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SUMMARY

We present an approach based on Winner Takes All (WTA), a competitive clustering algorithm, to support
the comprehension of static and dynamic Web applications during Web application reengineering. This
approach adopts a process that first computes the distance between Web pages and then identifies and
groups similar pages using the considered clustering algorithm. We present an instance of application of
the clustering process to identify similar pages at the structural level. The page structure is encoded into
a string of HTML tags and then the distance between Web pages at the structural level is computed using
the Levenshtein string edit distance algorithm. A prototype to automate the clustering process has been
implemented that can be extended to other instances of the process, such as the identification of groups
of similar pages at content level. The approach and the tool have been evaluated in two case studies.
The results have shown that the WTA clustering algorithm suggests heuristics to easily identify the best
partition of Web pages into clusters among the possible partitions. Copyright © 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Several Web engineering paradigms, methodologies, and approaches have emerged in the last years
[1-5] due to the growing interest in Web applications as a mean allowing distributed organiza-
tions to communicate, share information, and manage production and distribution. However, the
short time-to-market often forces Web applications to be developed and evolved without adopting
a disciplined process. In case methodologies that anticipate changes and evolution are not applied,
the comprehension, the maintenance, and the evolution of Web applications become harder and
harder [6], thus requiring the use of reverse engineering methods and tools during the mainte-
nance and evolution [7-11]. In particular, clustering-based methods and tools [12—16] support the
comprehension and the improvement of the design of Web applications.

In this paper we propose an automatic approach based on Winner Takes All (WTA) [17,18], a
competitive clustering algorithm, to group similar static and dynamic Web pages, thus improving the
comprehension of legacy Web applications. Indeed, the approach is general and is able to identify
similar Web pages implemented using any kind of server side scripting code. Distances between
the Web pages are computed first and then groups of similar pages are detected using the WTA
algorithm. We show an instance of the process in order to detect similar Web pages at the structural
level in dynamic and/or static Web sites. Such a technique can be useful during Web application
reengineering to identify cloned pages that need to be generalized into a single page [12,14,16].
Similar to the approaches proposed in [12,14,16,19], we use Levenshtein string edit distance [20]
as a basic metric to identify page similarity at the structural level. In particular, the Levesthtein
algorithm is used to compare strings of HTML tags representing the structure of Web pages. A
prototype to automate the clustering process has been implemented that can be extended to other
instances of the process, such as the identification of groups of similar pages at the content level.
The approach and the tool have been evaluated in two case studies. The results have shown that the
WTA clustering algorithm suggests heuristics to quickly identify the best partition of Web pages
into clusters among the possible partitions.

The remainder of the paperis organized as follows: Related work is discussed in Section 2. In Section
3 we describe the clustering process and an instance for the identification of groups of similar pages at
the structural level. Section 4 presents the system prototype, while the results of the case studies and
their discussion are presented in Sections 5 and 6, respectively. Final remarks conclude the paper.

2. RELATED WORK

The research community has extensively studied the problem of defining reverse engineering and
analysis techniques for Web applications [7—12,21]. Ricca and Tonella [11] define a conceptual
model for representing the structure of a Web site and several structural analyses relying on such
a model, ranging from flow analysis to graph traversal algorithms and pattern matching. Di Lucca
et al. [9,10] propose reverse engineering methods and tools to enable the extraction of the UML
extension of Conallen [2] from existing Web applications through the analysis of static and dynamic
contents. Differently, Antoniol ef al. [7] propose a method for re-engineering static Web sites into
dynamic Web sites using the Relationship Management Methodology [4,22]. Differently from our
approach, these approaches do not consider the problem of identifying cloned pages.
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A large number of approaches and tools have been proposed to identify clones or similar Web
pages [8,12,14-16,23,24]. For example, Calefato et al. [23] exploit a metric-based approach and
a pattern matching algorithm to compare scripting code fragments. However, the authors do not
consider the problem of identifying cloned pages, as they take into account neither the structure
of Web pages nor their content. Boldyreff and Kewish [8] propose a reverse engineering approach
for static and dynamic Web sites, enabling the extraction of styles and contents from Web pages.
Content and styles are stored into a database and the HTML pages are modified by using scripts
that retrieve information from the database and then dynamically generate the page. Similar page
styles are manually identified by the software engineer analyzing the information stored in the
system database. Rajapakse and Jarzabek [24] analyze the results achieved by applying different
cloning approaches on Web applications of different sizes and developed for different application
domains, by teams of different structures and in different development environments. The study
revealed that cloning equally affects small, medium, or large Web applications, and the number of
clones increases over time. The authors also showed that cloning could be even worse than that of
traditional applications.

Similar to our approach, other authors [12,14,16,19] use the Levenshtein string edit distance [20]
as a basic metric to identify similarity between the structure of Web pages. Di Lucca et al. [19]
encode the sequences of tags of HTML and ASP pages into strings and identify pairs of cloned
pages at the structural level by computing the Levenshtein distance between the corresponding
strings. Unlike our approach, no clustering algorithm is used to group similar Web pages: pages
are considered clones if their distance is zero. A similar approach is also proposed by Girardi
et al. [14] for restructuring multilingual Web sites. On the basis of Levenshtein distance, the authors
define a semiautomatic approach to identify and align static HTML pages whose structure is the
same and whose content is in different languages. Also in this case no clustering algorithm is
used to group similar pages. In [16] the authors enhance the approach based on the Levenshtein
distance with a hierarchical clustering algorithm to identify groups of duplicated or similar static
pages to be generalized into a dynamic page. Each page is initially inserted into a different cluster
and at each step clusters with minimal distance are merged, thus producing a hierarchy of clusters.
The clusters of cloned pages are selected by the software engineer, by choosing a cut level of
the tree representing the cluster hierarchy. Unlike this approach, we use a partitional clustering
algorithm, namely WTA [17,18]. Moreover, we also deal with dynamic Web pages in addition to
static pages. De Lucia et al. [12] also use the Levenshtein edit distance to compute the similarity of
two pages at structure, content, and scripting code level and to identify cloned navigational patterns.
No clustering algorithm is used to group similar pages: the similarity measures are compared with
thresholds to establish whether two pages are clones.

Hierarchical clustering algorithms have also been used for Web application comprehension
[13,15]. Di Lucca et al. [13] suggest a clustering method for decomposing Web applications into
groups of functionally related components. The authors define a coupling measure based on the
number and type of links between pages and use an agglomerative hierarchical clustering algo-
rithm to group pages together, simplify the navigational schema, and make it more understand-
able. A different approach is proposed by Ricca ef al. [15]. Similar pages are grouped together
based on the similarity of their content and using a hierarchical clustering algorithm. The authors
use Natural Language Processing (NLP) techniques to weight each keyword in the text of Web
pages and compute the similarity. Despite the similarity with the approaches described above, our
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approach is more general as it can be instantiated to group similar pages according to different
similarity /dissimilarity measures and applying different clustering algorithms. Moreover, the hier-
archical clustering algorithms used by previous approaches require an intensive interaction of the
software engineer. Furthermore, we show how the WTA clustering algorithm can be used to quickly
identify the best partition of Web pages into clusters among the possible partitions.

3. CLUSTERING SIMILAR PAGES

Reverse engineering tries to help software engineers in the comprehension of large pieces of software
or whole systems. A key activity in reverse engineering consists of gathering the software entities
that compose the system into meaningful and independent groups. Such an activity is also known
as clustering. Generally, clustering-based approaches require the selection of the concerns to be
used to group entities in clusters [25]. Similarity/dissimilarity measures should also be identified
in order to compare the entities with respect to the considered concerns.

Figure 1 shows the general process we defined to group static and dynamic Web pages considered
similar with respect to a given concern. The rounded rectangles represent process phases, while the
rectangles represent intermediate artifacts produced at the end of each phase. The Page Distance
Computation phase produces a distance matrix of the pages of a given Web application according
to the concern to analyze. In our case this phase is refined by the phases Page Transformation
and Computing Distance Matrix. In particular, suitable representations of the pages to consider
in the identification of similar pages are produced in the Page Transformation phase. Successively,
the Computing Distance Matrix phase uses the page representations to identify distances between
the pairs of pages of a given Web application. The distances between pairs of pages are then used to
build the distance matrix, which is provided as input to the phase Clustering Web Pages. This phase
uses clustering algorithms [17,26] to group similar pages with respect to the considered distance
measure.

This approach is general and enables the identification of groups of similar pages using suitable
distance measures between pairs of pages and any clustering algorithm. In the following we show
an instance of the process to identify groups of similar pages at the structural level that represents
Web pages as strings of HTML tags and uses the Levensthein edit distance [20] to compute the
distance matrix. Other process instances can be based on different Web page representations and
different ways to compute the distance between them. For example, NLP processing and information
retrieval techniques [27,28] can be adopted to identify groups of similar pages at content level
[15,29]. Moreover, our approach can be customized with respect to the clustering algorithm used
in the phase Clustering Web Pages. In our case, we adopt the WTA clustering algorithm [17,18].

Page Distance Computation

Page
Transformation

Computing

o i = . .
pageRepresentation Distance Matrix

:webApplication

= :distanceMatrix Vfllef?;;gs —> :pageClusters

Figure 1. The overall clustering process.
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3.1. Computing the distance between the structure of Web pages

To cluster similar pages at the structural level, the Page Transformation phase produces string
representations of static and dynamic pages. Indeed, we produce a representation of the structures
through a depth-first traversal of the abstract syntax tree of both static and dynamic pages of a Web
application. Each node of the syntax tree of a page is decorated with an HTML tag and with a set
of attributes, such as text attribute, target source code, image attribute, etc. It is worth mentioning
that the syntax tree of a dynamic page differs from the syntax tree of an HTML page only for the
presence of the server-side scripting nodes.

The HTML tags of a Web page are encoded into symbols of an alphabet before being concatenated
into the string representing its structure. This enables a more precise computation of the distance
of two pages with respect to just concatenating the HTML tags into strings. Encoding the tags also
improves the time required for the computation of the distance of two pages.

Once the strings encoding the page structures have been computed, the distance between the
pages is computed using the Levenshtein edit distance algorithm [20], one of the most important
algorithms for string matching. The Levenshtein model is based on the notion of edit operation and
consists of a set of rules that transform a given string into a target string. In particular, given two
strings x and y, the Levenshtein edit distance is defined as the minimum number of insert, delete,
and replace operations required to turn x into y.

The distance matrix is then built using the Levenshtein distances computed between the Web
pages and is provided as input to the phase Clustering Web Pages in order to identify groups of
similar pages at the structural level.

3.2. Winner Takes All

In general, clustering algorithms are divided into hierarchical and partitional algorithms [26]. Hier-
archical algorithms produce a nested series of partitions, while partitional algorithms produce only
one partition. This classification has to be supplemented by a discussion of crosscutting issues that
may affect both the hierarchical and partitional methods. Thus, we can further classify clustering
algorithms in agglomerative and divisive. An agglomerative approach begins with each entity or
observation (a page in our approach) in a distinct cluster, and successively merges clusters together
until a stopping criterion is satisfied. Differently, divisive clustering begins with all observations in
a single cluster and performs splitting operation until a stopping criterion is verified.

One of the widespread partitional approaches to cluster observations from the statistical recog-
nition perspective is WTA. It is an Artificial Neural Network (ANN) [17,18] clustering algorithm
aiming at grouping and representing similar observations by a singular unit also known as neuron.
We adopt as ANN the Self-Organizing feature Map (SOM) that in the literature is sometimes called
Kohonen self-organizing feature map [30].

The SOM network is based on a two-dimensional grid of neurons, whose weights are contin-
uously adapted to the training set of the clustering algorithm, i.e., the vectors of the distances
between the pages of a Web application. The number of neurons is provided as input to the SOM
network and represents the number of clusters that the algorithm should identify. This number
is a priori chosen by the software engineer and represents the tuning value of our approach. To
assess the approach in our experiments (see Section 5), we used all configurations ranging from
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the number of Web pages (each page in a different cluster) to 1 (all pages in one cluster). To
avoid analyzing the data set before running the algorithm, the initial positions of the neurons
on the SOM lattice are randomly assigned. The neuron with weight vector most similar to the
input vector is called the Best Matching Unit (BMU) or winner. The weights of the BMU and
neurons close to it in the SOM lattice are adjusted toward the input vector. The magnitude of
the change decreases with time and is smaller for neurons physically far away from the BMU.
This process is also known as training process and is repeated over and over for each page in
the input space. The training process is concluded when either the neurons do not change their
position on the SOM lattice or a termination threshold (i.e., number of epochs) for the iteration
has been reached. The network winds up associating the neurons to groups of similar pages in
the input space. In particular, the pages in the input space are associated with the closest neuron
(cluster).

It is possible that at the end of the process, some neurons do not have any page associated, i.e., they
result in empty clusters. In other words, the number of achieved (non-empty) clusters can be lower
than the number of neurons in the network (i.e., the number of expected clusters). Furthermore, we
observed that if a network configuration achieves a number of (non-empty) clusters equal to the
number of neurons, configurations with less neurons also do not result in empty clusters. Thus, we
define as break-even configuration the configuration with a larger number of neurons that results in
non-empty clusters. The identification of suitable configurations to detect clusters of similar pages
in Web applications is generally expensive and time consuming [12,14—16]. Although the choice
of the number of expected clusters (neurons of the network) is also critical, the results of the case
studies in Section 5 suggest some guidelines based on the break-even configuration to support the
software engineer in pruning bad configurations and quickly identifying the best one.

4. IMPLEMENTATION

The proposed approach has been implemented as a Java prototype. Figure 2 shows the architecture
of the tool expressed in terms of a UML Class Diagram. To implement instances of the approach, we
have adopted an Abstract Factory Pattern [31]. This pattern enables us to create a family of related
objects to identify groups of similar pages with respect to the selected instance of the clustering
process. In particular, ClusteringMode is the abstract class to be extended when different instances of
the clustering process have to be implemented. This class instantiates the sub-classes of the PageRep-
resentation and DistanceMatrix abstract classes that implement the components of the selected
process instance. Of course, the PageRepresentation and DistanceMatrix abstract classes should
also be extended in case we want to extend the tool with components implementing a new process
instance. The PageRepresentation abstract class uses the class HTMLParser to extract the needed
information from the Web pages. To this end an open source HTML parser written in Java (HTML-
Parser version 1.6), available under GPL license from http://sourceforge.net/projects/htmlparser,
has been used. The class in charge of concatenating the HTML tags into strings representing the page
structure is HTMLTagRepresentation. The class LevenshteinDistanceMatrix computes the distances
between pairs of pages. Distances between pairs of pages are then used to obtain the distance matrix
of the static/dynamic pages.

The distance matrices are used by the selected specialization of the class Clustering Algorithm,
according to a Strategy Design Pattern. In our case, groups of similar pages are identified using
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Figure 2. The prototype architecture.

the class WTA, which implements the WTA clustering algorithm. Indeed, this algorithm has been
implemented in MATLAB and integrated within the prototype using the JMatLink engine, which
is available under GPL license from http://www.held-mueller.de/JMatLink/.

S. CASE STUDIES

Although our approach is general, we applied it on two Web applications developed using JSP
technology. In particular, we considered the Web application of the 14th International Conference
on Software Engineering and Knowledge Engineering (SEKE 02) and the Web application named
SRA (Student Route Analysis)*. SEKE 02 was used to support the organizers and the academic
community for paper submission, refereeing, and conference registration. Two joint workshops
on Web Engineering and Software Engineering Decision Support also used this application. The
SEKE 02 Web application consisted of 157 pages (49 html static pages and 108 jsp dynamic
pages) included in one directory without any meaningful classification. The site also contained
some other files, such as images, a java applet, java classes, logos, etc., which were used by the Web
application and were not considered in the analysis. The developers of SEKE 02 revealed that this
Web application was developed without applying any development methodology. On the other hand,
the SRA Web application was devised to provide students in Politics Science at University of Salerno

{The pages of the Web applications are available at http://www.scienzemfn.unisa.it/scanniello/ WTA/.
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Table 1. Statistics on the analyzed Web applications.

SEKE 02 SRA
Page type HTML JSP HTML JSP
Number of pages 49 108 24 45
Actual pairs 19 87 48 15
Similarity density Measure (%) 1.6 1.5 17.4 1.5
Trade-off configuration 31 57 6 27
Break-even configuration 32 61 6 18

with statistics and information on their academic carrier. The information was also presented in
English, thus supporting also visiting students. Accredited users could also exploit this application
to obtain statistics on the students, visiting students, and graduates. The SRA Web application
was composed of 380 files distributed in 45 folders according to a meaningful classification. For
example, static pages containing Italian and English contents were grouped in different folders,
while dynamic pages were grouped according to the provided functionalities. Overall, the SRA Web
application was composed of 24 html static pages and 45 jsp dynamic pages. The developers of
SRA stated that both a software development process and a Jakarta Struts development framework
[32] were adopted. Some descriptive measures of the Web applications SEKE 02 and SRA are
presented in Table 1.

5.1. Assessment of the results

We adopted two well-known metrics, namely precision and recall, for the analysis of the results
produced by the tool. To this aim, the actual groups of similar pages were manually produced by
two Web development experts who were not in the development team of the proposed prototype.
The two experts worked independently and iterated until they reached an agreement. The clusters
manually identified were then turned into pairs of similar pages (or cloned pages). For example, if
(P, P, P3) is a cluster manually identified, the corresponding pairs of similar pages are (P1, P2),
(P1, P3), (P2, P3). The clusters of similar pages identified by the tool were also turned into pairs of
similar pages. The pairs of similar pages manually identified and those automatically identified by
the tool were included in a gold matrix and in a result matrix, respectively. Both the gold and result
matrices are symmetric with respect to their northwest—southeast diagonal due to the reflexivity
and symmetricity of the clone relation.

In our case the recall is defined as the ratio between the number of actual pairs of similar pages
identified by the tool over the total number of actual pairs of similar pages, while the precision is
the number of actual pairs of similar pages identified by the tool over the total number of identified
pairs. Therefore, if A is the set of pairs of similar pages identified by the tool and B is the set of
actual pairs of similar pages, the recall and the precision are defined as follows:

. ANB
recall=|——|, precision=|——
B A

The evaluation of precision and recall is not straightforward. Thus, to better assess the achieved
results, we also consider the trade-off between the precision and recall values. This trade-off measure
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enables us to better evaluate the results obtained when using different neural network configurations,
i.e., neural networks with different number of neurons (expected clusters). In particular, we consider
the F-measure, which is defined as harmonic mean of precision and recall. This measure is defined
as follows:

precisionxrecall
2%

precision+recall

We define as trade-off configuration the neural network configuration that achieves the largest F-
measure value. We considered all neural network configurations with a number of neurons ranging
from the number of static or dynamic pages of the Web application to 1 and computed for each
configuration the precision, the recall, and the F-measure. For space reasons, the tables in the
following subsections show only the meaningful configurations.

The number and the density of the actual pairs of similar static and/or dynamic pages are also
shown in Table I. We define the similarity density measure as the ratio between the number of actual
pairs of similar pages over the number of possible pairs of similar pages in a Web application.
Table I also presents the trade-off and the break-even configurations of the considered case studies.

5.2. Results of the SEKE 02 Web application

The results of the approach for the static and dynamic pages of the SEKE 02 Web application
are presented in Tables II and III, respectively. The values of the trade-off configurations are in

Table II. Results on SEKE 02 static page structures.

Expected clusters Identified clusters Precision Recall Sum F-measure
49 45 1 0.2105 1.211 0.3478
47 44 1 0.2632 1.263 0.4167
46 43 0.8333 0.2632 1.096 0.4
44 41 0.75 0.3158 1.066 0.4444
42 39 0.7 0.3684 1.068 0.4828
39 37 0.5833 0.3684 0.9518 0.4516
36 35 0.5333 0.4211 0.9544 0.4706
35 34 0.5625 0.4737 1.036 0.5143
34 33 0.5 0.4737 0.9737 0.4865
32 32 0.4737 0.4737 0.9474 0.4737
31 31 0.5238 0.579 1.103 0.55
29 29 0.3929 0.579 0.9718 0.4681
28 28 0.4 0.6316 1.032 0.4898
20 20 0.3 0.7895 1.089 0.4348
19 19 0.2885 0.7895 1.078 0.4225
18 18 0.2778 0.7895 1.067 0.411
17 17 0.2759 0.8421 1.118 0.4156
13 13 0.1977 0.8947 1.092 0.3238
12 12 0.1758 0.8421 1.018 0.2909
10 10 0.1126 0.8947 1.007 0.2

7 7 0.085 0.8947 0.9797 0.1553

6 6 0.06597 1 1.066 0.1238

1 1 0.01616 1 1.016 0.0318
Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007;19:281-296

DOI: 10.1002/smr



290 A. DE LUCIA, G. SCANNIELLO AND G. TORTORA

(i

Table III. Results on SEKE 02 dynamic page structures.

Expected clusters Identified clusters Precision Recall Sum F-measure

108 95 0.913 0.2414 1.154 0.3818
96 85 0.6176 0.2414 0.859 0.3471
95 84 0.6286 0.2529 0.8814 0.3607
92 82 0.5946 0.2529 0.8475 0.3548
91 81 0.6053 0.2644 0.8696 0.368
85 78 0.561 0.2644 0.8253 0.3594
84 77 0.5698 0.2816 0.8514 0.3769
83 77 0.5698 0.2816 0.8514 0.3769
82 76 0.5667 0.2931 0.8598 0.3864
81 75 0.5426 0.2931 0.8357 0.3806
80 74 0.5521 0.3046 0.8567 0.3926
63 62 0.363 0.3046 0.6676 0.3312
62 61 0.3654 0.3276 0.693 0.3455
61 61 0.3654 0.3276 0.693 0.3455
60 60 0.3563 0.3276 0.6838 0.3413
59 59 0.3598 0.3391 0.6988 0.3491
58 58 0.4415 0.477 0.9185 0.4586
57 57 0.5227 0.6609 1.184 0.5838
56 56 0.518 0.6609 1.179 0.5808
39 39 0.3267 0.6609 0.9876 0.4373
38 38 0.3104 0.6494 0.9599 0.4201
37 37 0.3087 0.6494 0.9582 0.4185
36 36 0.2964 0.6609 0.9573 0.4093
35 35 0.2985 0.6724 0.9709 0.4134
34 34 0.3128 0.7874 1.1 0.4477
23 23 0.2283 0.7874 1.016 0.354
22 22 0.2184 0.7759 0.9943 0.3409
14 14 0.1211 0.7644 0.8855 0.2091
13 13 0.1191 0.7874 0.9065 0.2069
12 12 0.1171 0.8103 0.9275 0.2046
11 11 0.1105 0.8103 0.9208 0.1945
10 10 0.1059 0.8103 0.9162 0.1873

1 1 0.01506 1 1.015 0.02967

bold-italic. The first column reports the number of expected clusters (neurons of the network), while
the number of clusters identified by the tool is reported in the second column. The corresponding
values of precision and recall are reported in the third and fourth columns, respectively. The sum
of the precision and recall values is shown in the fifth column, while the last column shows the
F-measure (i.e., the harmonic mean of the precision and recall values).

Despite the small difference between the density of the actual pairs of similar static and dynamic
pages (see Table I), the approach generally produced better results when applied on the structure
of the dynamic Web pages. Indeed, the trade-off configuration resulting from clustering dynamic
pages contains 57 clusters (see Table III). In this case we obtained 0.6609 as recall and 0.5227 as
precision, respectively. On the other hand, when clustering static pages the trade-off configuration
contains 31 clusters (see Table II) and in this case we obtained 0.5238 as precision and 0.579 as
recall, respectively.
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Inspecting the static pages of the Web application, we observed that it included dynamic pages
with a very structured layout and pages with no or very poor layout, which were developed to
enable the members of the organizing committee to achieve statistics about the conference. The
majority of the pages with very structured layout had a column including the same navigational
menu on the left-hand side and the conference name and logo on the top. This resulted in a low
Levenshtein distances between the strings encoding the page structure and in many false positives
during the identification of the clusters of cloned pages.

5.3. The SRA Web application

The results obtained by applying the approach on the static and dynamic pages of the SRA Web
application are shown in Tables IV and V, respectively. The approach generally produced better results
when applied on the static Web pages. The trade-off configuration resulting from clustering static pages
contains 6 clusters (see Table IV). In this case we obtained 0.9216 and 0.9792 as precision and recall
values, respectively. On the other hand, when clustering dynamic pages the trade-off configuration
contains 27 clusters (see Table V) and in this case we obtained 0.4 as recall and 0.2069 as precision,
respectively. Let us note that the precision and recall values obtained by applying the approach on the
static pages are much better than the results achieved on the dynamic pages. This result suggests that
our approach produces better results when applied on Web applications with high values of density of
actual pairs. In fact, the value of the similarity density of actual pairs is 17.4% for the static pages of
the SRA Web application, while it is 1.5% for the dynamic page.

The better results obtained by applying the approach on the static pages were further confirmed
by analyzing the sums of the precision and recall values. In fact, the smaller sum of the precision
and recall values obtained on the structure of the static pages is larger than the larger sum of the
precision and recall values obtained on the dynamic pages of the SRA Web application.

We inspected the pages of SRA to comprehend the results obtained by applying the approach
on its static and dynamic Web pages. Indeed, the inspection process revealed a lot of static pages
nearly identical at the structural level. This was due to the fact that each static page with Italian
content had at least a corresponding static page with content in English and with the same structure.
Differently, only few dynamic pages had similar structure, as also the results achieved by applying
the approach revealed (i.e., the majority of the clusters were composed of a single page).

Table I'V. Results on SRA static page structures.

Expected clusters Identified clusters Precision Recall Sum F-measure
24 9 1 0.8125 1.813 0.8966
15 8 0.9512 0.8125 1.764 0.8764
10 7 0.8298 0.8125 1.642 0.821

7 6 0.7959 0.8125 1.608 0.8041

6 6 0.9216 0.9792 1.901 0.9495

5 5 0.8246 0.9792 1.804 0.8952

4 4 0.6438 0.9792 1.623 0.7769

3 3 0.4563 0.9792 1.435 0.6225

2 2 0.3333 0.9792 1.313 0.4974

1 1 0.1739 1 1.174 0.2963
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Table V. Results on SRA dynamic page structures.

Expected clusters Identified clusters Precision Recall Sum F-measure
45 44 1 0.06667 1.067 0.125
43 42 0.6667 0.1333 0.8 0.2222
42 41 0.5 0.1333 0.6333 0.2105
37 36 0.1667 0.1333 0.3 0.1481
35 34 0.2 0.2 0.4 0.2
31 30 0.15 0.2 0.35 0.1714
30 29 0.1905 0.2667 0.4571 0.2222
29 28 0.16 0.2667 0.4267 0.2
28 27 0.1923 0.3333 0.5256 0.2439
27 26 0.2069 0.4 0.6069 0.2727
26 25 0.1875 0.4 0.5875 0.2553
25 24 0.1765 0.4 0.5765 0.2449
24 23 0.1667 0.4 0.5667 0.2353
23 22 0.15 0.4 0.55 0.2182
22 21 0.1463 0.4 0.5463 0.2143
21 20 0.1667 0.4667 0.6333 0.2456
20 19 0.1321 0.4667 0.5987 0.2059
18 18 0.1273 0.4667 0.5939 0.2
15 15 0.1475 0.6 0.7475 0.2368
13 13 0.1304 0.6 0.7304 0.2143
12 12 0.1176 0.6667 0.7843 0.2

5 5 0.03834 0.8 0.8383 0.07317

6. DISCUSSION

The identification of appropriate cluster decompositions and the assessment of the achieved results
are generally complex. Of course, the larger the size of a Web application, the more expensive and
time consuming the assessment of the obtained results is. This is essentially due to the fact that
results of the tool have to be manually analyzed and validated. Thus, methods to automatically
filter out surely bad tuning configurations and to get more quickly good configurations should be
devised in order to support software engineers.

Although we did not aim at proposing a general strategy to select a neural network configuration
allowing to achieve the best (or at least a good) trade-off between the values of precision and
recall, the results of the case studies suggest some directions to support the software engineer in the
identification of such a configuration by restricting the analysis to a subset of possible configurations.
To this aim, we have analyzed the trade-off and break-even configurations and corresponding results
in terms of precision and recall values.

We observed that in most cases the trade-off configuration is very close to the break-even config-
uration (see Table I). It is worth noting that the break-even configuration can be easily identified by
trying the approach with all possible neural network configurations and looking for the configuration
where the number of empty clusters becomes O for the first time. Once the break-even configuration
is achieved, the software engineer can analyze the configurations only with more or less neurons
than the break-even configuration within a given range to approach the trade-off configuration.
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In this way, only a relatively small number of configurations are analyzed, thus reducing the effort
required to approach the trade-off configuration.

We also observed that when the density of actual pairs of similar pages is high the approach
generally produced better results in terms of precision and recall values. For instance, high values of
precision and recall were obtained on the structures of the static pages of the SRA Web application.
As shown in Table I, this Web application presented a high value of the similarity density measure
on the static pages (17.4%) and in this case the break-even and the trade-off configurations coincide.
A similar result was also achieved by applying the approach on the structures of the static pages of the
SEKE 02 Web application, where the distance between the break-even and trade-off configurations
is 1. However, in this case the value of the similarity density measure is only 1.6%.

The analyzed Web applications also revealed that in case the trade-off and the break-even config-
urations are different and the Web applications have a large number of pages similar at the structural
level, the trade-off and the break-even configurations produced similar results. For example, on the
static pages of the SEKE 02 Web application, we achieved similar values of precision and recall
by selecting as tuning values both the break-even configuration and trade-off configuration (see
Table II). It is worth noting that this result is always verified except for the dynamic pages of the
SEKE 02 Web application. Nevertheless, on the structure of the dynamic pages of this applica-
tion, the difference between the break-even and trade-off configurations is low (see Table I), thus
enabling the software engineer to quickly filter out the bad tuning values around the break-even
configuration.

Generally, we also observed the case when the Web applications present only few static or dynamic
pages similar at the structural level, the break-even configuration and the trade-off configuration
are different and the obtained results are in general bad. For example, the SRA Web application has
a huge number of dynamic Web pages with different structures. In this case, the break-even and
the trade-off configurations are different and in general the results in terms of precision and recall
are quite bad and the sum of precision and recall corresponding to the trade-off and break-even
configurations is 0.6069 and 0.5939, respectively.

The obtained results enable us to believe that the approach should produce appreciable results
also on different Web applications. In fact, the majority of the problems that can be found in
the comprehension of legacy static and dynamic Web sites are proposed by the selected case
studies. For example, as mentioned above the SEKE 02 Web application was developed without
using systematic development methodology and its requirements were unclear and changing.
Both the static and dynamic pages were stored without a meaningful classification on the file
system of the Web server. Differently, SRA was a multi-language Web application and was devel-
oped using a systematic development process and a Jakarta Struts [32] as development frame-
work. This application contained a considerable number of cloned static pages at the structural
level.

7. CONCLUSION

In this paper we have presented an approach based on a competitive clustering algorithm, namely
Winner Takes All (WTA), to comprehend legacy Web applications. We have also shown an instance
of the approach to identify similar static and dynamic pages at the structural level. Page structure is
implemented by specific sequences of HTML tags and compared using the Levenshtein algorithm
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to obtain the corresponding distance measure. WTA uses the Levenshtein distances of the page
representations to group similar pages at the structural level.

A prototype to automate the identification of groups of similar pages has also been proposed.
We also reported the results of applying our approach and prototype on two Web applications
with different sizes and characteristics, all implemented using J2EE technology. The analysis of
the results of these case studies enabled us to identify some guidelines to reduce the number of
configurations to analyze to approach the configuration providing the best partition of clusters
of similar pages.

To further confirm such a result, we also plan to apply the approach on Web applications imple-
mented using different technologies and coming from different application fields. Future work will
also be devoted to customize our approach for the identification of clusters of similar pages at
content level and apply it on different case studies. Finally, we also plan to extend our tool to
experiment and compare different clustering algorithms.
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