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Abstract 

An increasing number of web resources continue to be extensively used by healthcare operators to obtain more accurate 
diagnostic results. In particular, health care is reaping the benefits of technological advances in genomic for facing the demand of 
genetic tests that allow a better comprehension of diagnostic results. Within this context, Gene Ontology (GO) is a popular and 
effective mean for extracting knowledge from a list of genes and evaluating their semantic similarity. This paper investigates 
about the potential and any limits of GO ontology as support for capturing information about a set of genes which are supposed 
to play a significant role in a pathological condition. In particular, we present a case study that exploits some biomedical web 
resources for devising several groups of functionally coherent genes and experiments about the evaluation of their semantic 
similarity over GO. Due to the GO structure and content, results reveal limitations that not affect the evaluation of the semantic 
similarity when genes exhibit simple correlations but influence the estimation of the relatedness of genes belonging to complex 
organizations. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Conference Program Chairs. 
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1. Introduction 

In recent years, the advent of high-throughput technologies (such as next generation sequencing) and the 
consequent production of lists of genes associated with specific conditions is stressing the need of recognizing 
groups of functionally coherent genes in order to construct networks of genes with high pair-wise similarity1 and 
characterize these networks with a particular transcriptional behavior2. Given difficulties in establishing these 
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relationships from comparative experiments on the sequence or structure between genes2, biomedical researchers 
started to explore new promising ways to compare genes on functional level, including the development of methods 
for the exploitation of knowledge from ontologies that provide effective descriptions of biomedical events, avoid the 
short-comings of natural language descriptions (namely ambiguity, subjectivity and lack of structure) and 
consequently enable automated annotation and automated reasoning over annotations3. One of the main 
contributions in molecular biology has been Gene Ontology (GO) 4, which is dedicated to the functional annotation 
of gene products in a cellular context5.  

In this paper we explore the potential and any limits of GO ontology in supporting geneticists for capturing 
additional knowledge about a set of genes which are supposed to play a significant role in a pathological condition. 
In particular, we try to give suggestions about the extent to which GO ontology can be trusted for detecting the 
similarity within a group of functionally coherent genes. Our exploration relies on two web resources made freely 
and easily available by the large multidisciplinary community of biomedical researchers: the HUGO Gene 
Nomenclature Committee6 and Reactome7. These resources, namely organizations from now on, provide access to a 
rich catalogues of biomedical and genomic data including information about functional groups of genes i.e. genes 
acting through the production of specific products and gene-co-function networks. So, we are trusted that GO should 
also offer a good support in detecting the functional coherence between genes attributed to the same group by the 
above organizations. For testing our idea, we carried on experiments on the relatedness of gene groups using two 
classical and popular similarity measures. Results reveal that GO is effective in detecting functional groups of genes, 
but the hierarchical structure of its catalogue limits the discovery of complex relationships. 

The paper is organized as follows. Section 2 describes the web resources and analyses the semantic similarity 
measures we considered. Next, in the section 3, we present the datasets used in estimating the semantic similarity, 
the organization our experiments and we also analyze and discuss the results. The section 4 introduces the related 
work. Finally, section 5 presents our conclusions and the lines of our future research work.  

2. Evaluation of the semantic similarity on GO ontology 

This section briefly summarizes the basics about the GO structure and the evaluation of the semantic similarity. 
GO ontology is the result of a collaborative project to provide a controlled vocabularies of terms  that describe 
specific aspects of a gene product’s biology. The structure of GO can be described in terms of a graph where each 
GO term is a node and the relationships between the terms are edges between the nodes. The GO structure is loosely 
hierarchical as the relationships between different GO terms can be either is-a (parent-child) or part-of (part-whole) 
relationships, the leaves being the most specific terms.  Fig.1 (left) shows an example of the GO structure.  Each 
node is a term and has a unique identifier. Continue arrows indicate “is-a” relationships and dashed arrows denote  
“part-of” relationships between the terms. In GO there are three types of gene ontologies each describing a particular 
biological aspect of genes. Specifically, Cellular Component (CC) ontology represents the structural organization of 
genes, Molecular Function (MF) ontology depicts the specific activities that the gene entails and Biological 
Processes (BP) ontology describes the series of events that are influenced by the gene. These ontologies are disjoint 
meaning that no “is-a” relationship operate between terms from different ontologies. 

The graph of GO serves as a platform for annotating a term with genes involved in the event that that term 
describes. Fig.1 (right) shows a toy example of such annotation where the letters in the rectangles indicate the GO 
terms and the letters in the oval shapes indicate genes directly annotated to GO terms. In Fig. 2 the gene “g7” 
annotated to the term “GO: 005”  and the gene “g8” labeled with the term “GO: 001” are considered as correlated 
because both are annotated to terms which are semantically alike.  

In particular, GO has drawn more and more attention from the bioinformatics researchers as a support for 
assessing the similarity between two genes by measuring the distance between their respective GO terms. A lot of 
research work has focused on defining semantic similarity measures tailored to the characteristics of GO8,9,10 that can 
be broadly classified into the following categories11: 

- Information Content (IC) measures - These are the earlier developed methods that evaluate the semantic 
similarity between two genes by considering the frequencies of their annotations within GO terms and their lower  
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Fig. 1  On the left, an example of GO graph showing a small set of terms from the ontology; on the right, a toy example of GO annotations. 

 
common ancestor (LCA) in the GO graph.  For example, in Fig.1 (right), the term GO: 005 is the LCA of the terms 
GO: 004 and GO: 00 . The IC content of a term t depends on the number of the genes annotated by t and is defined 
as follows: 

 
                                                                     IC(t) = -log ( G(t)/G(r) ) 
 
where G(t) and G(r) are the number of genes annotated to the term t and to the root term r (including all of its 

descendants) respectively. 
- Graph-based measures - These methods compute the semantic similarity using the topology of the GO graph 

structure and consider the length or the types of edges by which terms are linked. They make use of the graph 
structure that is associated with each pair of genes.  With reference to Fig.1 (right), for assessing the semantic 
similarity between the gene “g2” and the gene”g4”,  graph-based measures consider the ancestors of the term GO: 
006 (i.e. GO: 006, GO: 002, GO: 005, GO: 007 , GO: 001) and the ancestors of the term GO: 00 (i.e., GO: 010, GO: 
007, GO: 001, GO: 005). 

In evaluating the semantic similarity of two genes, a first and prominent issue is the choice of the semantic 
similarity measure to compare the terms to which gene products are annotated. The results from available methods 
differ in their scale and distribution because each method solely relies on only one or few types of relationships 
while neglecting the others. There are many cases where a method seems to fail to uncover similarity and others 
where it suggests a similarity that does not exist. Because no method is perfect, devising the most accurate approach 
for asserting the semantic similarity between two genes it remains challenging.  

A second critical aspect is that  “is-a” and “part-of” are the only relationships extensively used in GO to express 
that two concepts are alike. This limited form of representing the knowledge doesn’t account for the existence of 
complex relationships such as “has-part-in”  and “is-a-way-of-doing” , which typically correlate  a group of genes , 
for example genes belonging to the same pathway. An additional critical aspect is related to the organization of GO 
into three ontologies . Indeed, this organization reflects the notion that the three ontologies  are independent, when, 
in reality, they represent biological aspects that are strongly correlated. A final and important issue is the 
incompleteness of the GO data. Indeed, not all genes are well enough understood to accurately annotate them to the 
existing GO nodes and, within the same ontology, a single gene might be annotated at several GO terms. Continuous 
additional work is necessary because the biomedical knowledge is continuously updated and individual curators 
must agree on stating how establishing relationships between genes. 

Given the importance of evaluating the semantic similarity of a group of genes and the popularity of GO, the 
geneticists should be aware of the extent to which these issues could affect the GO assertions about the similarity of 
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two genes. With the aim of giving a contribute in this directions, we carried on experiments presented in the next 
section.  

3. Experiments 

3.1. Material and methods 

HUGO Gene Nomenclature Committee6 is a worldwide consortium that is responsible for approving unique 
symbols and names for human loci, including protein coding genes, RNA genes and pseudo-genes. This organization 
makes available several online repositories of gene families. Specifically, a family is an efficient and informative 
way to name related genes, and already this classification works well for a number of established gene families. A 
gene family index is available that is ordered alphabetically according to family names. Where applicable the family 
pages include a curated display of hierarchical relationships between families and allows users to browse easily 
through each hierarchy.  

Reactome7 is an open-source, open access, manually curated and peer-reviewed pathway database. Pathways are 
large-scale organizations of genes that perform a variety of functions and have complex interactions between them. 
Information about pathways is limited as it strongly depends on the advances in current knowledge of molecular and 
cellular biology. In Reactome, pathway annotations are authored by expert biologists, in collaboration with 
Reactome editorial staff and cross-referenced to many bioinformatics databases. 

 
Being asserted by expert curators, genes belonging to the same pathway or the same family share coherently related 
functions or participate in the same biological process. As a consequence, they are supposed to have significant 
higher similarity than expected by chance in terms of GO annotations. Our experiments aim to verify this 
expectation on genes belonging to 4 families from Hugo  and to 4 pathways from Reactome.  

 
Table 1. shows the families and the pathways we considered and how they vary in number of subfamilies (if any) 

and in the number of considered genes. The last  three columns show the coverage of each group i.e. the percentage 
of  the genes annotated in each GO sub-ontology within each single group. From now on we refer as to “group” both 
a subfamily or a pathway.  

Table 1. Selected genes within organizations and their coverage in GO sub-ontologies 

FAMILY # GENES #SUB_FAMILIES BP MF CC 

ABC 33 7 93% 93% 59% 

Class_B GPR 15 5 89% 89% 89% 

Ligand 107 11 96% 93% 96% 

Myosin_superfamily 34 12 83% 83% 83% 

PATWAY      

Apoptotic Cleavage 35 0 99% 95% 99% 

GABR-Gaba Receptors 67 0 99% 99% 99% 

Plateled-derived grow factor A 25 0 93% 94% 98% 

Pyruvate 28 0 99% 99% 99% 

 
 
     Because genes belonging to the same group are certainly related, our basic idea is that a similarity method should 
assign high scores in evaluating their similarity on GO. The mould of our experiments is the evaluation of  some 
“side effects” that could influence this evaluation such as a low coverage of a group, the limits of GO due its 
representation of knowledge etc. So, differently for most of the literature works that aim to assert the best semantic 
similarity measure, we considered only two measures. Specifically, among IC-based measures, we considered the 
Resnik measure12 that expresses the similarity between two terms as the IC of their lower ancestor. Within this 
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measure, the terms sharing the same LCA have the same similarity, even if they are at different levels in the GO 
graph. Among the graph-based measures, we considered the Wang measure13 that takes into account all the parents 
of the candidate terms. This measure stresses the difference between two genes that share a common ancestor  LCA  
and two genes that don’t share an LCA. 

3.2. Data Processing 

First, we evaluated the pair-wise semantic similarity of all pairs of genes belonging to the same group on the three 
GO ontologies (i.e. CC, MF, BP) separately. As we considered two semantic similarity measures, this process 
resulted in six sequences of values for each single group.  Each sequence expresses the distribution of the semantic 
similarity evaluated by a single method on a specific sub-ontology and within genes belonging to the same group. 
The mean of the values in a sequence was assumed as representative of the semantic similarity of the corresponding 
group . Finally, only for families, the semantic similarity of each family was asserted by averaging the semantic 
similarity of its sub-families.  

3.3. Results  

For each family and pathway, Fig. 2 to 4 shows the values of the semantic similarity estimated by each measure 
on the three GO  ontologies separately. In  the follows, we explore these results from the point of view of the issues 
presented in the section 2. Specifically, it is clear that the behavior of the semantic similarity is not linear, regardless 
of the similarity measure used. Indeed, the Wang measure improves Resnik’s measure in the majority of families and 
pathways. This desirable behavior depends on the circumstance that Wang measure considers the global structure of 
GO and benefits from the properly structured and annotated knowledge of GO.  

Results also indicate that the Wang measure seems to be more suitable for devising genes that cooperate within a 
pattern. These results agree with14 that compares over GO both the Resnik and Wang measures on three model 
organisms.   
As regard the coverage , it seems that the low coverage (under  55%) of the family ABC does not affect  evaluation 
of the semantic similarity. This indicates that the annotated genes of this family are well correlated in GO. So, the 
evaluation of their semantic similarity is very high and ,consequently, it originates an high similarity value for all the 
family ABC,  although half of its genes were not considered. Conversely, despite the high coverage of genes 
belonging to the considered pathways, all the three GO ontologies fail in expressing high values of semantic 
similarity between genes. These results are due to the hierarchical organization of GO annotations and the use of 
only two relations (i.e. part-of and is-a) for representing relationships between genes. Because pathways are more 
complex organizations than families, this aspect severely limit the representation of interactions between its genes. 

 
Fig. 2 . The semantic similarity of families (on the left) and pathways (on the right) expressed by the Biological Processes sub-Ontology. 
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Fig. 3. The semantic similarity of families (on the left) and pathways (on the right) expressed by the Molecular Function sub-Ontology 

 
Fig. 4. The semantic similarity of families (on the left) and pathways (on the right) expressed by the Cellular Components sub-Ontology. 

 
Finally, results reveal strong differences within the evaluations performed on the 3 ontologies and a considerable 
level of asymmetry within families. For example, the similarity of genes belonging to the Ligand family seems to be 
better evaluated by MF and CC ontologies. This effect is due to the fact that each family can be better featured by a 
specific category of biological events (i.e. biological processes, molecular functions and cellular component) 
according to the biological role of its genes.  
Unfortunately, as stressed by recent research14, it does not make sense to combine two or three similarity evaluations 
performed on different GO aspects into a single measure and  difficulties arise from the adoption of approaches that 
try to integrate multiple measures14.  So, the choice of the most appropriate ontology remains a specific 
responsibility of the biologist. 

4. Related work 

There are an increasing number of application scenarios where biomedical ontologies are exploited to 
complement and enrich knowledge acquired from experiments and domain experts. Among possible applications, 
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the semantic similarity is a popular approach to evaluate the relatedness of two genes by considering how close two 
concepts are from each other in some ontology. 

Tailored to the characteristics of GO, new semantic similarity measures are constantly appearing in the 
literature15,16. Hybrid approaches17 try to integrate state-of-art gene-to-gene similarity measures on GO and 
demonstrate that this integration improves the performance of single methods, almost on some datasets.  

A novel approach is proposed in18 that incorporates information from gene co-function networks in addition to 
using GO structure and annotation. The study demonstrates the benefits of such integration in terms of performance 
of semantic similarity measures.  

Few work19 has been done for evaluating how a specific method performs in recognizing whether genes share or 
not similar functions and/or participate or not in the same biological event. Such a kind of similarity analysis would 
be of great importance especially in high dimensional gene lists, where the application of semantic similarity may 
help the selection of functionally related genes.  

5. Conclusions 

Over recent years a number of semantic similarity measures have been proposed but the questions of which 
measure performs better and what are the advantages and limitations in using GO were still open. The work 
presented in this paper is a preliminary approach to give a contribution in this direction.  

We have investigated about the performance of two semantic similarity measures by assessing how well they 
capture the expected relationship between genes belonging to well known functional organizations. The influence of 
electronic annotations was assessed on several groups of genes, while the effect of the GO structure was investigated 
over all the three GO sub-ontologies.  

The loss of annotations seems not to influence the semantic similarity of a group with a consistent number of 
annotated and well-correlated genes. Moreover, it as been observed that, as electronic annotations grow in quantity 
and quality, the cost of ignoring them will eventually outweigh the gain15.  

Our experiments demonstrate that the evaluation of the semantic similarity on GO presents some limitations 
related both to completeness and coherency of its taxonomical knowledge that does not provide extensive coverage 
about gene functions and processes. These limitations do not affect the evaluation of the semantic similarity in 
organizations where genes exhibit simple correlations like the Hugo families. Conversely, these limitations influence 
the evaluation of the semantic similarity of complex organizations such as pathways. 

As a consequence, we suspect that, due to the knowledge organization implemented in GO, there is a level 
beyond which the accuracy of the semantic similarity may not be extended. Of course, this suspect needs to be 
confirmed by further investigation since our experiments are limited and preliminaries to further developments. 

Beside the benefits deriving from the exploitations of GO knowledge, our results seem to suggest that the use of 
electronic annotations should be carefully considered.  

Future work will include the evaluation of additional similarity measures as well as investigations about the 
semantic similarity of further functionally coherent groups defined by biomedical experts such as protein families, 
enzymes etc. Leveraging on our previous work20,21, we are also planning to investigate about strategies for 
complementing  the GO knowledge such as the exploitation of knowledge from the most important and largest 
collections of biomedical documents freely available on the Internet. 
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