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Abstract. This paper is devoted to analysing the problem of the diagonalization of cubic matrices.
We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite
the complex roots of the associated resolvent secular equation in terms of transcendental functions
and we derive the diagonalizing matrix.

Many important problems in applied mathematics, physics and engineering frequently deal
with the question of carrying out a similarity transformation to reduce a matrix to a diagonal
form. This represents a powerful mathematical tool whenever the formulation in terms of scalar
equations no longer suffices for the description of anisotropic problems and vector equations
appear. When the relationship is linear, although anisotropic, it can be expressed in terms of a
tensor. Choosing a coordinate system (i.e. an appropriate basis), the tensor can be written as a
matrix. One usually assumes that these complex matrices are diagonalizable. However, finite-
dimensional complex matrices M cannot always be diagonalized, but can only be brought into
a Jordan canonical form E by means of a similarity transformation M = KEK−1. In general
the matrix K is not unique; also EE′ leaves M invariant, with E, E′ nonsingular commuting
matrices. When the n-dimensional matrix M is not symmetric, E has in general n2 different
complex matrix elements. When M is a Hermitian matrix, it can be viewed as an element
of the Lie algebra U(3) and decomposed in terms of the (Gell-Mann matrices) generators of
U(3). As a consequence of some group theoretical considerations, the parameter space is (a
subspace of) the projective manifold SU(3)/SU(2) = CP 2. In this paper we examine the
case when a matrix

M =
(
m11 m12 m13

m21 m22 m23

m31 m32 m33

)
(1)

can be transformed into a diagonal matrix D = V MV † by means of only one diagonalizing
matrix V . The rotating matrix V † consists of the column eigenvectors vt = (v1, v2, v3),
satisfying

M |vα〉 = µα|vα〉. (2)

The eigenvalues µα are solutions of a linear and homogeneous system of the following
equations:

mij − µδij = 0 i, j = 1, 2, 3 (3)

which have a nontrivial solution if

det(M − µI) = 0. (4)
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The only difficulty consists in attaching the eigenvalue to the right state. This is performed by
comparing the solutions of the cubic secular equation with the predicted effective eigenstate
of each particle. Once we have identified to which eigenvalue corresponds each state, we can
proceed without any further concern about the chosen ordering. The secular equation yields
the following cubic equation in µ:

µ3 + bµ2 + cµ + d = 0 (5)

whose invariant coefficients are respectively given by

−b = tr M =
∑
α

µα

c = 1
2 [(tr M)2 − tr(M 2)] =

∑
α,β

α �=β

µαµβ

−d = det M =
∏
α

µα.

(6)

Of course, the three roots of equation (5) are justµα , α = 1, 2, 3. The characteristic polynomial
is of order three which makes the direct solution of this eigenvalue problem quite complicated.
Substituting one root at a time, we can find the three eigenvectors. There are several methods to
determine the roots of a cubic equation. A method to solve many particular cubic equations was
first published by Gerolamo Cardano in 1545 [1], though it now seems to have been disclosed
to Cardano by Niccolò Fontana, best known as Tartaglia (The Stammerer), who, in turn, was
aware of the solution in the context of the mathematical scholars at the University of Bologna.
This solution is probably due to Scipione del Ferro, thirty years earlier, and later improved
by his team-workers Annibale Della Nave and mainly Antonio Maria Fiore. However, the
solution was never published until Cardano [2], who was permitted to be acquainted with it,
did so after nagging insistence, and only under the solemn oath ‘ad Sacra Dei Evangelia’; he
should never have published their formula. But we often learn of the real value of the promises
of career academicians. In the Cardano method, the cubic equation (5) is first transformed
in a reduced form in which the quadratic term no longer appears, by means of the following
substitution:

µ =
(
z− b

3

)
. (7)

This transformation leads to a reduced equation of the form

z3 + qz + r = 0 (8)

where

q = 3u = − 1
3 (b

2 − 3c) (9)

r = 2v = 1
27 (2b

3 − 9bc + 27d). (10)

In the Cardano method, the substitution

z = x + y (11)

is then made, which further transforms the reduced cubic equation to

x3 + y3 + 3(x + y)(xy + u) + 2v = 0 (12)

which will clearly be satisfied if x and y satisfy the relations

x3 + y3 + 2v = 0 (13)

xy + u = 0. (14)
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Solving for y gives y = −u/x; substituting this into equation (13) leads to a single sixth-degree
equation for x having the form

x6 + 2vx3 − u3 = 0. (15)

This equation is simply a quadratic in x3, which is easily solved to yield

x3 = −v +
√
v2 + u3 (16)

y3 = −u3

x3
= −v −

√
v2 + u3. (17)

In these expressions, the positive sign of the radical has been chosen. It can be shown that it
yields all the roots of the cubic and no loss of generality occurs if the negative sign is rejected.
The quantities x and y are the cube roots of the expressions

x0 =
[
−v +

√
v2 + u3

] 1
3

(18)

y0 =
[
−v −

√
v2 + u3

] 1
3

(19)

x+ = e+ 2π
3 ix0 = − 1

2 (1 − i
√

3)x0 (20)

y+ = e− 2π
3 ix0 = − 1

2 (1 + i
√

3)y0 (21)

x− = e− 2π
3 ix0 = − 1

2 (1 + i
√

3)x0 (22)

y− = e+ 2π
3 ix0 = − 1

2 (1 − i
√

3)y0 (23)

and they lead to the following roots:

z0 = x0 + y0 =
[
−v +

√
v2 + u3

] 1
3

+
[
−v −

√
v2 + u3

] 1
3

(24)

z+ = x+ + y+ = −1

2
(x0 + y0) +

√
3

2
i(x0 − y0) (25)

z− = x− + y− = −1

2
(x0 + y0)−

√
3

2
i(x0 − y0). (26)

These Cardano formulae give the exact roots involving only rational algebra operations [3].
Unfortunately, they present some difficulties due to the presence of the terms containing the
cube root of a quadratic expression. Therefore, they are not easy to use as a basis for further
applications. For example, it is hard to expand them in series, to manipulate them algebraically
or to use them for any purpose other than computing numerical values for the roots. As a result,
the general treatment of such problems is usually neglected and one proceeds further only by
numerical calculations using appropriately chosen numbers as coefficients. Frequently, we
consider the case u < 0 and v2 + u3 < 0 so that there are three real roots and we can write

z0 = −2
√

|u| cos

(
θ

3

)
(27)

z± =
√

|u|
[

cos

(
θ

3

)
±

√
3 sin

(
θ

3

)]
with cos θ = −

(
v

u
√|u|

)
. (28)

These expressions induce us to look for a similar form for the general complex roots of the
cubic equation, by means of hyperbolic and their inverse functions, in view of the relationships
that exist between the trigonometric and hyperbolic functions. They can be based upon the
following simple relation:

−v ±
√
v2 + u3 = u

√
|u| exp{±F(−β)} (29)
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where

F(β) =




cosh−1 β = ln
(
β +

√
β2 − 1

)
if |β| � 1 and u < 0

cos−1 β = −i ln
(
β ±

√
β2 − 1

)
if |β| < 1 and u < 0

sinh−1 β = ln
(
β +

√
β2 + 1

)
for all β and u > 0

(30)

with β(u, v) = v/|u|√|u|. The application of these trivial relations may engender the relevant
eigenvalues µα = (zα − b/3) in a more usable form, which can be extracted by one element
of the following set:

z0 = −2
√

|u| sinh
(ω

3

)
(31)

z+ =
√

|u|
[
sinh

(ω
3

)
+ i

√
3 cosh

(ω
3

)]
(32)

z− =
√

|u|
[
sinh

(ω
3

)
− i

√
3 cosh

(ω
3

)]
(33)

where

sinhω ≡ v

|u|√|u| . (34)

These solutions have many significant advantages over those given directly by Cardano’s
formulae. They are more compact and in a sense also much simpler. In fact, they can be
manipulated to give closed-form results which would otherwise be practically unobtainable.
In addition, they are easily expanded in series using the usual rules for their summation.
Finally the hyperbolic/trigonometric forms are better suited for numerical calculations with
computers than the usual Cardano expressions. A few sequential keystrokes are all that one
needs, for example, to find the roots using a pocket calculator having built-in hyperbolic and
trigonometric functions.

From these results, we can derive the transformation matrix V . To this end, we can
conveniently rewrite the column eigenvectors (aI , bI , cI )T corresponding to each eigenvalue
µI , I = ±, 0, in accordance with the following expressions:

aI = (µI −m22)m13 −m12m23

bI = −[(µI −m11)m23 + m21m13]

cI = (µI −m11)(µI −m22) + m12m21

(35)

where I labels the subscripts ±, 0, to assign to the eigenstate indices 1, 2, 3. The last step
of the problem consists in the identification of each µα to one of the µI . Starting from the
elements of M , we can reconstruct the generator A of V = eA by means of the relation
eA = DV M−1, where M−1 can be expressed in terms of the components of the eigenvectors
of M in the following form:

M−1 = 1

det M

(
b−c0 − b0c− a0c− − a−c0 a−b0 − a0b−
b0c+ − b+c0 a+c0 − a0c+ a0b+ − a+b0

b+c− − b−c+ a−c+ − a+c− a+b− − a−b+

)
. (36)

In particular, assuming that V is unitary (A† = −A) and using the Cayley–Hamilton
decomposition, we can write

V = eA = I +

(
sin X

X

)
A +

1

2

[
sin(X/2)

X/2

]2

A2 (37)

in terms of the elements of the matrix A. If A is real, it must be of the form

A =
( 0 χ1 χ3

−χ1 0 −χ2

−χ3 χ2 0

)
(38)
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and, consequently, V will be given by

V =




1 − X 2−χ2
2

2 χ1 + 1
2χ2χ3 χ3 − 1

2χ1χ2

−χ1 + 1
2χ2χ3 1 − X 2−χ2

3
2 −χ2 − 1

2χ1χ3

−χ3 − 1
2χ1χ2 χ2 − 1

2χ1χ3 1 − X 2−χ2
1

2


 (39)

with X =
√
χ2

1 + χ2
2 + χ2

3 .
Let us end by remarking that this diagonalizing approach may be considered as a suitable

tool for finding the solution of many different fundamental physical problems which involve
three-dimensional Hilbert spaces. Recently, there has been a renewed interest in the study of
quantum three-level systems and adiabatic geometric phases [4]. The occurrence of the (non-
Abelian) geometric phases can be described by solving the difficulties involving the solution
of the eigenvalue problem for the ensuing Hamiltonian. When the Hamiltonian is a Hermitian
matrix, it can be viewed as an element of the Lie algebra U(3). In general, our approach
could provide a basic tool to fully analyse the problem. A further application is represented by
the form of quark and neutrino mass matrices and eventually different degeneracy structures,
which correspond to distinct ranges of the relevant mixing parameters [5]. Although there are
already hundreds of publications on mass matrices, this strategy has not been worked out in
detail, simply due to a lack of suitable formulae of the type we introduce in this paper.

In conclusion, in this paper we address the question of the diagonalization of a cubic
matrix with the introduction of transcendental functions and their inverse. Then, we derive
the diagonalizing matrix, which could be useful in many physical problems which involve
three-dimensional Hilbert spaces.
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