
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A system for visual role-based policy modelling

Massimiliano Giordano a, Giuseppe Polese a, Giuseppe Scanniello b,�, Genoveffa Tortora a

a Dipartimento di Matematica e Informatica, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
b Dipartimento di Matematica e Informatica, University of Basilicata, Viale Dell’Ateneo 10, Macchia Romana, 85100 Potenza, Italy

a r t i c l e i n f o

Article history:

Received 29 December 2008

Received in revised form

25 September 2009

Accepted 20 November 2009

Keywords:

RBAC

Role-based security policy

Visual languages

XACML

Eclipse IDE

a b s t r a c t

The definition of security policies in information systems and programming

applications is often accomplished through traditional low level languages that

are difficult to use. This is a remarkable drawback if we consider that security

policies are often specified and maintained by top level enterprise managers who

would probably prefer to use simplified, metaphor oriented policy management

tools.

To support all the different kinds of users we propose a suite of visual languages to

specify access and security policies according to the role based access control (RBAC)

model. Moreover, a system implementing the proposed visual languages is proposed.

The system provides a set of tools to enable a user to visually edit security policies and

to successively translate them into (eXtensible Access Control Markup Language) code,

which can be managed by a Policy Based Management System supporting such policy

language.

The system and the visual approach have been assessed by means of usability

studies and of several case studies. The one presented in this paper regards the

configuration of access policies for a multimedia content management platform

providing video streaming services also accessible through mobile devices.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Large and modern organizations need to handle a huge
number of access rules and constraints for guaranteeing
secure access to sensitive data within their information
systems. They need security paradigms that can be easily
understood and managed by enterprise managers, be-
cause they are the ones who have the knowledge about
the enterprise and the way its resources should be
accessed. To this end, different access models have been
proposed, such as discretionary access controls [1],
mandatory access controls [2], access control list [3], task
based authorization [4], and the role-based [5,6]. They
require the enterprise manager to have specific knowl-

edge in order to be able to define access control policies
based on request/response scenarios.

In the role-based access control (RBAC) model the
policies relate information on users, resources, applica-
tions, security characteristics, factory priorities, and net-
work features [7]. They describe the kind of user that can
benefit from a given application, the priority in using it,
and finally the network resources allocatable for that
application. For example, priorities in using bandwidth
might have to be defined for a company, whose employ-
ees need to access internet for visiting a Web site or for a
crucial activity in a workflow. RBAC is particularly
suitable to model policies in which the privileges to use
a resource are connected to a role rather than to a specific
user. Each user can belong to more than one role, and for
each of them several privileges can be defined. When an
employee changes its position in the organization chart,
the manager assigns him/her a new role discarding the old
one.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

ARTICLE IN PRESS

1045-926X/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2009.11.002

� Corresponding author.

E-mail addresses: mgiordano@unisa.it (M. Giordano), gpolese@unisa.it

(G. Polese), giuseppe.scanniello@unibas.it (G. Scanniello).

gtortora@unisa.it (G. Tortora).

Journal of Visual Languages and Computing 21 (2010) 41–64

Author's personal copy

RBAC policies can be defined by using several access
control languages. One of the most frequently used
standardized language for defining policies is XACML
(eXtensible Access Control Markup Language) [8], an XML
based language to define actions and rules for subjects
and targets. XACML defines two types of languages for
modelling both control policies and request/response on
resources. The first type of language is used to express
access control policies, specifying who can make what,
where, and when. The second type of language is used to
define queries on whether a particular access should be
allowed (requests), and to describe answers to such
queries (responses), such as Permit, Deny, Indeterminate,
and Not Applicable.

Although XACML provides a powerful abstraction for
policy definition in heterogeneous frameworks, tools
assisting administrators in the management of policies
are highly desirable. Visual language based policy man-
agement systems should enable the high level specifica-
tion and management of access policies. They introduce a
further level of abstraction with respect to XACML,
enabling the modelling of policies according to metaphors
close to the specific application domain and to human
reasoning. Thus, they can considerably simplify the work
of enterprise security managers.

In this work we propose a visual language based
system for specifying role based access policies and for
implementing them in the XACML language. In particular,
we describe a suite of visual languages enabling the
management of role-based access policies [5,6] in hetero-
geneous frameworks and configurable networks, provid-
ing a metaphor oriented layer above the RBAC model.
Moreover, the approach can be proficiently embedded
within software engineering methodologies to specify
access policies to be enforced during the design of
information systems and applications.

The main visual language in our proposal is the Role
Diagram, which is used to specify roles. It allows us to
model roles and relations among them. Access policies are
defined through the Permission Diagram, which allows an
administrator to specify who can use the available
resources. Constraints are described through the Separa-
tion of Duties Diagram. It is used to specify resources that
cannot be employed by users who have played a given
role, which must have been previously defined in the Role
Diagram. Finally, in order to assign users to roles we
propose the Role Assignment Diagram.

This set of visual languages has been embedded within a
system providing editors to compose visual sentences and
compilers to generate access policies abiding by the XACML
standard. The system also includes a server for policy
management and access request evaluation, and a devel-
opment environment supporting policy design, which has
been implemented as an Ecplise plug-in. The system has
been used experimentally in several case studies. The one
described in this paper regards the configuration of access
policies for a multimedia content management platform
providing video streaming services accessible through
several types of devices, including mobile devices. We have
previously used the system in the context of collaborative
environments, and in Voice Over Ip infrastructures. We are

currently using it in the context of domotics applications. A
controlled experiment to compare our tool and the one of
the most pertinent competitor, namely XGrid Tool, has been
also conducted and the results have been presented and
discussed as well.

The remainder of the paper is organized as follows.
Section 2 briefly presents some concepts concerning
visual languages, RBAC, and XACML. The proposed visual
languages are detailed in Section 3, whereas the system
prototype is illustrated in Section 4. The case study and
system usability issues are discussed in Sections 5 and 6,
respectively. In Section 7 we present the comparative
evaluation between our tool and XGrid Tool which also
uses a visual based approach. Related works are discussed
in Section 8. Finally, discussion is provided in Section 9.

2. Background

In this section we briefly recall some basic concepts
underlying the proposed system. These include visual
languages, the role based access control model, and the
eXtensible Access Control Markup Language.

2.1. Visual languages

Visual and diagrammatic representations play a cen-
tral role in several application domains [9,10], since they
provide important tools for describing and reasoning. As
visual languages have been applied to new application
domains, such as spatial databases, education, software
engineering, and so forth, many different types of visual
notations and underlying grammar models have been
devised. As for visual language grammars, many different
formalisms have been proposed in the literature [9]. Since
in the rest of the paper we will describe several visual
languages and will show how to model them through one
of such formalisms, namely the Extended Positional
Grammars (XPGs), in the following we will review the
basic concepts underlying XPGs.

XPGs represent a direct extension of context-free
string grammars. In particular, the XPG formalism is
based on an extension of LR (Left to Right) parsing named
XpLR (eXtended Positional Left to Right) methodology
[11]. The XPG formalism conceives a sentence as a set
of symbols with attributes. Such attributes can be
classified in physic, syntactic, and semantic attributes.
The physical component represents the features of a
symbol and allows us to materialize the sentence to our
senses; whereas the values of the syntactic attributes
are determined by the relationships holding among the
symbols. Thus, a sentence is specified by combining
symbols with relations.

More formally, an Extended Positional Grammar is the
pair ðG; PEÞ, where PE is a positional evaluator, and G is a
particular type of context-free string attributed grammar
ðN; T [POS; S; PÞ where:

� N is a finite non-empty set of non-terminal symbols;
� T is a finite non-empty set of terminal symbols, with

N \ T ¼ |;

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6442

Author's personal copy

� POS is a finite set of binary relation identifiers, with POS
T

N¼ | and POS \ T ¼ |;
� S 2 N denotes the starting symbol;
� P is a finite non-empty set of productions having the

following format:

A-x1R1x2R2; . . . ; xm-1Rm-1xmD;G

where A is a non-terminal symbol, each xi is a symbol
in N [T and each Rj is partitioned in the following two
sub-sequences:

ð/RELh1

j1
ðt1Þ; . . . ;RELhk

jk
ðtkÞS;/REL

hkþ 1

jkþ 1
ðtkþ1Þ; . . . ;RELhn

jn
ðtnÞSÞ

with 1rkrn. Each RELhi

ji
ðtiÞ relates physic or syntactic

attributes of xjþ1 with physic or syntactic attributes of
xj-hi

, where 0rhio j, by means of a threshold ti. The
relation identifiers in the first sub-sequence of an Rj,
named driver relations, are used during syntax analysis
to determine the next symbol to be scanned; whereas
the ones in the second sub-sequence, named tester

relations, are used to check whether the last scanned
symbol (terminal or non-terminal) is properly related
to previously scanned symbols. We refer to the driver
(tester, resp.) relations of Rj with driverðRjÞ (testerðRjÞ,
resp.). D is a set of rules used to synthesize the values
of the syntactic/physic attributes of A from those of
x1; x2; . . . ; xm; G is a set of triples ðNj;Condj;DjÞj

¼ 1; . . . ; t; tZ0, used to dynamically insert new
symbols in the input visual sentence during the
parsing process. In particular,
� Nj is a terminal symbol to be inserted in the input

visual sentence;
� Condj is a pre-condition to be verified in order to

insert Nj;
� Dj is the rule used to compute the values of the

syntactic attributes of Nj from those of x1; . . . ; xm.

Informally, a Positional Evaluator (PE) is a materializa-
tion function that transforms a linear representation into
the corresponding graphical representation of the visual
sentence. The language described by an XPG, L(XPG), is the
set of the visual sentences from the starting symbol S of
XPG [11].

2.1.1. Example

In this example we introduce an XPG modelling
state transition diagrams. Let STD¼ ðN; T [POS; S; PÞ

be the XPG for State Transition Diagrams, characterized
as follows. The set of non-terminals is given by
N¼ Graph;Node; Edge;NLabel; ELabel, where the first two
symbols have one attaching region as a syntactic

attribute; Edge has two attaching points as syntactic
attributes, whereas the last two symbols have
two syntactic attributes, called head and tail, both
specifying a position in the plane. Graph is the starting
symbol.

The set of terminals is T ¼NODEI, NODEIF, NODEF,
NODEG, EDGE, a, b, DIGIT, PLACEHOLD. The terminals
NODEI, NODEIF, NODEF, NODEG represent the initial, the
initial and final, the final, and the generic node, respec-
tively, of a state transition diagram. As syntactic attributes
they have one attaching region corresponding to the
borderline of the node, and one containment area
corresponding to the circle area representing the node.
The terminal EDGE has two attaching points as syntactic
attributes, corresponding to the start and end points of
the edge. PLACEHOLD is a terminal to be dynamically
inserted in the input sentence during the parsing process.
It has one attaching region as syntactic attribute. The
symbols a and b represent the labels of the edges and have
two syntactic attributes, called head and tail, both
specifying a position in the plane. Finally, DIGIT is a
symbol whose visual pattern matches the decimal digits
0–9. It is used to compose node labels, and has two
syntactic attributes, called head and tail, both specifying a
position in the plane.

Typical instances of symbols for this language are
graphically depicted in Fig. 1. Here, each attaching region
is represented by a bold line and each is identified by a
number; each containment area is represented by a light
gray area, while the attaching points are represented by
bullets.

The set of relations is given by POS¼ LINKi;j, any,
contains, edge-labelling, where

� LINKi;j is defined as follows: a symbol x is in relation
LINKi;j with a symbol y iff attaching point (or region) i

of x is connected to attaching point (or region) j of y,
and will be denoted as i_j to simplify the notation.
Moreover, we use the notation ij when describing the
absence of a connection between two attaching areas i

and j;
� the relation identifier any denotes a relation that is

always satisfied between any pair of symbols;
� contains is a containment geometric relation. In

particular, if A is a symbol with a containment area
as syntactic attribute and B is a symbol, then A contains

B if and only if B is inside the containment area
of A.
� edge-labelling is a geometric relation. In particular, if A

is a symbol of type EDGE and B is a symbol
representing a string label, then A edge-labelling B if

ARTICLE IN PRESS

Non-terminals

 Edge NLabel ELabel Graph Node

1 1

1 2
head tail head tail

11

 NODEI NODEIF NODEF NODEG EDGE PLACEHOLD

1 1

1 2

1

Terminals

Fig. 1. Visual representation of non-terminals and terminals for the grammar STD.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 43

Author's personal copy

and only if B is close to A with respect to their syntactic
attributes.

Next, we provide the set of productions for describing
State Transition Diagrams.

(1) Graph-NODEI/containsSNLabel

D : ðGraph1 ¼NODEI1Þ

(2) Graph-NODEIF/containsSNLabel

D : ðGraph1 ¼NODEIF1Þ

(3) Graph-Graph0//1_1S;/1_2SS Edge2_1 Node

D : ðGraph1 ¼ Graph1
0 -Edge1Þ

G : ðPLACEHOLD; jNode1j41; PLACEHOLD1 ¼Node1-Edge2Þ

(4) Graph-Graph0//1_1;1_2SSEdge

D : ðGraph1 ¼ ðGraph1
0 -Edge1Þ-Edge2Þ

(5) Graph-Graph0//1_2;1_1SS Edge1_1 Node

D : ðGraph1 ¼ Graph1
0 -Edge2Þ

G : ðPLACEHOLD; jNode1j41; PLACEHOLD1 ¼Node1-Edge1Þ

(6) Graph-Graph0/anySPLACEHOLD

D : ðGraph1 ¼ Graph1
0 þPLACEHOLD1Þ

(7) Node-NODEG/containsSNLabel

D : ðNode1 ¼NODEG1Þ

(8) Node-NODEF/containsSNLabel

D : ðNode1 ¼NODEF1Þ

(9) Node-PLACEHOLD

D : ðNode1 ¼ PLACEHOLD1Þ

(10) Edge-EDGE/edge-labellingSELabel

D : ðEdge1 ¼ EDGE1 ;Edge2 ¼ EDGE2Þ

(11) NLabel-DIGIT

D : ðNLabelhead ¼DIGIThead;NLabeltail ¼DIGITtailÞ

(12) NLabel-NLabel0/right-to DIGIT

D : ðNLabelhead ¼NLabelhead
0 ;NLabeltail ¼DIGITtailÞ

(13) ELabel-a

D : ðELabelhead ¼ ahead ; ELabeltail ¼ atailÞ

(14) ELabel-b

D : ðELabelhead ¼ bhead ; ELabeltail ¼ btailÞ

Notice that Graph1 ¼ Graph1
0 indicates set difference

and is to be interpreted as follows: ‘‘attaching area 1 of
Graph has to be connected to whatever is attached
to the attaching area 1 of Graph0 except for the attaching
point 1 of EDGE’’. Moreover the notation Node1 indicates
the number of connections to the attaching area 1 of
Node.

According to these rules, a state transition diagram is
described by a graph defined as

� an initial node containing a label (production 1) or as
� an initial–final node containing a label (production 2)

or, recursively, as
� a graph connected to a node through an outgoing

(production 3) or incoming (production 5) edge, or as
� a graph with a loop edge (production 4).

A node can be either a generic node containing a label
(production 7) or a final node containing a label (produc-
tion 8). An edge is labelled (production 10) by a
(production 13) or b (production 14). A node label is the
string concatenation of decimal digits (productions 11
and 12).

The reduction process of a typical State Transition
Diagram is shown in Fig. 2. During the reduction process,
the introduction of PLACEHOLD terminals (productions 3
and 5) and their successive processing (productions 6 and
9) allows us to keep knowledge of the source and the

target node of each reduced edge. The same result could
be achieved by using the terminal NODEG instead of
PLACEHOLD. However this would let the grammar
describe also unconnected graph structures.

2.2. Access control models

One of the most challenging problems in managing
large and heterogeneous networks is the complexity of
security administration. In particular, the definition
and modelling of access control represents one of the
open challenges. Access is meant as the use of a hardware
or software resource, whereas access control is intended
as the release of any resource or a restriction on its
use. The Access Control List (ACL) model [3] has been
recently used as a model for access control in large
networked applications and permission systems. ACL
restricts the access by verifying membership in static
permission lists. A typical example of system using ACL is
UNIX. Basically, UNIX assigns a user and a group to a
process. The latter can manipulate a file if that user or
group has permission to do so. There are two other
basic types of access control mechanisms: discretionary
access controls (DAC) [1], and mandatory access controls
(MAC) [2], which are replaced by role-based access
control (RBAC) [7]. In RBAC decisions are based on the
roles that individual users have as part of an organization.
The main advantages of RBAC are its flexibility and the
reduced management overhead. Flexibility allows
the administrator to enforce the principles of Least
Privilege, conflict between duties, and dynamic and/or
static separation of duties. Moreover, by exploiting the
RBAC natural ability to describe the organizational
structure of a distributed system we can also receive
support in the choice of the administrative task to
decentralize.

2.3. XACML

XACML (eXtensible Access Control Markup Language)
[8] is an XML-based language, or schema, conceived
to create access policies, automate their use in the
management of access control for generic devices, and
support interoperability among different systems and
frameworks. It was designed to replace existing, applica-
tion-specific, proprietary access-control mechanisms.
Previously, every application vendor had to create its
own customized method for specifying access control, and
these typically could not talk to one another. The XACML
specification describes both a request/response language
for expressing queries about whether a particular access
should be allowed, describing the answers to those
queries, and an access control policy language, which
allows developers to specify who can do what and when.
In a typical XACML based scenario, a user willing to
undertake some action on a particular resource submits a
query to the entity protecting that resource, named Policy
Enforcement Point (PEP). By using the XACML request
language the PEP prepares a request based on user
attributes such as action, resource, and other relevant

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6444

Author's personal copy

information. The request is sent to a Policy Decision Point
(PDP), which examines the request, and retrieves policies
written in the XACML policy language that are applicable
to this request. The PDP also determines if the access can
be granted according to the request.

That answer is returned to the PEP, which allows or
denies user access. The answer returned to the PEP is
expressed in the XACML response language.

3. Visual policy editor

As said above, the management of role-based XACML
policies is a difficult task that cannot be accomplished by
users without sufficient technical skills.

In this section we present a set of visual languages
that can potentially simplify the work of an enterprise
security manager by letting him/her directly manipulate
role based security policies in a metaphor oriented
fashion. Thus, the new usage scenario of role-based
XACML security policies will be the one depicted in
Fig. 3.

The security manager defines XACML policies by
means of visual languages implemented in the
Visual Policy Editor. Visually specified policies are
translated into the XACML language by means of visual
language compilers and stored on a permanent memory
device. When the end user makes an attempt to access
services and resources from a client, a request is
generated. Then, a specific PEP intercepts and sends it to
the PDP in the form of an authorization decision request.
The PDP evaluates it against the stored policies, produc-
ing an authorization decision that is returned to the
PEP responsible for the requested resource. In other
words, the specific PEP is responsible for enforcing the
decision to release the required resource or service. Thus,
each service provider has to bind the service to the
corresponding PEP.

In this section we describe in details the suite of visual
languages defined within the visual policy editor. The top-
tier language is Role Diagram (RD), which allows us to
define the roles and their hierarchic relations. Then,
Permission Diagram (PD) allows us to define access
permissions for a resource and to associate permissions
to a role. The restriction Separation of Duties Diagram
(SDD) is proposed to define the mutually exclusive
relations between users or subjects and a set of roles.
Finally, the Role Assignment Diagram (RAD) has been
proposed to define the association between a user or
subject and roles.

ARTICLE IN PRESS

Node Node Node

Graph

Productions 11, 7
Productions 11, 1

1

3

2

Production 3

NodeGraph

Production 6

Graph

Production 4

Productions 13, 10

Graph

Graph

a

b

a Productions 13, 10

NodeGraph

aa

b3 3

Edge

b3

a

Graph Productions 13, 10

a

b

3

Edge

Productions 11, 8

b b

Production 3
Graph

Edge

a

Fig. 2. The reduction process for a state transition diagram.

PDP

Access Control

Client

XACML
Request

XACML
Response

Policy

Access
Denied/
Allowed

Access
Request

Enabled
ServicePEP

Visual Policy
Editor

Policy

Fig. 3. Visual Role-based policy management scenario.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 45

Author's personal copy

3.1. Role Diagrams

Role Diagrams (RD) are a special case of the well
known UML Class Diagrams [12], where the classes are
roles joined by generalization relations. The purpose of RD
is to model the static structure of roles and to show the
role graphical view for a given domain. The proposed
language can describe roles and dependences, allowing
the administrator to vary the degree of control over the
order in which the user can use resources. By using the
role hierarchy we optimize the permission definition,

avoiding useless redundancies. We give common permis-
sions to the role at the basis of the hierarchy. The
language symbols are shown in Fig. 4. The first symbol
(Fig. 4A) represents a generic role in visual policy access
definition. The role object has a label representing the role
name. The generalization relation object is represented by
the arrow of Fig. 4B. The symbol is used between any
two roles; the one at the tail of the arrow inherits the
privileges of the one at head.

Fig. 5 shows a visual sentence describing an example
of access policy roles in a University portal. The basic
role is the Guest from which all others roles inherit
privileges.

Fig. 6 shows the XPG grammar [11] of the Role
Diagram.

3.2. Permission Diagrams

The Permission Diagram (PD) has been introduced to
facilitate the definition of the access permission, which is
a critical task in policy definition. It supports security
administrators during the design and implementation
of a policy, providing means for describing the use of a
resource by a role. The PD language also allows security
administrators to express restrictions on the use of the
resource. Policies in the PD language context can be
expressed as follows:

If /conditionðsÞS then /grant access to resourceðsÞS

Generally, conditions are based on:

� time and/or date;
� user’s or group’s name;
� application;
� source and destination (for instance a source or

destination network address);

The resources on which the administrator can define
policies depend on the application domain. For instance,
in the network service domain the resources may concern
the use of:

� band;
� Virtual Private Network (VPN);

ARTICLE IN PRESS

Fig. 4. The visual language tokens. (A) Role Object. (B) Generalization

relation.

Guest

Employee
Student

Thesis Student Developer Part Time

Fig. 5. Role Diagram sentence.

Fig. 6. Role Diagram XPG grammar.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6446

Author's personal copy

� File Transfer Protocol (FTP);
� Hyper Text Transfer Protocol (HTTP);

In general, in any application domain a resource is
requested from a subject, such as a user, an application,
or a service. The subject can make several actions on the
released resource. Thus, we can describe a policy as the
triple

/subject; resource; actionS

Basically, in order to define how a subject can exploit a
resource some restriction on its use should be imposed.
The PD language enables an administrator to define
several uses of the network resources, specifying restric-
tions such as time, network bandwidth, and so on.
Moreover, since the visual language is conceived to model
role based policies, the subjects have to be intended as
elements belonging to a role. Hence, the policies can be

considered as:

/RoleS use /resourceS if /restrictionS valid

The permission definition in the PD language follows
that kind of representation. In order to define permissions,
the administrator uses the symbols shown in Fig. 7. The
PD language has three different symbols and a link. The
first symbol (Fig. 7A) represents a role in the diagram
describing the resource access. It has a tag representing
the role name. The subjects can use all the resources that
are joined with its role by arrows (Fig. 7C).

The arrow has a label representing the type of action
that the subject can make on the resource. It is worth
noting that in order to represent a resource the PD
language uses the Generic Resource symbol (Fig. 7B),
which can be specialized for each resource described in
the language sentence. In this way the PD sentences
become more readable and flexible. Finally, to represent
restrictions on the use of a resource we use the Generic
Restriction symbol (Fig. 7D). Role subjects cannot use a
resource when an interdiction symbol is associated to the
link connecting the role to the resource. Notice that
multiple restrictions can be specified on the use of a given
resource. Similarly to the Generic Resource symbol, also
the restriction symbol is customizable in order to adapt
the PD language to several permission access contexts.

An example of visual policy from the PD language is
shown in Fig. 8. The policy depicts an example of resource

ARTICLE IN PRESS

Fig. 7. The visual language tokens. (A) Role object. (B) Generic resource.

(C) Action relation. (D) Generic restriction.

Fig. 8. PD language sentence.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 47

Author's personal copy

access in the University context. The subject of the
policy is the Student who can use the resources WWW,
VPN, e-mail, and an Application provided by the
University portal. Application can be used by the
subjects of the Student role without restrictions. Typical
examples of services enjoyable from the student
in a University portal could be forum, chat, course
timetable, and so on. Restrictions are defined on the
other resources. The e-mail and the VPN are accessible

from the subject in the Student role only with the
appropriate certificate. Instead, the use of the Web is
allowed only from 3 pm to 5 pm, and the bandwidth is
limited to 1.5 Mbit.

In what follows, an example of XACML specification of
permissions is provided. This also shows how the
proposed visual languages simplify the RBAC policy
specification, which would otherwise be a complex task
if directly using XACML.

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6448

Author's personal copy
ARTICLE IN PRESS

Finally, Fig. 9 shows the XPG grammar of the
Permission Diagram.

3.3. Separation of Duties Diagram

The RBAC model allows us to define static restrictions
of a subject to a role. For example, it can ensure that
subjects cannot be members of both the purchasing role
and the approving role. That is how static separation of
duties ensures that the same person cannot purchase and
approve the purchase within an e-commerce system. That

restriction is specified in the proposed method by using
the Separation of Duties Diagram (SDD). The adminis-
trator can exclude a user or a group of users from a role by
appropriately arranging the symbols of the RD language
(Fig. 10). The role (Fig. 10C) previously defined in the RD
language can be connected to the Subject Symbol
(Fig. 10A) through the arrow in Fig. 10B. The
administrator selects the set of users in the Subject
Symbol, which are consequently banned from the
specified role. Fig. 11 shows an example of sentence
from the RD language. The sentence specifies that the user
in Group Beta cannot be in both Student and

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 49

Author's personal copy

Administrator roles. The subject organized in groups has
to be selected from a centralized repository, previously
populated by the administrator. The repository is also
used by the Role Assignment Diagram, which is shown in
the following subsection. It is worth noting that the

definition of such restrictions on a subject is not
mandatory.

Fig. 12 shows the XPG grammar of the Separation of
Duties Diagram.

3.4. Role Assignment Diagram

In the definition of policies it is worth defining for each
session the subjects of a role that can use a resource. Thus,
the administrator defines groups of subjects belonging to
a role and expresses conditions for each of them on the
use of a resource that had been previously put in relation
with such role through the PD language. This type of
policy is managed by a specific entity, which is meant as a
module being able to process a Role Assignment Policy
compliant with the used access control standard. The Role
Assignment Policy contains information to determine
which subjects are authorized to be in a role and what
are the conditions to satisfy. The Role Assignment
Diagram (RAD) has been defined to model that kind of
policy.

The policies are modelled in the RAD language by triples:

/Subject; Role; ConditionS

ARTICLE IN PRESS

Fig. 9. Permission Diagram grammar.

Fig. 10. Separation of Duties Diagram objects. (A) Subject symbol.

(B) Exclusion symbol. (C) Role symbol.

Student

Administration

Group Beta

Fig. 11. Separation of Duties Diagram sentence.

Fig. 12. Separation of duties grammar.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6450

Author's personal copy

In particular, by using arrows (Fig. 13C) the administrator
associates predefined roles (Fig. 13A) with subjects or
group of subjects (Fig. 13B). The association says that the
subject belongs to the role. In order to introduce
membership conditions, one or more Restriction Symbol
(Fig. 13D) can be used. This symbol is generic, and can be
customized by the administrator to improve RAD
expressiveness and readability. The introduction of new
symbols representing policy conditions requires that the
administrator define XACML functions implementing such
conditions. It is worth noting that analogously to the RD
language the subjects are selected from a centralized
repository.

The sentence in Fig. 14 shows an example of sentence
from the RAD language. Notice that the user Max belongs
to the Administrator role without restrictions, and that

the Group Alpha is enabled to be in the Employee role
from the 9 am to 5 pm by using a customization of the
Restriction Symbol.

Fig. 15 shows the XPG grammar of the Role
Assignment Diagram.

4. System prototype

In this section we present the Visual Policy Editor
(VPE) embedding the visual languages presented above. It
integrates several programming environments and soft-
ware modules for composing, managing, generating, and
deploying policies according to the proposed approach.
Moreover, a version of the VPE has been implemented as
an Eclipse plugin.

The layered architecture of the VPE is shown in Fig. 16.
Its main modules are: Visual Environment, Symbol Editor,
Diagram Representation, Policy Generator, and Policy
Deployment Module.

4.1. Visual environment

The Visual Environment is the main module of the VPE
(see Fig. 17). For each defined visual language it provides a
palette containing symbols and links. By using the drag

ARTICLE IN PRESS

Fig. 13. RAD language objects: (A) Role symbol. (B) Group symbol.

(C) Relation. (D) Generic restriction.

Group Alpha

9:00 - 17:30

Employee

Administrator

Max

Fig. 14. RAD sentence.

Fig. 15. Separation of duties grammar.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 51

Author's personal copy

and drop metaphor the administrator places the language
symbols on the workplane and joints them through
connectors. Visual sentence composition is syntactically
driven by the editor. Before generating the XACML policy,
the visual language compiler embedded in the VPE
executes a complete syntactic control on the sentence,
presenting errors to the user through a log in a dialog
window, also providing support to solve them.

4.2. Symbol editor

As shown above, users can extend or customize the
proposed visual languages by drawing or specializing visual
symbols. Thus, this module is crucial for the personalization
of the approach and the customization of the tool for
different application domains. This component provides

features to draw a new symbol or to customize an existing
one. The personalization of the graphical layout of a symbol
allows us to make its meaning more intuitive for the given
application context. The Symbol Editor supports the creation
and the personalization of language symbols, and also
the import of those created through other visual editors.
The symbol personalization is determined by assigning them
a suitable semantics. The administrator can define symbol
semantic specifying resources and constraints or eventually
choosing symbol semantics from a set of predefined ones.

4.3. Diagram representation

In order to store visually specified policies the system
uses two kinds of representations: graphical based on SVG
(Scalable Vector Graphics) [13], and semantics based on

ARTICLE IN PRESS

Visual

Environment

Symbol

Editor

 Diagram

Representation

XACML

Generator

XACL

Generator
Generator

Policy Deployment Module

Symbol

Visual

Policy

Policy

Generator

Fig. 16. Architecture of the visual policy editor.

Fig. 17. The eclipse based visual policy editor.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6452

Author's personal copy

XML. These two kinds of representations are first used to
check the sentence syntax, and then to generate the
XACML policy through the Policy Generator. This abstrac-
tion may allow us to implement several modules in order
to generate policies based on RBAC, as shown in the
system architecture of Fig. 16. Using that intermedi-
ate representation as input, several RBAC based policy
implementation tools can be provided by us or other
vendors. It is worth noting that the use of SVG allows us to
compose visual sentences through any graphical editor,
and successively import them in the Visual Policy Editor
prototype to generate XACML policies.

4.4. Policy generator

The Visual Production Editor supports several RBAC
based Policy Generator engines. In this work we propose
one for translating the intermediate representation of
visual RBAC policies into XACML policies. The XACML
Generator generates XACML policies starting from the
Diagram Representation. Basically, the aim of this module
is to fill XACML templates by using the information and
semantics introduced through the system user interface.

Starting from the policy visual representations, the
Policy Generator produces the following set of XACML
policies [7]:

� Role PolicySet associates a user of a role with a set of
permissions.
� Permission PolicySet contains the permissions asso-

ciated to a given role, the resource description, and the
actions allowed for the associated user. The Permission
PolicySet can also contain other kinds of access
restrictions such as, date, time, and possibly other
associations for permissions inherited by the role
hierarchy.
� Separation of Duties PolicySet defines restrictions on the

role set that can be used by a given user.
� Role Assignment PolicySet defines the roles that can be

associated or enabled on a given user.

4.5. Policy deployment module

The Policy Deployment Module is used to deliver
XACML policies generated by the Visual Policy Editor. It
activates a secure communication between the proposed
system and the Policy Repository by using authentication
and communication means. The security of the policy
delivery schema is based on secure authentication and
secure transmission scheme.

5. Case study

The system has been used experimentally in several
application domains. In particular, it has been used in the
context of collaborative environments, Voice Over Ip
infrastructures, and multimedia content management

platforms providing video streaming services, which is
the one presented in this section.

In particular, we have cooperated with a software
development company to develop a Multimedia Content
Management System (MCMS) for news and forecasts, and
have used our approach to embed access control policies
within it.

The MCMS supports a wide range of users and devices,
from PC clients to mobile phones, in a transparent way. It
is capable of delivering content based on many factors,
like multimedia device capabilities, bandwidth, and user
credentials, without adding complexity to system admin-
istration and to the content creation process. Moreover,
transparency is achieved by means of a fine grained access
control mechanism.

The MCMS has been built upon OpenCMS, a well
known Open Source Content Management System that
can be easily extended by adding java modules. It stores
text based contents by using XML so that it can be easily
translated into different formats to support heteroge-
neous devices. OpenCMS supports WAP technology, hence
mobile users can access the same text based content that
is accessible to PC users in a transparent way. The same
level of flexibility can be achieved for multimedia content,
like image motion, audio, and video documents, thanks to
streaming technology. Current streaming servers support
multiformat streams, so that a given content can be
streamed with different resolution and bandwidth re-
quirements. Each content is associated with a different
audit, each of which is a view of the stream. The selection
of the right stream based upon device capabilities and
user rights requires a fine grained access control mechan-
ism. Moreover, also notification must be extended in
order to better support mobile devices.

The goals just described have been reached by
extending OpenCMS with new modules for video stream-
ing content delivery, and SMS notification. Then, we have
added support for role based policies by embedding a
Policy Management System and a Visual Policy Editor
based on our approach. Thanks to visual languages, the
administration of users and authorizations has been
simplified, making it accessible to unexperienced CMS
administrators, which will most probably dislike compu-
ter complexity if they use a CMS to facilitate the
management of content in complex web sites. The
diagram in Fig. 18 shows the components of the case
study system architecture and their relations.

The OpenCMS block is the Content Management
System. As previously explained, the standard OpenCMS
system was extended with three new modules:

� The News Module providing support for live news and
forecast content.
� The Video Gallery providing support for Video Content

stored on the streaming server Darwin [14].
� The Role Based Policy Module providing support for

Policy Authorization control, which acts as a PEP.

In addition to the standard web-enabled and streaming
capable clients we have added support for mobile phone

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 53

Author's personal copy

clients by writing a client application based on the Java 2
Micro Edition (J2ME) platform. The Policy Management
System performs several functions, including policy config-
uration and authorization control. In this context the PEP is
implemented like an extension module in OpenCMS. More-
over, the Visual Policy Editor has been customized with
domain specific visual symbols. We have embedded several
access policies within the MCMS in order to control access
to resources. These are represented by forecasts that are
supposed to be accessible in streaming from devices
equipped with web browsers, and mobile phones supporting
WAP technology. The following statements describe three
examples of policies implemented within our multimedia
CMS:

� Unregistered users can read textual news, and receive
SMS notification no more than two times in a day.
� Registered users with a basic account have the same

rights as unregistered users, but in addition they can
stream media forecasts once a day.

� Registered users with a premium account have the
same rights as basic user, but without limitations.

In order to implement them with our Visual Policy
Editor we have started from their specification within the
Role Diagram. In the scenario depicted in Fig. 19 we have
defined five roles: Unregistered user, Registered user,
Basic user, Premium user, and Content Manager. The
Unregistered user is the basic role, and its permissions are
common to all other roles, hence to any other user profile.
Content Manager and Basic user have a common ancestor
in the hierarchy, which means they share the same rights
inherited from Unregistered user. After the Role Diagram
we have specified the Permission Diagram, in which we
have defined the permission assignment to roles. In the
diagram depicted in Fig. 20 we define permissions for
the role Unregistered user. In particular, the diagram
represents the following statement: Unregistered user can

read textual news, and receive sms notification no more than

two times a day; the subsequent diagrams (Figs. 21

ARTICLE IN PRESS

Mobile Phone

Content Management System

News and
forecast

Video
Gallery

Policy Enforcement
Point (PEP)

Policy Management
System

Adminsistrator PC

Streaming
Server

Client Device

Policy Decision
Point (PDP)

Multimedia
Viewer

OpenCMS
Framework

Visual Policy
Editor

<<WAP/http>> <<http>>

<<http>>

<<http>>

Darwin

WAP browser

<<http>>

Web browser

Fig. 18. Case study system architecture.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6454

Author's personal copy

and 22) depict the following statements: Registered user

with a basic account has the same rights as an unregistered

user, and in addition it can stream media forecast once a day

and Registered user with a premium account has the same

rights as Basic user, but they do not share the same

limitations; All the diagrams will be translated in XACML

format, compressed in a JAR file, and deployed on the
Policy Management System (PMS) via HTTP protocol.

Fig. 23 shows the web interface of the PMS. After the
policies upload on the PMS, the client applications are
enabled to invoke access authorization requests to the
PDP embedded in the PMS. Interaction with PMS
components is made via webservices technology. In

ARTICLE IN PRESS

Fig. 19. The Role Diagram for the proposed policies.

Fig. 20. Unregistered user Permission Diagram.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 55

Author's personal copy

order to benefit from this service infrastructure each
application must interact with the PEP component to
enforce the policy and request authorization to the PDP.
As said above, we have integrated a PEP module within
OpenCMS so that all the requests made to the OpenCMS
application will be translated in XACML format and
transmitted to the PDP embedded in the PMS. Moreover,

in order to enable streaming capabilities in mobile devices
we have also developed a client application with the Java
Micro Edition, which can be deployed on a wide range of
mobile phones.

All the software components have been realized with
Java Technologies. PMS uses Tomcat and Axis for web
interface and web services support. Policy creation and

ARTICLE IN PRESS

Fig. 21. Basic user Permission Diagram.

Fig. 22. Premium user Permission Diagram.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6456

Author's personal copy

basic evaluations are made through an open source API for
XACML. The Visual Policy Editor is mainly written with
Swing API and JDOM, and it exploits XACML for policy
generations. Finally, the mobile phone client is written
with JME.

6. System usability

We selected two usability experts to conduct a pilot
test before the proposed usability test. The experts, who
were not in the development team of the tool, worked
independently using Nielsen’s heuristic evaluation [15],
and then discussed until they reached an agreement. Once
the main usability problems were identified and fixed, the
proposed usability test was carried out through a one-to-
one session (i.e., with a supervisor for each subject) using
the think aloud technique. A group of heterogeneous
subjects was recruited, including managers and techni-
cians from industries and universities, whose profiles are
summarized in Table 1. In particular, first and second
columns contain the ID of the subject and his/her
background, while the third column reports his/her
gender.

6.1. Experiment design

All the subjects underwent an introductory course of
60 min on the system and its visual notation. Successively,
these subjects have been asked to use the tool for 20 min
with the possibility of invoking tutor support. After that,
they were asked to use the system to define access
policies on a usage scenario they were familiar with. For
example, one of the subjects (i.e., a Manager of a partner
company), who had experience on the Voice Over IP,

decided to define and model access polices on his
company communication infrastructure.

The recruited subjects were volunteers with different
backgrounds (see Table 1) and professional experiences.
However, the majority of them did not master the XACML
language. This was especially true for the subjects without
computer skills, who could not define and model access
polices without using the proposed visual language based
system.

The subjects carried out the experiment without
having the possibility of invoking individual tutor sup-
port. After accomplishing the task, they were asked to fill
in a questionnaire to provide information on the usability

ARTICLE IN PRESS

Fig. 23. The web interface of the PMS.

Table 1
Subject’ background.

Subject ID Background Sex

ID1 Computer Science Lecturer F

ID2 Master Student in Mathematics F

ID3 Master Student in Mathematics M

ID4 Master Student in Computer Science M

ID5 Master Student in Computer Science F

ID6 Manager of a partner company M

ID7 Manager of a partner company M

ID8 Practitioner of a partner company F

ID9 Practitioner of a partner company M

ID10 Enterprise Manager M

ID11 Research Fellow in Computer Science M

ID12 Research Fellow in Mathematics M

ID13 Computer Science Lecturer M

ID14 Assistant Professor in Mathematics F

ID15 Assistant Professor in Computer Science M

ID16 PhD Student in Mathematics F

ID17 PhD Student in Mathematics M

ID18 PhD Student in Mathematics F

ID19 PhD Student in Mathematics F

ID20 PhD Student in Mathematics F

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 57

Author's personal copy

they perceived. The questions composing the usability
questionnaire were organized into five categories (see
Table 2). Subjects expertise and their general reaction in
terms of satisfaction degree were evaluated through
questions in the categories Subject Background (not
shown in the table) and General Evaluation, respectively.
Questions in the Special Judgment category aimed at
assessing the perceived usability with respect to the
graphical user interface. The Tool Learning category aimed
at evaluating the satisfaction degree to master the tools.
Finally, the information provided by the tool during its
usage was evaluated through the questions in the
Information Grant category. All these questions of
expected closed answers according to a Likert scale [16]:
1 (strongly agree), 2 (agree), 3 (neutral), 4 (disagree), and
5 (strongly disagree).

6.2. Results

The data collected from the usability questionnaire are
visually summarized in the boxplots of Fig. 24. This figure
shows a good distribution of the answers for each
question of the questionnaire.

The General Evaluation was fairly good for the
majority of the subjects, as the boxes for questions
Q.2.1, Q.2.2, and Q2.3 reveal. Nearly the totality of the
subjects had a good reaction concerning the system usage,
as the boxes for questions Q.3.1, Q.3.2, and Q3.3 show.
However, the subject ID2 expressed a better judgment on
the error messages proposed by the tool (see Q.3.3 box).
Moreover, on the perceived simplicity of the tool learning
a good agreement has been achieved. Indeed, on the
questions Q.4.4 the subjects expressed a worse judgment.

ARTICLE IN PRESS

Table 2
Questions of the usability questionnaire.

Category Id Question

General evaluation Q.2.1 The tool provides a nice user interface

Q.2.2 Using the tool is simple

Q.2.3 The aroused feeling by the tool use is satisfactory

Special judgment Q.3.1 The user interface is pleasant

Q.3.2 The tool is simple to use

Q.3.3 The tool proposes specific error messages

Tool learning Q.4.1 Learning to use the tool is simple

Q.4.2 The required time to use the tool is appropriate

Q.4.3 Remembering the commands and their use is simple

Q.4.4 The number of steps to carry out a task is appropriate

Q.4.5 The required time to insert a new role or resource is appropriate

Q.4.6 The number of steps to insert a new role or resource is appropriate

Q.4.7 Exporting the policies created using the tool is simple

Information grant Q.5.1 Icon names and objects have a clear meaning

Q.5.2 Each set of operations produces a predictable result

4

3

2

1

Q.2.
1

Q.2.
2

Q.2.
3

Q.3.
1

Q.3.
2

Q.3.
3

Q.4.
1

Q.4.
3

Q.4.
2

Q.4.
4

Q.4.
5

Q.4.
6

Q.4.
7

Q.5.
1

Q.5.
2

ID2
*

ID8
*

ID4
*

ID4
*

ID3
*

ID1
*

ID1
*

Fig. 24. The boxplots for the answers of the usability questionnaire.

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6458

Author's personal copy

However, as the box for question Q.4.4 shows, the number
of steps required to accomplish a task was considered
appropriate.

A better agreement on these questions could
be probably achieved by using a different graphical
toolkit. In fact, the tool was implemented as an Eclipse
plug-in, but the Eclipse graphical toolkit imposes some
constraints in the development of the plug-in graphical
user interface and in the operations to perform in the
accomplishment of a particular task. Finally, also on the
Information Grant category a good agreement level has
been achieved.

6.3. Discussion

The usability study revealed that the satisfaction
degree of the subjects is more than sufficient. Subjects
judged the hierarchy of visual languages sufficiently
intuitive. Moreover, they also appreciated the possibility
to define new roles, and the simplicity in associating new
software and hardware resources to them. Particularly
appealing was judged the possibility of rapidly turning
visual policies into XACML policies. A subject found
troubleshooting incorrect policies difficult. On the other
hand, all subjects grew confident with the system after
the introductory course. Concerning the effort required to
understand the Visual Policy Editor, the majority of the
subjects understood it quickly. No problems were man-
ifested in the comprehension of the hierarchy of the
proposed visual languages. Nevertheless, two subjects
with low expertise in Computer Science (i.e., the ones
with mathematics background) required a moderate
effort to understand the hierarchical visual language
organization.

The Role Diagram required more effort than the
second tier visual languages. In particular, we observed
that three subjects raised some issues to understand
the RD visual language. Probably, this was also due to the
fact that subjects were not familiar with software
engineering or object oriented programming languages,
hence mapping the concept of inheritance between roles
was not immediate to them. Nevertheless, encouraging
results were achieved in terms of time spent to compose
visual sentences. On the average, users spent 15 min
completing a visual sentence in both the upper and
second tier visual languages. We did not account for the
minutes required to define the symbols of the visual
languages.

In most cases visual languages improve productivity of
expert and non-expert users as they are easier to learn
than textual languages [17]. Nevertheless, this is not
always true, hence the usefulness of visual languages in a
specific domain needs to be assessed and verified [18]. In
our case the data analysis has revealed that the recruited
subjects perceived a good usability degree of the
visual language based tool. To generalize this result, a
further investigation using a larger dataset is required.
However, the primary goal here is to propose a visual tool
and companion methods to model policy according to
RBAC.

7. A comparative evaluation

In this section we present a comparative evaluation
between our tool and one of the most pertinent
competitor, namely the XGrids Tools [19], which also
uses a visual based approach.

7.1. Context

The comparative study was carried out by using a one-
to-one session using the think aloud technique. Similarly
to the usability study discussed above, we recruited
managers and technicians from industries and universi-
ties, whose profiles are summarized in Table 3. The
experiment was organized in three days in order to
compare the efficacy of our visual formalism with respect
to the XGrid approach. Due to the unavailability of tools
implementing the XGrid approach, we have implemented
a prototype in order to conduct the comparative study
presented here.

7.2. Experiment design

All the subjects underwent an introductory course of
90 min on the investigated systems and theirs visual
notations. The subjects were then asked to use the tools
for 20 min with the possibility of invoking tutor support.
After that, they were asked to use the systems in the
definition of access policies for three different usage
scenarios or tasks:

� T1: File Hosting Service: In the first test scenario we
asked users to model access policies for a typical
Internet hosting service specifically designed to offer
‘‘network storage’’ for personal backup, file access,
or file distribution. Usually, in such a site, users can
upload their files and share them publicly or keep
them password-protected. Most online file storage
services offer space on a per-gigabyte basis, and
sometimes include a bandwidth cost component as
well. Usually, these will be charged monthly or yearly.
Under some conditions the service might be offered for
free, relying on advertising revenue.
� T2: Massively multiplayer online role-playing game

(MMORPG). In the second scenario we asked users to
model policies for a computer role-playing game in
which a very large number of players interact within a
virtual game world. In role-playing games players

ARTICLE IN PRESS

Table 3
Subject’ background.

Subject ID Background Age

ID1 Computer Science Lecturer 24

ID2 PhD Student in Computer Science 25

ID3 Practitioner of a partner company 24

ID4 Manager of a partner company 40

ID5 Master Student in Computer Science 41

ID6 Administrative Accounter 50

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 59

Author's personal copy

assume the role of a fictional character (often in a
fantasy world), and take control over many of that
character’s actions. During the game, the player
acquires experience points, which are useful to gain
new skills for his character. We asked users to model
the system of rules specifying how and when a
character might acquire new skills.
� T3: Research Labs: In the third scenario we asked users

to model access control policies for a content manage-
ment system in the context of a research laboratory,
in which researcher, students, and employees are
enabled to different levels of access to documents
and portions of documents, stored in the CMS. In
particular, any person is affiliated to a research
group and any research group obey to different
constraints in order to access a given document, or
any of its sections.

The tasks had increasing difficulty. The subjects per-
formed each task using both the tools according to their
preferences. Once the tasks were accomplished the
subjects were asked to fill in a post-experiment
survey questionnaire (see Table 4) composed of eight
questions in order to assess the overall quality of the
provided material, the perceived usefulness of the
experimented tools, and the clearness of the tasks. As
shown in Table 4, the survey requires both closed and
open questions.

At the end of the experiments the supervisor collected
the post-experiment survey questionnaires and the
defined policies, which were successively analyzed to
get the answers provided by the subjects and to assess the
overall quality of the policies. The supervisor also
collected information regarding the performed tasks.
Indeed, the time and the number of mistakes to
accomplish the tasks.

Each subject was provided with the following material:

� Handouts of the introductory presentation.
� Printout of the tasks.
� Post experiment survey questionnaire.
� Some white sheets and a pencil.

The recruited subjects were volunteers with different
backgrounds (see Table 3) and professional experiences.
However, the majority of them did not master the XACML
language.

7.3. Results

The experiment aimed at recording the time needed to
carry on the XGrid model, and on the VPE Model (see
Table 5 for details).

Users were divided in two groups (Group A and Group
B). In group A any user has a good computer science skill,
in group B, instead, we have users with a base level of
computer science skill. For each group we have the
following mean results (Table 6).

From the analysis of the time users spent on the test,
and the answers they provided in the questionnaire, we
found that the two systems have some common issues,
but Visual Policy Editor is considered easier to under-
stand, more complete, and easier to use.

ARTICLE IN PRESS

Table 4
Questions of the comparative evaluation.

Category Id Question

General evaluation Q.1.1 Is finding subject, resources and actions simple

Special judgment Q.2.1 The user interface is pleasant

Q.2.2 The tool is simple to use

Q.2.3 The tool proposes specific error messages

Tool learning Q.3.1 Learning to use the tool is simple

Q.3.2 Do you have any problems using the Expandable Grid

Q.3.3 Do you find the Expandable Grid appropriate for similar problems

Q.3.4 Do you have any problems using the Visual Policy Editor

Q.3.5 Do you have any problems defining role and role hierarchy using the Visual Policy Editor

Q.3.6 Do you have any problems defining permissions using the Visual Policy Editor

Q.3.7 Do you find the Visual Policy Editor appropriate for similar problems

Q.3.8 Which tools did you find easier

Q.3.9 Which tool is more suitable for an applicative domain similar to the ones proposed

Table 5
Minutes needed by each subject to complete the experiments.

Id Minutes needed

with XGrid

Minutes needed

with VPE

S1 29 20

S2 36 29

S3 29 22

S4 20 34

S5 36 21

S6 25 33

Table 6
Average time in minutes.

Group XGrid VPE

A E31 E23

B E27 E29

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6460

Author's personal copy

In particular, the XGrid tool is considered by the users
a conceptually easy to learn tool. It provides a uniform
representation of access control policies, but the graphical
representation of the grid does not fit well any application
domain. The XGrid tool supports Hierarchical Relation-
ships and Permission Inheritance, but it seems difficult to
use when constraints needs to be modelled. Furthermore,
it lacks flexibilities when policies needs to be rewritten or
modified.

The VPE, as the XGrid tool, has been considered easy to
learn and understand, and it supports Hierarchical
Relationships and Permission Inheritance too. In addition,
it looks more flexible and easier to use when policies need
to be modified or rewritten, and it offers a better support
to constraint definitions. Perhaps, it looks easier for
computer aware users, probably due to the similarity
between the visual languages adopted by the tool and
many other visual languages used in other fields of
computer science (see Table 7 for details).

In conclusion, the XGrid system provides a visualiza-
tion metaphor enabling the user to have a complete view
of the access control policies. It is simple and immediate,
but sometimes the grid modelling is a complex task for
some application domains, especially when several kinds
of restrictions are required.

Visual Policy Editor, instead, suits better to various
application domains and, as written so far, it resulted
more flexible. On the other hand, its metaphor relies on
four visual languages, and it does not support a whole
look to policies.

7.4. Threats to validity

The threats to validity that could affect the study (i.e.
internal, construct, external, and conclusions validity
threats) are described in this section. Generally, the
internal validity is only relevant in studies that try to
establish a causal relationship. Thus, the internal validity
threats are relevant for our study as we aimed at
comparing our approach with XGrids. The internal validity
is mitigated by the experiment design, since each subject
worked on three different tasks and with two approaches.
Furthermore, the results of the survey questionnaire
revealed that the subjects found clear everything regard-

ing the experimentation. Finally, the subjects knew
neither the goals of the experiment nor its hypothesis.

The construct validity threats (i.e. the interactions
between different treatments) were mitigated by a proper
design of the experiment. In fact, depending on the
experimented approach, the measurement of the depen-
dent variable was performed by considering the times
gathered by the supervisor. The results could also be
affected by the method used to identify defects within the
policy modelled by the subjects. Regarding the survey
questionnaire, it was designed by using standard ways
and scales.

External validity refers to the approximate truth
of conclusions involving generalizations. This kind of
threat is always present when students (Ph.D. students in
Computer Science in our case) are used as subjects.
However, they had a very good analysis, development,
and programming experience. Due to their expertise,
academic subjects are not far from professional program-
mers. We also used professionals as subjects to better
investigate the benefits of using our approach to define
access policies. To further confirm or contradict the
achieved results, it will be worth replicating the experi-
ment within different professional development environ-
ments. Let us also note that none of the recruited subjects
abandoned the experiments.

It is also worth mentioning that not all threats to
validity have been properly addressed, due to the nature
of the investigation. For example, conclusion validity
threats (i.e., the possibility to derive legitimate conclu-
sions from observations) cannot be applied to our study
since statistical tests are not used to reject experimental
null hypotheses.

8. Related works

In the last two decades researchers have proposed
several approaches for the definition and management of
access and security policies, based on different metaphors
[8,20–27]. Some of them adopt visual based metaphors to
define and manage access and security policies. In
particular, visual environments have been defined based
on access matrices [20,21], annotated constraint graphs
[28], task based authorization controls [22], multilayered
security management [23], and roles [24,27].

Heydon et al. proposed the Mir �o system [20], relying
on the access matrix model to specify authorization
policies. Two visual languages underlying this system
are proposed: an instance language through which users
could specify the access matrix and a constraint language
through which they could specify possible restrictions of
the underlying system on which access permissions
should be enforced. These languages are based on
hierarchical graphs, hence they are too technical for
non-expert users. Moreover, it is difficult to adapt Mir �o
for modelling authorizations at high level, as required in
most modern application domains, since it is mainly
designed for file-system security. Based on the same
underlying model, Hutchison and Saul presented a high-
level security policy specification environment [21]. By

ARTICLE IN PRESS

Table 7
Answers for the open questions of the questionnaire.

Question 1 (strongly

agree)

2

(agree)

3

(neutral)

4

(disagree)

5 (strongly

disagree)

Q.1.1 4 1 1 0 0

Q.2.1 0 1 1 0 4

Q.2.2 4 0 0 0 2

Q.2.3 3 0 0 0 0

Q.3.1 2 2 1 0 2

Q.3.2 1 1 2 0 2

Q.3.3 1 1 3 0 1

Q.3.4 0 1 1 2 2

Q.3.5 0 0 0 2 4

Q.3.6 0 0 1 2 3

Q.3.7 0 0 1 2 3

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 61

Author's personal copy

means of a graphical interface the user receives a Message
Sequence Chart (MSC) to design security protocols, which
are evaluated in terms of performances using meta-
execution facilities. The drawback of this system is its
strong coupling with the underlying security model. On
the other hand, MSCs appear friendlier than graph-based
visual languages.

The Language for Security Constraints on Objects
(LaSCO) uses an annotated constraint graph to visually
specify authorization policies [28]. This language is event-
driven and uses first order logic expressions to specify
object constraints. An interesting characteristic of this
language is the possibility of addressing system dynamics,
giving the possibility to specify access policies in terms of
system execution. This makes it suitable for a broader
class of application domains. However, LaSCO lacks a
metaphor-based paradigm to facilitate its use to non-
technical people. Another policy language based on logic
is the Authorization Specification Language (ASL) [25]. It
introduces groups and roles in the access control model,
providing rules to express policies beyond a single access
control policy. Authorizations are expressed by using a
Prolog like language. However, this language is not
standard and it requires the user have specific mathema-
tical background. More recently, Nicodemos et al. have
defined Ponder [26], a declarative language to specify
security and management policies for distributed sys-
tems. This language specifies different types of policies,
grouping them into roles and relationships, and defining
configurations of roles and relationships as management
structures. Ponder is intended to be extensible and it is
also platform-independent. This language shares some
characteristics with the largely adopted OCL (Object
Constraint Language). Being based on OCL, particular
efforts are needed to implement policies, hence making
Ponder difficult to employ for naive users.

Regarding the task based authorization controls (TBAC)
security model [4], the visual language hierarchy (VTBAC)
and the Visual Security Administrator (VISA) system
implementing it have been defined to simplify the
specification and administration of security policies based
on TBAC [22]. VTBAC hierarchically combines two visual
languages to support security management for non-
technical users. The top-tier language is based on the
dataflow diagram, which can be customized with meta-
phors of the specific domain. To specify authorizations
and dependencies the second-tier language is used. The
VISA system uses a proprietary representation of visual
sentences so that it cannot import visual sentences
created with other graphical editors. Moreover, access
policies cannot be expressed in terms of roles but only in
terms of tasks accomplishable by a specific user. Finally,
the system does not use a standard policy implementation
language like XACML, although it can be adapted to this
end thanks to its underlying visual language compiler
technology.

A framework for managing security at two distinct
layers, separating the policy specification from its im-
plementation is proposed in [23]. The upper layer,
specifically conceived for expert users, should con-
tain information on specifying and processing security

requirements based on informal statements. On the other
hand, the lower layer is a refinement of the upper layer,
and contained technical details of security policies. It is
worth noting that the approach provides abstract policy
specification without mentioning visual assistance me-
chanisms.

Concerning role-based oriented systems, Wang pre-
sents the process support (Chips) system [24], which also
integrates visual facilities to specify security policies. The
visual environment is used to define permissions across
shared workspaces within a hypermedia environment.
The workspaces appear on the interface as labelled boxes,
which users can edit and navigate through palettes.
However, although the system is suitable for non-expert
users, it is not customizable for other application
domains.

Anderson specifies a profile for the use of the XACML
language to meet the requirements of the RBAC model [7].
This specification begins with an explanation of the
building blocks from which the RBAC solution is con-
structed. Then, the specification discusses how these
blocks may be used to implement the various elements
of the RBAC model. Finally, the normative section of the
specification describes compliant uses of the building
blocks in implementing an RBAC solution. To model
authorization policies based on RBAC an approach based
on UML/OCL is proposed in [27]. Similarly to our
approach, the authors propose a visual environment,
namely USE system (UML Specification Environment), to
model access policies. The policy generation is based on
the Model Driven Development (MDD) process and it
consists of three steps: build the Platform Independent
Model (i.e., a model with a high level of abstraction), turn
the Platform Independent Model into the Platform
Specific Models, and generate access policies from the
Platform Specific Models. Unlike this approach, we do not
use OCL, hence making the approach more suitable for
unexperienced users. In fact, as shown in [29], the use of
OCL combined with UML generally offers relevant benefits
only after a considerable learning effort.

Koch et al. formalize RBAC by using a graphical
specification technique based on a generalization of
classical string grammars to nonlinear structures [30].
Access policies are defined and managed by using graph
transformation tools. Differently from our approach,
policies are not compliant with the XACML standard. An
approach based on an extension of RBAC to build secure
systems is presented in [31]. In particular, authors define
the Model Driven Security (MDS) to specify system
models along with their security requirements. The MDS
model is implemented in a suite of tools and then
integrated in a CASE-tool to automatically generate
system architectures, including complete, configured
access control infrastructures. To formalize access control
requirements, a schema combining different UML model-
ling languages with a security modelling language is also
proposed. These models are used to automatically gen-
erate access control infrastructures for server-based
applications, built from declarative and programmatic
access control mechanisms. Experiments to validate the
approach are also presented and discussed. Unlike our

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6462

Author's personal copy

approach, the access policies generated by the tool cannot
interoperate with different systems and frameworks.
Furthermore, authors do not provide any usability study
to assess the effectiveness of the proposed UML-based
CASE-tool.

Concerning the management of access and security
policies based on XACML, Lorch et al. proposed the
Globus Toolkit middleware [32]. This middleware inte-
grates a policy management system and a policy enforce-
ment point. This tool also enables the specification
and modification of resource policies by administrative
parties through a graphical user interface, and the
secure association and transport of policies to the policy
decision components. However, visual assistance me-
chanisms are not supported to define and manage access
policies.

Regarding the generation of XML based policies, a
commercial solution by IBM has also been proposed. In
particular, IBM has marketed a policy management
workbench, namely the SPARCLE (Server Privacy ARrch-
itecture and CapabiLity Enablement) system [33]. This
system was born as a research prototype to allow policy
experts to define or import privacy policy rules in natural
language. The tool automatically parses the text to extract
the elements of the rules, and enables the expert to
review and modify the rules. Then the tool transforms the
rules into XML code, hence enabling any enforcement
engine to handle access rules.

9. Discussion

Several studies in the literature describe policy
management systems and policy enforcement points.
These are often integrated into toolkits enabling a security
administrator to specify and modify resource policies by
using graphical user interfaces. In this paper we have
presented several visual languages to support network,
system, and platform administrators in the management
of resources based on access policies. We have also
described a system prototype based upon these lan-
guages, also addressing the efforts to support adminis-
trators during the design of RBAC policies, and the
implementation of XACML policies.

We are currently implementing other policy genera-
tors to translate RBAC policies in other standardized
policy languages. Thus, by only learning the visual
languages, administrators will be able to manage resource
access in several standard policy languages. In the future
we aim to improve security in the delivery of policies by
using emerging standards, in order to allow the secure
communication among system components. For instance,
to convey the policies from the Visual Policy Editor to the
Policy Repository, and to enable the secure communica-
tion between PDP and PEP, we are investigating the use of
the SAML (Security Assertion Markup Language) standard
[34]. We also plan to extend the system network
infrastructure to configure and manage both Web based
applications and distributed heterogeneous applications,
such as ambient intelligence applications, Process Support
Systems (PSS), and WorkFlow management systems.

Finally, we are currently investigating the possibility of
embedding our approach within a J2EE application server
in order to facilitate the development of the access control
modules in enterprise java based applications. In this way
we aim to let programmers focus more on the develop-
ment of the business logic of an application by relieving
him/her from the burden of developing access control
modules.

Acknowledgments

We would like to thank Dr. Michele Di Capua and Dr.
Sebastiano Manganiello from Unlimited Software s.r.l.
who helped us in developing the multimedia CMS and in
testing our policy management system and approach
on it.

This research has been supported by ‘‘Centro Regionale
di Competenza - ICT’’ of Regione Campania, Italy.

References

[1] N.N.C.S. Center, A guide to understanding discretionary access
control in trusted systems, Technical Report, United States of
America National Security Agency, 1987. URL /http://www.
radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-003.htmlS.

[2] D. Bell, L. LaPadula, Secure computer system unified exposition and
multics interpretation, Technical Report MTR-2997, MITRE Corp.,
Bedford, MA, July 1975.

[3] B. Lampson, Protection, ACM Operating Systems Review 8 (1)
(1974) 18–24.

[4] R. Thomas, R. Sandhu, Task-based authorization: a paradigm for
flexible and tailorable access control in distributed applications.
URL /citeseer.ist.psu.edu/article/thomas93taskbased.htmlS.

[5] D.F. Ferraiolo, J.F. Barkley, D.R. Kuhn, A role-based access control
model and reference implementation within a corporate intranet,
ACM Transactions on Information and System Security 2 (1) (1999)
34–64 URL /citeseer.ist.psu.edu/ferraiolo99role.htmlS.

[6] D.F. Ferraiolo, R.S. Sandhu, S.I. Gavrila, D.R. Kuhn, R. Chandramouli,
Proposed NIST standard for role-based access control, Information
and System Security 4 (3) (2001) 224–274 URL /citeseer.ist.psu.
edu/ferraiolo01proposed.htmlS.

[7] A. Anderson, Xacml profile for role based access control (RBAC),
2004. URL /http://docs.oasis-open.org/xacml/cd-xacml-rbac-pro
file-01.pdfS.

[8] O.O. for the Advancement of Structured Information, extensible
access control markup language (XACML) version 1.1, 2003. URL
/http://www.oasis-open.org/committees/download.php/2406/oa
sis-xacml-1.0.pdfS.

[9] M. Burnett, Visual language research bibliography, 2003. URL
/http://www.cs.orst.edu/� burnett/vpl.htmlS.

[10] F. Ferrucci, G. Tortora, G. Vitiello, Visual programming. In:
Encyclopaedia of Software Engineering, Wiley, New York, 2002.

[11] G. Costagliola, G. Polese, Extended positional grammars, in: VL ’00:
Proceedings of the 2000 IEEE International Symposium on Visual
Languages (VL’00), IEEE Computer Society, Washington, DC, USA,
2000, p. 103.

[12] O.O.M. GROUP, Omg unified modeling language specification, 2003.
URL /http://www.omg.org/docs/formal/03-03-01.pdfS.

[13] S.S.V. Graphics, Full 1.2 specification w3c working draft, 2005. URL
/http://www.w3.org/TR/SVG12/S.

[14] Apple, Darwin streaming server, 2005. URL /http://developer.
apple.com/darwin/projects/streaming/S.

[15] J. Nielsen, Usability Engineering, Academic Press, New York, USA,
1993.

[16] A.N. Oppenheim, Questionnaire Design, Interviewing, and Attitude
Measurement, new ed., Martin’s Press, London, 1992.

[17] A.F. Blackwell, Metacognitive theories of visual programming:
What do we think we are doing?, in: VL ’96: Proceedings of the
1996 IEEE Symposium on Visual Languages, IEEE Computer Society,
Washington, DC, USA, 1996, pp. 240–246.

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–64 63

Author's personal copy

[18] A.F. Blackwell, T.R.G. Green, Does metaphor increase visual
language usability? in: Visual Languages, 1999, pp. 246–253. URL
/citeseer.ist.psu.edu/blackwell99does.htmlS.

[19] R.W. Reeder, L. Bauer, L.F. Cranor, M.K. Reiter, K. Bacon, K. How, H.
Strong, Expandable grids for visualizing and authoring computer
security policies, in: M. Czerwinski, A.M. Lund, D.S. Tan (Eds.), CHI,
ACM, New York, 2008, pp. 1473–1482 URL /http://dblp.uni-trier.
de/db/conf/chi/chi2008.html#ReederBCRBHS08S.

[20] A. Heydon, M. Maimone, J. Tygar, J. Wing, A. Zaremski, Miro: Visual
specification of security, IEEE Transactions on Software Engineering
16 (10) (1990) 1185–1197 URL /http://doi.ieeecomputersociety.
org/10.1109/32.60298S.

[21] E. Saul, A. Hutchison, Team-and-role-based organizational context
and access control for cooperative hypermedia environments, in:
Proceedings of Annual South African Telecommunication, Net-
works, and Applications Configuration, 1999, pp. 171–177.

[22] S.K. Chang, G. Polese, M. Cibelli, R. Thomas, Visual authorization
modeling in e-commerce applications, IEEE MultiMedia 10 (1)
(2003) 44–54 URL /http://doi.ieeecomputersociety.org/10.1109/
MMUL.2003.1167921S.

[23] J. Leiwo, Y. Zheng, A framework for the management of information
security, in: ISW ’97: Proceedings of the First International
Workshop on Information Security, Springer, London, UK, 1998,
pp. 232–245.

[24] W. Wang, Team-and-role-based organizational context and access
control for cooperative hypermedia environments, in: HYPERTEXT
’99: Proceedings of the Tenth ACM Conference on Hypertext and
Hypermedia: Returning to our Diverse Roots, ACM Press, New York,
NY, USA, 1999, pp. 37–46 URL /http://doi.acm.org/10.1145/
294469.294480S.

[25] S. Jajodia, P. Samarati, V.S. Subrahmanian, A logical language for
expressing authorizations, sp 00, 1997, p. 0031. URL /http://doi.
ieeecomputersociety.org/10.1109/SECPRI.1997.601312S.

[26] N. Damianou, N. Dulay, E. Lupu, M. Sloman, Ponder: a language for
specifying security and management policies for distributed

systems, 2000. URL /http://www-dse.doc.ic.ac.uk/policies/ponder.
htmlS.

[27] K. Sohr, G.-J. Ahn, L. Migge, Articulating and enforcing authorisation
policies with UML and OCL, SIGSOFT Software Engineering Notes
30 (4) (2005) 1–7 /doi:http://doi.acm.org/10.1145/1082983.
1083215S.

[28] K.N.L. James A. Hoagland, Raju Pandey, Security policy specification
using a graphical approach., Technical Report, Department of
Computer Science, University of California, 1998. URL /http://
www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-003.htmlS.

[29] L.C. Briand, Y. Labiche, H.-D. Yan, M.D. Pent, A controlled
experiment on the impact of the object constraint language in
uml-based development, in: ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 380–389.

[30] M. Koch, L.V. Mancini, F. Parisi-Presicce, A graph-based formalism
for RBAC, ACM Transactions on Information and System Security 5
(3) (2002) 332–365 doi: /http://doi.acm.org/10.1145/545186.
545191S.

[31] D. Basin, J. Doser, T. Lodderstedt, Model driven security: from uml
models to access control infrastructures, ACM Transactions on
Software Engineering and Methodology 15 (1) (2006) 39–91 doi:
/http://doi.acm.org/10.1145/1125808.1125810S.

[32] M. Lorch, D. Kafura, S. Shah, An XACML-based policy management
and authorization service for globus resources, in: GRID ’03:
Proceedings of the Fourth International Workshop on Grid
Computing, IEEE Computer Society, Washington, DC, USA, 2003,
pp. 208–210.

[33] IBM, Sparcle (server privacy architecture and capability enable-
ment). URL /http://www.zurich.ibm.com/pri/projects/sparcle.
htmlS.

[34] O.O. for the Advancement of Structured Information, Security
assertion markup language, specification set v2.0, oasis security
services tc, 2005. URL /http://docs.oasis-open.org/security/saml/
v2.0/saml-2.0-os-xsd.zipS.

ARTICLE IN PRESS

M. Giordano et al. / Journal of Visual Languages and Computing 21 (2010) 41–6464

