting: 
in all cases where, as in this work, a prediction task is instantiated to indirectly study the 
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relation between variables involved in a modeling effort, it is of paramount importance 
to take all choices made in formulating the task into consideration to contextualize any 
result and emergent conclusion. Within the scope of this work, a relevant role is, for 
example, held by the choice of a proper threshold to define binary classes. Throughout 
the presented analyses, the threshold has been set according to the per-tissue median 
RPKMs, in accordance with previous state-of-the-art models we compare with. In Sup-
plementary Section S5, Additional file 1 , we further study the impact of this modeling 
choice by proposing an alternative approach based on detecting a local ‘valley’ between 
low and high-measurements in the empirical distribution of mRNA abundance levels. 
This alternative approach leads a linear model, such as ShallowChrome, to improve test 
results over all epigenomes, suggesting how artificial choices in the problem formula-
tion, such as the binarisation threshold, may, in fact, implicitly encourage the use of 
more complex, nonlinear models. We envision to deepen these considerations and to 
analyse the resulting conclusions in future developments of this work.

Conclusion
In this work we presented ShallowChrome, a novel computational pipeline to model 
accurately and in a fully interpretable way the transcriptional regulation layer con-
trolled by histone mark modifications. The core stage of the pipeline consists of a scal-
able feature extraction step that, building on top of the well-established procedure of 
‘peak calling’, allows retrieving gene-wise, significant and dynamically located epige-
netic signal features for each of the considered regulators. The quality of the extracted 
features is confirmed by the largely satisfying experimental results obtained by simple 
logistic regression models on the task of binary classification of gene transcription states 
when such features are considered as input signals: our approach significantly outper-
forms recent state-of-the-art deep learning models on almost all of the 56 considered 
epigenomes. Finally, and most importantly, by employing generalized linear models our 
approach is inherently interpretable: each single parameter can be inspected in terms of 
sign, magnitude and even statistical significance, and corresponding gene-wise patterns 
can be easily derived to shed light on the role of histone marks in regulating the tran-
scription of specific genes. In light of our results, we envision our accessible approach to 
find immediate and relevant application in the study of epigenetic transcriptional regu-
lation within the research community.

Abbreviations
AUPR: Area under precision recall curve; AUROC: Area under receiver operating characteristic curve; bp: Base pair; ChIP: 
Chromatin ImmunoPrecipitation; GMQL: GenoMetric Query Language; HM: Histone mark modification; NGS: Next-gen-
eration sequencing; PAX5: PAired boX 5; REMC: Roadmap epigenomics mapping consortium; RPKM: Reads-per-kilobase-
million; TSS: Transcription start site; TTS: Transcription termination site.Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04687-x.

Additional file 1. Supplementary materials for “Accurate and highly interpretable prediction of gene expression 
from histone modifications”. S1. Considered epigenomes and classification performance. S2. Hyperparameter search 
space. S3. Sensitivity analyses. S4. Validation against ChromHMM chromatin states. S5. An alternative approach to 
binary thresholding. S6. ShallowChrome as a regression model. S7. Cross-epigenome generalisation. S8. Reproduc-
ing AttentiveChrome results.

https://doi.org/10.1186/s12859-022-04687-x


Page 16 of 17Frasca et al. BMC Bioinformatics          (2022) 23:151 

Acknowledgements
Not applicable.

Author contributions
FF developed the quantitative method, created its software implementation, used it to perform the computational anal-
yses, and contributed to write this manuscript. MMat supervised the development of the quantitative method and the 
data analysis, and contributed to write this manuscript. ML implemented and performed the experimental comparison 
with the ChromHMM model. MJM supervised the biological application of the developed quantitative method, contrib-
uted to the biological interpretation of the obtained results, and contributed to write this manuscript. MMas conceived 
the project, supervised the development of the method and its validation, and contributed to write this manuscript. All 
authors read and approved this final manuscript.

Funding
This work was supported by the ERC Advanced Grant 693174 “Data-Driven Genomic Computing (GeCo)”. project (2016-
2021), funded by the European Research Council, which covered also the publication costs. The funding body did not 
have any role in the design of the study and in the collection, analysis and interpretation of the data, as well as in writing 
the manuscript.

Availability of data and materials
The datasets generated and analysed during the current study are available in the Zenodo repository at https://​zenodo.​
org/​record/​44452​87. At https://​github.​com/​DEIB-​GECO/​Shall​owChr​ome the Python source code of the implementation 
of the described ShallowChrome method is available, together with Jupyter notebooks to reproduce all paper results.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to publish
Not applicable (public data).

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy. 2 Department of Comput-
ing, Imperial College London, London, UK. 3 Center for Omics Sciences, San Raffaele Hospital, Milan, Italy. 

Received: 21 November 2021   Accepted: 8 April 2022

References
	1.	 Phillips T. Regulation of transcription and gene expression in eukaryotes. Nature Educ. 2008;1(1):199.
	2.	 van Steensel B. Chromatin: constructing the big picture. EMBO J. 2011;30(10):1885–95.
	3.	 Bannister A, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95. https://​doi.​

org/​10.​1038/​cr.​2011.​22.
	4.	 Bannister A, Kouzarides T. Reversing histone methylation. Nature. 2005;436:1103–6. https://​doi.​org/​10.​1038/​natur​

e04048.
	5.	 Bradbury EM. Reversible histone modifications and the chromosome cell cycle. BioEssays. 1992;14(1):9–16. https://​

doi.​org/​10.​1002/​bies.​95014​0103.
	6.	 Patnaik A. Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. 

Front Pharmacol. 2019;10:588.
	7.	 Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. 

Subcell Biochem. 2013;61:289–317. https://​doi.​org/​10.​1007/​978-​94-​007-​4525-4_​13.
	8.	 Sodersten E, et al. A comprehensive map coupling histone modifications with gene regulation in adult dopaminer-

gic and serotonergic neurons. Nat Commun. 2018;9(1):1226. https://​doi.​org/​10.​1038/​s41467-​018-​03538-9.
	9.	 Zhang L, et al. Revealing transcription factor and histone modification co-localization and dynamics across cell 

lines by integrating ChIP-seq and RNA-seq data. BMC Genomics. 2018;19(Suppl 10):914. https://​doi.​org/​10.​1186/​
s12864-​018-​5278-5.

	10.	 Singh R, et al. DeepChrome: Deep-learning for predicting gene expression from histone modifications. Bioinformat-
ics. 2016;32(17):639–48. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw427.

	11.	 Singh R, et al. Attend and predict: Understanding gene regulation by selective attention on chromatin. Adv Neural 
Inf Process Syst. 2017;30:6785–95. https://​doi.​org/​10.​1101/​329334.

	12.	 Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 
2017;12(12):2478–92. https://​doi.​org/​10.​1038/​nprot.​2017.​124.

	13.	 Karlic R, et al. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA. 2010;107:2926–
31. https://​doi.​org/​10.​1073/​pnas.​09093​44107.

https://zenodo.org/record/4445287
https://zenodo.org/record/4445287
https://github.com/DEIB-GECO/ShallowChrome
https://doi.org/10.1038/cr.2011.22
https://doi.org/10.1038/cr.2011.22
https://doi.org/10.1038/nature04048
https://doi.org/10.1038/nature04048
https://doi.org/10.1002/bies.950140103
https://doi.org/10.1002/bies.950140103
https://doi.org/10.1007/978-94-007-4525-4_13
https://doi.org/10.1038/s41467-018-03538-9
https://doi.org/10.1186/s12864-018-5278-5
https://doi.org/10.1186/s12864-018-5278-5
https://doi.org/10.1093/bioinformatics/btw427
https://doi.org/10.1101/329334
https://doi.org/10.1038/nprot.2017.124
https://doi.org/10.1073/pnas.0909344107


Page 17 of 17Frasca et al. BMC Bioinformatics          (2022) 23:151 	

	14.	 Costa I, et al. Predicting gene expression in T cell differentiation from histone modifications and transcription fac-
tor binding affinities by linear mixture models. BMC Bioinformatics. 2011;12(Suppl 1):29. https://​doi.​org/​10.​1186/​
1471-​2105-​12-​S1-​S29.

	15.	 Cheng C. A statistical framework for modeling gene expression using chromatin features and application to mod-
ENCODE datasets. Genome Biol. 2016;12(2):15. https://​doi.​org/​10.​1186/​gb-​2011-​12-2-​r15.

	16.	 Dong X, et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol. 
2012;13(9):53. https://​doi.​org/​10.​1186/​gb-​2012-​13-9-​r53.

	17.	 Sekhon A, et al. DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications. 
Bioinformatics. 2018;34(17):891–900. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty612.

	18.	 Bahdanau D, et al. Neural machine translation by jointly learning to align and translate. In International Conference 
on Learning Representations, 2015;1–15.

	19.	 Kundaje A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30. https://​
doi.​org/​10.​1038/​natur​e14248.

	20.	 Feng J, et al. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012;7(9):1728–40. https://​doi.​org/​10.​1038/​
nprot.​2012.​101.

	21.	 Kent W, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006. https://​doi.​org/​10.​1101/​gr.​
229102.

	22.	 Kim A-Y, et al. The TFG-TEC oncoprotein induces transcriptional activation of the human β-enolase gene via chroma-
tin modification of the promoter region. Mol Carcinog. 2015;55(10):1411–23. https://​doi.​org/​10.​1002/​mc.​22384.

	23.	 Sharifi-Zarchi A, et al. DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-
H3K4me3 seesaw mechanism. BMC Genomics. 2017;18(1):964. https://​doi.​org/​10.​1186/​s12864-​017-​4353-7.

	24.	 Lomvardas S, Thanos D. Modifying gene expression programs by altering core promoter chromatin architecture. 
Cell. 2002;110(2):261–71. https://​doi.​org/​10.​1016/​s0092-​8674(02)​00822-x.

	25.	 Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 
2017;30:4765–74.

	26.	 Lu Y, et al. DeepPINK: reproducible feature selection in deep neural networks. Adv Neural Inf Process Syst. 
2018;31:8676–86.

	27.	 Bernstein B, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28(10):1045–8. 
https://​doi.​org/​10.​1038/​nbt10​10-​1045.

	28.	 Masseroli M, et al. GenoMetric Query Language: a novel approach to large-scale genomic data management. Bioin-
formatics. 2015;31(12):1881–8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv048.

	29.	 Masseroli M, et al. Processing of big heterogeneous genomic datasets for tertiary analysis of Next Generation 
Sequencing data. Bioinformatics. 2019;35(5):729–36. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty688.

	30.	 Cobaleda C, et al. Pax5 the guardian of B cell identity and function. Nat Immunol. 2007;8(5):463–70. https://​doi.​org/​
10.​1038/​ni1454.

	31.	 Fuxa M, Busslinger M. Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in 
support of its B cell identity function. J Immunol. 2007;178(12):8222–8. https://​doi.​org/​10.​4049/​jimmu​nol.​178.​12.​
8221-a.

	32.	 Struhl K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell. 1999;98(1):1–4. 
https://​doi.​org/​10.​1016/​S0092-​8674(00)​80599-1.

	33.	 Hlady R, et al. Integrating the epigenome to identify novel drivers of hepatocellular carcinoma. Hepatology. 
2018;69(2):639–52. https://​doi.​org/​10.​1002/​hep.​30211.

	34.	 Long M, et al. The miR-96 and RAR​γ signaling axis governs androgen signaling and prostate cancer progression. 
Oncogene. 2018;38(3):421–44. https://​doi.​org/​10.​1038/​s41388-​018-​0450-6.

	35.	 Heyn P, et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of 
Polycomb-regulated regions. Nat Genet. 2019;51(1):96–105. https://​doi.​org/​10.​1530/​ey.​16.5.7.

	36.	 Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional 
neural networks. Cell Rep. 2020;31(7):107663. https://​doi.​org/​10.​1016/j.​celrep.​2020.​107663.

	37.	 Zhou J, et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. 
Nat Genet. 2018;50(8):1171–9. https://​doi.​org/​10.​1038/​s41588-​018-​0160-6.

	38.	 Avsec Ž, et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Meth. 
2021;18(10):1196–203. https://​doi.​org/​10.​1038/​s41592-​021-​01252-x.

	39.	 Zeng W, et al. Integrating distal and proximal information to predict gene expression via a densely connected 
convolutional neural network. Bioinformatics. 2019. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz562.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-12-S1-S29
https://doi.org/10.1186/1471-2105-12-S1-S29
https://doi.org/10.1186/gb-2011-12-2-r15
https://doi.org/10.1186/gb-2012-13-9-r53
https://doi.org/10.1093/bioinformatics/bty612
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/nprot.2012.101
https://doi.org/10.1038/nprot.2012.101
https://doi.org/10.1101/gr.229102
https://doi.org/10.1101/gr.229102
https://doi.org/10.1002/mc.22384
https://doi.org/10.1186/s12864-017-4353-7
https://doi.org/10.1016/s0092-8674(02)00822-x
https://doi.org/10.1038/nbt1010-1045
https://doi.org/10.1093/bioinformatics/btv048
https://doi.org/10.1093/bioinformatics/bty688
https://doi.org/10.1038/ni1454
https://doi.org/10.1038/ni1454
https://doi.org/10.4049/jimmunol.178.12.8221-a
https://doi.org/10.4049/jimmunol.178.12.8221-a
https://doi.org/10.1016/S0092-8674(00)80599-1
https://doi.org/10.1002/hep.30211
https://doi.org/10.1038/s41388-018-0450-6
https://doi.org/10.1530/ey.16.5.7
https://doi.org/10.1016/j.celrep.2020.107663
https://doi.org/10.1038/s41588-018-0160-6
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1093/bioinformatics/btz562

	Accurate and highly interpretable prediction of gene expression from histone modifications
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Introduction
	Related work

	Methods
	Problem setting and raw data type considered
	Feature extraction
	Model fitting and analysis
	Implementation

	Results
	Binary classification of gene transcriptional states
	Setup
	Data
	Models and hyperparameters
	Performance analysis

	Biological interpretation and evaluation
	Gene-wise regulative patterns
	Matching regulative patterns with chromatin states


	Discussion
	Conclusion
	Acknowledgements
	References


