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ABSTRACT
As data mining develops and expands to new application areas, feature selection also reveals various aspects 
to be considered. This paper underlines two aspects that seem to categorize the large body of available feature 
selection algorithms: the effectiveness and the representation level. The effectiveness deals with selecting the 
minimum set of variables that maximize the accuracy of a classifier and the representation level concerns 
discovering how relevant the variables are for the domain of interest. For balancing the above aspects, the 
paper proposes an evolutionary framework for feature selection that expresses a hybrid method, organized 
in layers, each of them exploits a specific model of search strategy. Extensive experiments on gene selection 
from DNA-microarray datasets are presented and discussed. Results indicate that the framework compares 
well with different hybrid methods proposed in literature as it has the capability of finding well suited subsets 
of informative features while improving classification accuracy.
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INTRODUCTION

Feature selection is one of the important and 
frequently used techniques in data mining 
(Chandrashekar & Sahin, 2014). It reduces 
the number of features, removes irrelevant, 

redundant, or noisy data, and improves mining 
performance such as predictive accuracy and 
result comprehensibility.

The goodness of selected features is usu-
ally measured by an evaluation criterion that 
strongly affects results, i.e. an optimal set of 

DOI: 10.4018/jitr.2015040102

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54612926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Information Technology Research, 8(2), 16-33, April-June 2015   17

features selected using one criterion may not be 
optimal according to another criterion. Despite 
the work on developing criteria for evaluat-
ing the quality of results in feature selection 
algorithms (Kumar & Minz, 2014), the choice 
of the algorithm appropriate for classification 
problems remains difficult. It has been argued 
(Liu & Yu, 2005) that the more feature selection 
algorithms available, the more difficult it is to 
select a suitable one for a classification task.

While there is no agreement about the 
definition of the mathematical statement of 
the problem (Guyon & Elisseeff, 2003), two 
major factors seem to be particularly important 
in designing a suitable algorithm for feature 
selection in a classification task: improving 
the predictive accuracy and providing better 
understanding of the underlying concept that 
generated the data. We denote the above factors 
as the effectiveness and the representation level 
of the feature selection process.

Specifically, the effectiveness deals with 
selecting the minimum set of variables that 
maximize the accuracy of a classifier and the 
representation level concerns discovering how 
relevant the variables are for the considered 
domain.

In more detail, the effectiveness attempts to 
capture the performance aspect of classification. 
From this point of view, the major challenge is 
finding a minimum subset of features that are 
useful to the prediction. Thus, this aspect is 
central for classification problems in which ac-
curacy is of primary concern: the more effective 
the feature selection, the better the performance 
of the resulting classifier.

The representation level reflects the ex-
planatory power of the selected features in 
representing essential knowledge about the 
application domain. The focus is on discover-
ing all the variables suited to the reality that we 
are trying to represent, deciding how relevant 
and informative they are. Under this paradigm, 
the feature selection process privileges the 
usefulness of the features in representing the 
application domain i.e. the degree of exactness 
with which the representation fits the reality.

Research efforts have produced methods 
that place the emphasis at different times on 
the effectiveness or on the representation level 
(Tang, Alelyani, & Liu, 2014). Among the 
broadly used methods, rankers evaluate the 
discriminative power of features with regard 
to the class labels of samples by looking only 
at the intrinsic properties of the data. Thus, 
rankers emphasize the representation level giv-
ing as output a list where features are ordered 
based on their relevance for the classification 
task at hand.

Leveraging on rankers, filter methods 
strive to improve the effectiveness by selecting 
a certain number of highest ranked features for 
the purpose of classification. However, because 
the number used is somewhat arbitrary, features 
selected under this approach depend on an “a 
priori” choice with little support for determin-
ing how many features should be chosen for 
classification. Moreover, filters do not take into 
account the classifier to be applied.

In contrast to the filter approach, wrapper 
methods adopt a paradigm in which the main 
emphasis is on selecting features during the 
process of classification. Different subsets of 
features are generated by using a search algo-
rithm and then are evaluated by training and 
testing a specific classification model. As the 
whole process aims to optimize the accuracy 
of the particular classifier, the central aspect in 
selecting features is the effectiveness rather than 
improving the representation level.

Recently, hybrid approaches have at-
tempted to take advantage of the above methods 
by exploiting their different evaluation criteria 
in different search stages (Saeys, Inza, & Lar-
ranaga, 2007). However, to the best of our 
knowledge, it remains a neglected issue the 
formulation of feature selection methods that 
place the emphasis on balancing effectiveness 
and representation level.

This paper gives a contribution in this 
direction by proposing a framework for intel-
ligent feature selection that aims not only to 
achieve good classification accuracy but also 
to discover different subsets of features relevant 
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for the application domain and able to represent 
it properly. Based on a genetic algorithm, the 
framework expresses a hybrid method organized 
in layers each of ones determines a model of 
search strategy by privileging, in turn, the ef-
fectiveness or the representation level.

The proposed framework takes a paradigm 
shift from other hybrid models that try to ac-
commodate the use of filter and wrapper ap-
proaches according to the specific application 
domain. Guided by the motivation of discov-
ering a potentially high number of predictors, 
the framework defines different subspaces of 
features for searching whereas existing hybrid 
models usually provide a single subspace.

To evaluate the proposed framework we 
conducted experiments on high dimensional 
biological data. Specifically, we considered 
DNA-microarray datasets which store genetic 
profiles of cancerous and normal tissues: here 
each feature expresses the level of expression 
of a specific gene, and the number of genes 
is in the order of thousands. The high dimen-
sionality, coupled with the small sample size 
(typically a few dozens of samples), requires 
appropriate data mining strategies for select-
ing groups of genes (predictors) that are use-
ful for understanding the cancer and do help 
determine more accurate diagnosis, prognosis 
as well as treatment planning (Bolón-Canedo, 
Sánchez-Maroño, Alonso-Betanzos, Benítez, 
& Herrera, 2014).

Gene selection from micro-array data is 
a significant example of application domain 
where the effectiveness of selected features 
should be evaluated in conjunction with their 
representation level. Although the abundance 
of features in gene expression data, it has been 
anticipated that only a limited number of them 
are informative for prognostic purpose about 
cancer. Moreover, only a small number of 
genes taken from a large expression dataset 
can be tested for clinical relevance. Thus, the 
emphasis is on identifying the smallest subset 
of genes that are potentially relevant for cancer 
prediction i.e. special attention is given to the 
effectiveness. However, besides the accuracy 

of the classification process, a biologist could 
discard the best predictor because it has a high 
biological cost to be validated or it reveals some 
obvious or previous knowledge. Hence, biolo-
gists may be interested in identifying different 
subsets of marker genes that contribute in a 
complementary way to best explain a given 
pathology. This goal makes relevant to achieve 
a good representation level.

In this work, we validated our framework 
on four DNA-microarray datasets. Experimen-
tal results compare well with different hybrid 
methods proposed in literature and show that 
our approach is robust and effective in finding 
small subsets of informative features with high 
classification accuracy and suitable representa-
tion level.

THE PROPOSED FRAMEWORK

In this section, we present the framework we 
propose. As Figure 1 shows, the framework 
consists of four layers. Layers are ordered by 
increasing complexity of the learning process, 
from the dataset initially provided to the fea-
tures ultimately selected. Each layer organizes 
a class of methods to transform data provided 
by the previous layer into some new form of 
information for future use by the next layer.

Specifically, the first layer considers rank-
ing features to provide a general representation 
level of the application domain. At the second 
level, a filter provides different features subsets, 
namely feature subspaces. At the next layer, 
these subspaces are explored by a wrapper 
that uses a genetic algorithm (GA) as a search 
strategy. The availability of different feature 
subspaces is intended to enhance the search ca-
pability of the genetic algorithm in discovering 
sets of potential useful features in each subspace. 
Finally, at the last layer, potential useful features 
are evaluated to extract knowledge about the 
application domain.

As each layer refers to a general class of 
methods, the framework is independent on the 
choice of the algorithms for its implementation 
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i.e., at each layer, the tasks are not associated 
to a single method, but rather to a general class 
of methods.

The Four Layers

In more detail, starting from the input data 
matrix, the first task is intended to scoring 
individual features according to their discrimi-
native power, i.e. their capacity of separating 
the classes. It consists of ranking features and 
results in an ordered list where features appear 
in descending order of relevance.

At the layer 2, the next task is crucial as 
it defines subspaces of features where the GA 
will search the optimal feature subsets i.e. the 
best predictors. This is performed by a filter 
approach. Starting from the first P features 
of the ordered list that was produced at the 
previous layer, nested subsets of features of 
increasing size are constructed by progres-
sively adding features (less and less correlated 
with the target).

It results in a sequence of R feature sub-
spaces:

Figure 1. The framework
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where the first space (FS1) includes the first 
P top-ranked features, the second space (FS2) 
includes the first 2∙P features, etc. Denoting 
with N the dimension of the feature subspace, 
one obtains: N = i∙P, i = 1, 2, …, R.

Although containing a subset of poten-
tially informative features, each single sub-
space FSi, i = 1, 2, …, R, cannot be considered 
a good predictor because its features may 
be mutually correlated. As such, additional 
work is needed for refining the above subsets 
by removing redundant features in order to 
devise more accurate and small-sized pre-
dictors. This is done at the third layer of the 
framework where a wrapper applies a GA for 
exploring and discovering optimal predictors 
in each subspace.

In more detail, a population of indi-
viduals (i.e. different features subsets) 
is randomly initialized from each single 
subspace. The individuals are first evalu-
ated by a fitness function that is designed 
to maximize classification accuracy. Then, 
the current population undergoes genetic 
operations (i.e. selection, mutation and 
crossover) and a new population is gener-
ated and evaluated. This evolution process 
is repeated until a pre-defined number of 
generations is reached. It outputs the “best 
individual” i.e. the best predictor for the 
considered subspace. Since the GA performs 
a stochastic search, it is applied T times on 
each of the R subspaces.

The fourth and final task is to extract do-
main knowledge by the T∙R predictors obtained 
at the previous layer. This is done by analyzing 
the frequency of membership of each feature in 
the collected predictors. Such analysis enables 
evaluating the relative importance of each 
feature, distinguishing the features that play a 
primary role in discriminating the target class 
from those that give a complementary, yet not 
negligible, contribution.

MATERIALS AND METHODS

The framework evaluation can be supported by 
a variety of popular ranking techniques and clas-
sification algorithms. In what follows, we detail 
the specific methods and settings that we adopted 
to implement the different layers of the frame-
work. Moreover, we give a brief description of 
the datasets used in the experimental validation.

Ranking and Filtering

Being supported by our previous experience 
(Cannas, Dessì, & Pes, 2011; Dessì, Milia, 
& Pes, 2013), we choose Chi Squared (χ2) as 
ranking metric (layer 1). Basically, χ2 evalu-
ates features individually by measuring their 
chi-squared statistic with respect to the class: 
the larger the chi-squared, the more important 
a feature is for the classification task at hand 
(Liu & Setiono, 1995). In more detail, once a 
feature has been discretized into a number I of 
intervals, its χ2 value is computed as:
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where M is the number of instances, C the 
number of classes, Ri the number of instances 
in the ith interval, Bj the number of instances in 
the jth class, and Aij the number of instances in 
the ith interval and jth class. The effectiveness 
of this approach for ranking features has been 
proved in different domains (Forman, 2003; 
Yang and Pedersen, 1997).

The resulting ranked list provides the basis 
for the incremental filtering step (layer 2). Here, 
the framework parameters are set as P = 10 and 
R = 5. Specifically, starting from the subset 
including the first P ranked features, namely the 
subset TOP10, we constructed R-1 additional 
nested subsets of features of increasing size by 
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progressively adding P features (less and less 
correlated with the target). We denote these 
additional subspaces as TOP20 (i.e. the first 20 
top-ranked features), TOP30 (i.e. the first 30 
top-ranked features), etc. We also considered 
TOP80 and TOP100 in order to evaluate the 
proposed approach in larger feature subspaces.

Genetic Search

At the third layer of the framework, the wrap-
per is based on the GA search mechanism as 
proposed by Goldberg (1989). As previously 
mentioned, at the start of the GA, a population 
of individuals (i.e. feature subsets) is initialized 
randomly. In more detail, these individuals are 
encoded by N-bit binary vectors (where N is the 
size of the search space). If a bit is ‘1’ it means 
that the corresponding feature is included in 
the subset, while the bits with value ‘0’ mean 
the opposite.

The merit a feature subset x is evaluated 
by a fitness function F(x) that expresses the 
classification accuracy of a classifier built on x. 
In our experiments, we considered two popular 
classifiers, i.e. Support Vector Machines (SVM), 
with linear kernel, and K-Nearest Neighbor (K-
NN), with K = 1. This resulted in two different 
implementations of the genetic wrapper, namely 
GA/SVM and GA/K-NN. Error estimation was 
performed by a 10-fold cross-validation for both 
SVM and K-NN classifiers.

As regards the genetic operators, we relied 
on the following well established settings:

•	 Selection: Roulette wheel selection is used 
to probabilistically select individuals from 
a population for later breeding. The prob-
ability P(xi) of selecting the individual xi 
is proportional to its own fitness F(xi) and 
inversely proportional to the fitness of 
other competing hypotheses in the current 
population:

P x
F x

F x
i

i

ii

( )
( )

( )
=
∑

	

•	 Crossover: We use the single point cross-
over, i.e. one crossover point i is chosen at 
random so that the first i bits are contributed 
by one parent and the remaining bits by the 
second parent;

•	 Mutation: Each individual has a prob-
ability pm to mutate. We randomly choose 
a number of n bits to be flipped in every 
mutation stage.

As regards the stopping criterion, the ge-
netic search ends when a pre-defined number 
of generations is reached or a fitness value of 
100% is obtained.

Leveraging on previous studies about 
tuning GA parameters (Cannas, Dessì, & Pes, 
2010), we set the following values: popula-
tion size = 30, number of generations = 50, 
probability of crossover = 1, and probability 
of mutation = 0.02. Moreover, since the GA 
performs a stochastic search, we considered the 
average results over a number T = 10 of trials; 
indeed, this is a common choice in literature 
(Jirapech-Umpai & Aitken, 2005).

Datasets and Related Experiments

We chose to experiment with high dimensional 
data from genomics datasets of DNA-microar-
ray experiments. A short description of these 
datasets is given in Table 1.

We worked with four different datasets: 
Leukemia (Golub et al., 1999), where the 
goal is to distinguish between acute myeloid 
leukemia (AML) and acute lymphoblastic 
leukemia (ALL); DLBCL (Shipp et al., 2002), 
where the goal is to recognize diffuse large 
b-cell lymphoma (DLBCL) as different from 
follicular lymphoma (FL); Colon (Alon et al., 
1999), where the goal is to distinguish between 
healthy and tumor colon tissues; Prostate (Singh 
et al., 2002), where the goal is to distinguish 
between healthy and tumor prostate tissues. 
Features correspond to levels of expression of 
different genes and are continuous.

We evaluated the proposed framework on 
each dataset by performing two experiments. 
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In the first experiment, namely the baseline 
experiment, each classifier (i.e. K-NN and 
SVM) was trained directly on each subspace 
TOPN in order to estimate the accuracy with-
out a wrapper based feature selection. This 
baseline accuracy was also estimated by a 10-
fold cross-validation. The second experiment 
evaluated the effectiveness of the wrappers 
GA/SVM and GA/K-NN on each subspace 
TOPN. The overall experimentation leverages 
on the WEKA machine learning environment 
(Bouckaert et al., 2010).

RESULTS AND DISCUSSION

In this section, the results of our experiments 
will be discussed along two dimensions: (1) 
the effectiveness of the proposed framework 
in searching suitable combinations of relatively 
few features that yield high classification accu-
racy; (2) the representation level reached by the 

framework in exploring how each feature may 
be useful in representing essential knowledge 
about the application domain.

Effectiveness of the Framework

We compare first the differences between the 
baseline accuracy and the accuracy (best and 
average) reached by GA/K-NN and GA/SVM 
on each TOPN. Tables 2 through 5 report this 
comparison for each dataset.

As Table 2 (Leukemia) shows, results 
produced by both GA/SVM and GA/K-NN 
outperform baseline results from SVM and 
K-NN. The average accuracy of GA/SVM 
increases with the size of the search space until 
reaching 100% on TOP80 and TOP100. GA/K-
NN turns out to be more effective in selecting 
feature subsets that perfectly discriminate the 
target class (namely, perfect predictors), irre-
spective of the size of TOPN: a search space of 

Table 2. Baseline, average and best accuracy (leukemia)

SVM GA/SVM K-NN GA/K-NN

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

TOP10 93.1 97.0 97.5 91.7 100 100

TOP20 95.8 99.3 100 97.2 100 100

TOP30 98.6 99.6 100 94.4 100 100

TOP40 98.6 99.9 100 95.8 100 100

TOP50 97.2 99.4 100 93.1 99.9 100

TOP80 97.2 100 100 95.8 100 100

TOP100 97.2 100 100 97.2 100 100

Table 1. Microarray datasets used in the experiments

Dataset No. of 
Samples Distribution among Classes No. of Features Reference

Leukemia 72 47 ALL + 25 AML 7129 Golub et al., 1999

DLBCL 78 58 DLBCL + 19 FL 7129 Shipp et al., 2002

Colon 62 40 tumor + 22 normal 2000 Alon et al., 1999

Prostate 102 52 tumor + 50 normal 10509 Singh et al., 2002
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Table 3. Baseline, average and best accuracy (b) DLBCL

SVM GA/SVM K-NN GA/K-NN

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

TOP10 92.2 92.5 92.7 85.7 93.8 94.3

TOP20 94.8 96.8 97.4 93.5 99.9 100

TOP30 94.8 98.1 98.7 96.1 100 100

TOP40 96.1 98.7 100 94.8 99.7 100

TOP50 96.1 98.1 98.7 94.8 100 100

TOP80 97.4 99.1 100 96.1 100 100

TOP100 94.8 100 100 96.1 99.9 100

Table 4. Baseline, average and best accuracy (c) Colon

SVM GA/SVM K-NN GA/K-NN

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

TOP10 82.3 87.1 87.1 80.6 90.8 91.3

TOP20 88.7 90.9 91.9 82.3 95.3 98.4

TOP30 87.1 90.5 91.9 83.9 94.5 95.2

TOP40 85.5 91.5 92.3 83.9 94.5 96.8

TOP50 83.9 91.5 91.9 80.6 92.7 95.2

TOP80 85.5 91.9 93.2 79.0 94.6 96.8

TOP100 87.1 93.1 94.2 79.0 93.2 95.5

Table 5. Baseline, average and best accuracy (d) Prostate

SVM GA/SVM K-NN GA/K-NN

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

Baseline 
Accuracy 

(%)

Average 
Accuracy 

(%)

Best 
Accuracy 

(%)

TOP10 95.1 95.4 95.7 92.2 94.4 94.7

TOP20 96.1 96.6 97.1 93.1 96.2 97.1

TOP30 94.1 97.8 98.0 89.2 97.9 98.0

TOP40 97.1 97.8 98.0 93.1 98.0 98.0

TOP50 96.1 97.9 98.0 94.1 98.0 98.0

TOP80 96.1 97.3 98.0 92.2 98.0 98.0

TOP100 96.1 97.2 98.0 90.2 98.0 98.0
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10 features is sufficient to reach the maximum 
accuracy that is also reached in all the feature 
subspaces with the exception of TOP50.

Table 3 shows the same trend for experi-
ments on DLBCL dataset, both with GA/SVM 
and GA/K-NN.

According to Table 4, neither GA/SVM nor 
GA/K-NN are able to find perfect predictors in 
the Colon dataset. However, the average accu-
racy of GA/SVM exhibits the same behavior 
than in previous experiments. The effectiveness 
of the GA/K-NN is confirmed, regardless of the 
size of the feature subspace: the best predictor 
is extracted from TOP20.

Finally, Table 5 reports results about Pros-
tate dataset and shows a picture quite different 
from the three previous datasets. The trend of 
the average accuracy of GA/SVM reaches the 
highest value between TOP30 and TOP50 and 
then starts decreasing. GA/K-NN outperforms 
GA/SVM very slightly, since the values of 
the average accuracy are highly similar and, 
in addition, both achieve the same values of 
best accuracy.

Globally, results in Tables 2 through 5 
confirm that the classification can be carried 
out in a reduced space more accurately that 
in the original feature subspace as the use of 
an unnecessarily large gene set may decrease 
the effectiveness in the classification process.

By showing the trend of the average size 
of selected predictors as the size of the feature 
subspace TOPN increases, Figure 2 demon-
strates the effectiveness of the framework in 
reducing the dimensionality of the search space. 
In particular, both GA/SVM and GA/K-NN 
considerably cut the size of the original TOPN 
whose average reduction is greater than 50% 
with peaks of 70-75% reached on TOP100. This 
trend is common to all the datasets.

As Table 6 shows, this reduction gener-
ates sufficient features for achieving a very 
high accuracy. In detail, for the best predictors 
selected by GA/SVM and GA/K-NN on each 
dataset, Table 6 summarizes the accuracy, the 
minimum size and the feature space from which 

the predictor was extracted. For “good” datasets 
such as Leukemia and DLBCL, the framework 
generates perfect predictors. For more difficult 
datasets, such as Colon and Prostate, the frame-
work does not achieve the 100% accuracy albeit 
obtaining remarkable results.

Globally, the results shown in Table 6 help 
to demonstrate the framework effectiveness and 
can be compared with those produced by dif-
ferent methods in DNA-microarray literature. 
As reference parameters, we considered the ac-
curacy and the number of selected features. We 
present the best results achieved by GA/K-NN 
and omit results from GA/SVM that, except for 
the Colon dataset, exhibit the same trend. Tables 
7 through 10 show this comparison.

Regarding Leukemia dataset (Table 7), 
different methods proposed in literature achieve 
100% of accuracy, as in our approach, but the 
number of features they select is greater than the 
one obtained by GA/K-NN. Our method shows 
excellent performance also in DLBCL dataset, 
as shown in Table 8. Regarding Colon (Table 
9) and Prostate (Table 10) datasets, which are 
recognized as more challenging benchmarks, 
our results are in turn superior or comparable 
to those reported in literature.

We conclude this discussion on the effec-
tiveness of the framework with some consid-
erations about the computational cost. Indeed, 
one of the well-known drawbacks of genetic 
approaches is that they usually require high 
execution times when applied to high dimen-
sional search spaces. To mitigate this problem, 
our framework reduces the dimensionality of the 
original dataset by defining proper subspaces 
of pre-filtered features. Indeed, this enables us 
to reach a good trade-off between effectiveness 
and computational cost. For example, in the 
case of Leukemia dataset, the average execu-
tion times of GA/SVM (over 10 trials) range 
from 55 seconds for TOP10 to 7 minutes for 
TOP100, while the average execution times of 
GA/K-NN range from 2 seconds for TOP10 to 
26 seconds for TOP100. Of course, baseline 
execution times (without a genetic search) are 
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remarkable lower (less than 0.1 seconds, for 
both SVM and K-NN)1. For the other datasets 
here considered, we observed a very similar 
trend, i.e. for both GA/SVM and GA/K-NN 
the computational cost increases with the size 
of the search space but the execution times of 

GA/K-NN are considerably lower. Hence, the 
framework efficiency may sensibly vary de-
pending on the chosen classification algorithm. 
In particular, GA/KNN seems to be a very good 
option since it leads to a very effective feature 
selection in a quite efficient way.

Figure 2. Average size of the selected predictors as the size of the feature space increases
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Table 6. Best predictors extracted by GA/SVM and GA/K-NN from each dataset

Wrapper Search Space Subset Size Accuracy (%)

Leukemia

GA/SVM TOP20 4 100

GA/K-NN

TOP20 3 100

TOP30 3 100

TOP40 3 100

DLBCL

GA/SVM TOP40 8 100

GA/K-NN
TOP20 4 100

TOP30 4 100

Colon
GA/SVM TOP100 39 94.2

GA/K-NN TOP20 4 98.4

Prostate

GA/SVM TOP30 8 98.0

GA/K-NN
TOP30 8 98.0

TOP40 8 98.0

Table 7. Framework performance vs different methods in literature (leukemia)

GA /K-NN Huerta et al., 
2006

Wang et al., 
2005

Leung & Hung, 
2010

Ng & Chan, 
2005

Accuracy (%) 100 100 100 100 100

Subset size 3 25 8 4 4

Table 8. Framework performance vs different methods in literature (DLBCL)

GA /K-NN Liu & Zhou, 
2003

Leung & 
Hung, 2010

Dagliyan et al., 
2011 Deutsch, 2003

Accuracy (%) 100 93.5 100 96.1 100

Subset size 4 5 6 6 4

Table 9. Framework performance vs different methods in literature (colon)

GA /K-NN Reddy & Deb, 
2003

Huerta et al., 
2006

Leung & Hung, 
2010 Yu & Liu, 2004

Accuracy (%) 98.4 97.0 99.4 95.2 93.6

Subset size 4 7 10 6 4
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Representation Level 
of the Framework

Domain experts instinctively have high confi-
dence in the results of a selection method that 
finds similar sets of features: the fact that a 
gene is selected by different predictors makes 
it more probable that this gene is an important 
biomarker. Hence, we assume the frequency of 
each gene in the selected predictors as a measure 
of the representation level of the framework.

Specifically, for each microarray dataset 
we evaluated the frequency of the features 
belonging to the 70 predictors (i.e. 10 predic-
tors for each of the 7 considered subspaces) 
obtained at layer 3. For each dataset, Tables 11 
through 14 show the frequency of the ten most 
selected features and reports, in brackets, the 
position of each feature in the original ranked 
list obtained at layer 1.

Analyzing the features that are most fre-
quently selected by GA/SVM and GA/K-NN, 
we note, in Table 11 (Leukemia), that the two 
lists have 7 features in common out of 10. 
Besides, features that appear only in GA/SVM 
list are also selected by GA/K-NN with lower 
frequency, and vice versa. Further, we notice 
that the features most frequently involved in 
the selected predictors are not necessarily the 
top-ranked ones: for example, the gene 1928 
exhibits the highest frequency for GA/SVM 
but it is placed at ranking position 30; likewise, 
the most frequent gene for GA/K-NN, the 
gene 2354, is placed at ranking position 14. As 
well, genes 4951 and 5107 exhibit a very high 
frequency, but they are at ranking position 67 
and 68, respectively. In turn, some top-ranked 
genes such as 3252 and 2288 do not appear at 
all in the two lists even if they are respectively 
at positions 4 and 6 of the ranked list.

Table 10. Framework performance vs different methods in literature (prostate)

GA /K-NN Zhang & 
Deng, 2007

Dagliyan et 
al., 2011

Leung & Hung, 
2010

Küçükural et. 
al, 2007

Accuracy (%) 98.0 96.1 96.1 98.0 96.7

Subset size 8 13 11 6 19

Table 11. Frequency of the ten most selected features; in brackets, the position of each feature 
in the original ranked list (leukemia)

GA/SVM GA/K-NN

Features Frequency Features Frequency

1928 (30) 47.1% 2354 (14) 44.3%

1144 (17) 41.4% 1834 (1) 42.9%

2354 (14) 38.6% 6855 (5) 38.6%

6855 (5) 37.1% 1928 (30) 38.6%

1685 (9) 37.1% 1685 (9) 37.1%

1834 (1) 35.7% 804 (31) 32.9%

4847 (2) 34.3% 1144 (17) 31.4%

804 (31) 30.0% 1882 (3) 24.3%

2020 (22) 24.3% 5107 (68) 24.3%

2642 (28) 22.9% 4951 (67) 20.0%
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Table 12 reports results regarding DLBCL 
dataset. In this case the two lists have 8 features 
in common. Genes 1670 and 5077 exhibit the 
highest frequencies for both GA/SVM and 
GA/K-NN even if they are placed at ranking 
positions 18 and 29. On the contrary, genes 
at ranking positions 2 and 3 do not appear in 
the lists.

As Table 13 (Colon) reports, the two lists 
have 5 features in common. Features that exhibit 
the highest frequency are gene 66 for GA/SVM 
and gene 1772 for GA/K-NN and are placed 
at ranking position 15 and 10, respectively. 
Again, some top-ranked genes, such as those 
at positions 1 and 2, do not emerge.

Table 14 reports results regarding Prostate 
dataset. The two lists have 7 features in common. 
Features that exhibit the highest frequency, for 
both GA/SVM and GA/K-NN, are 4823, 10130, 
and 9138 and are placed at ranking positions 
1, 13, and 16. Although features at ranking 
positions 1 and 2 are present, genes at ranking 
position 3 and 4 do not appear in the lists.

Therefore, in each of the considered case 
studies, the high number of features in common 
between the two lists shows that GA/SVM and 
GA/K-NN highly agree in evaluating the rel-
evance of features, although selecting different 
gene combinations (at layer 3). This suggests 

that the proposed framework can be useful to 
evaluate the relative importance of features in a 
context where multiple predictors may coexist, 
such as microarray data classification.

Another remarkable aspect to note is that 
the feature lists obtained at layer 4 do not match 
the ranked list produced as output of the first 
layer; indeed the features most frequently se-
lected are not necessarily the top-ranked ones. 
This outlines that, while useful in reducing 
the dimensionality of the initial problem, the 
ranking process is not by itself a suitable fea-
ture selection technique for microarray data. It 
can be successfully employed, instead, within 
hybrid filter-wrapper approaches as the one 
proposed here.

RELATED WORK

The problem of feature selection has received 
a thorough treatment in machine learning and 
pattern recognition. Many surveys attempt to 
review the field (Bolón-Canedo, Sánchez-Ma-
roño, & Alonso-Betanzos, 2013; Chandrashekar 
& Sahin, 2014; Kumar & Minz, 2014; Tang et al., 
2014). In the specific context of bioinformatics 
applications, a comprehensive review of feature 
selection techniques is provided by Saeys and 

Table 12. Frequency of the ten most selected features; in brackets, the position of each feature 
in the original ranked list (DLBCL)

GA/SVM GA/K-NN

Features Frequency Features Frequency

5077 (29) 70.0% 1670 (18) 65.7%

1670 (18) 64.3% 5077 (29) 37.1%

4453 (11) 45.7% 3818 (32) 37.1%

3005 (24) 42.9% 4453 (11) 34.3%

506 (1) 41.4% 373 (12) 34.3%

203 (13) 41.4% 1055 (9) 32.9%

373 (12) 37.1% 2789 (38) 31.4%

2789 (38) 37.1% 506 (1) 30.0%

3818 (32) 35.7% 3005 (24) 30.0%

4202 (5) 32.9% 6493 (43) 30.0%
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al. (2007). As well, representative algorithms 
for feature selection are empirically evaluated, 
under different problem settings and from 
different perspectives, by recent comparative 
studies (Abusamra, 2013; Dessì, Pascariello, 
& Pes, 2013; Khoshgoftaar, Gao, Napolitano, 
& Wald, 2014; Staroszczyk, Osowski, & Mar-
kiewicz, 2012).

Since 2001, a significant effort has been 
done to develop new and adapt known feature 
selection techniques in the context of microar-
ray datasets (Bolón-Canedo et al., 2014). In 
particular, because of the high dimensionality 
of most microarray analyses, the filter model 
is often preferred in gene selection due to its 
computational efficiency. Characteristics and 

Table 13. Frequency of the ten most selected features; in brackets, the position of each feature 
in the original ranked list (colon)

GA/SVM GA/K-NN

Features Frequency Features Frequency

66 (15) 64.3% 1772 (10) 75.7%

493 (3) 61.4% 765 (4) 72.9%

1423 (5) 60.0% 1423 (5) 41.4%

1771 (6) 58.6% 267 (8) 35.7%

1772 (10) 57.1% 415 (21) 35.7%

897 (14) 52.9% 513 (7) 34.3%

1042 (19) 48.6% 1892 (20) 34.3%

765 (4) 47.1% 1771 (6) 32.9%

581 (35) 45.7% 897 (14) 32.9%

780 (12) 42.9% 822 (16) 32.9%

Table 14. Frequency of the ten most selected features; in brackets, the position of each feature 
in the original ranked list (prostate)

GA/SVM GA/K-NN

Features Frequency Features Frequency

4823 (1) 67.1% 4823 (1) 67.1%

10130 (13) 67.1% 9138 (16) 67.1%

2718 (30) 60.0% 7346 (8) 65.7%

7652 (5) 57.1% 7652 (5) 61.4%

9138 (16) 57.1% 3997 (27) 54.3%

7515 (21) 51.4% 3124 (39) 54.3%

8765 (2) 48.6% 8765 (2) 51.4%

8009 (7) 47.1% 8009 (7) 51.4%

1943 (23) 47.1% 10130 (13) 45.7%

5648 (25) 42.9% 2718 (30) 45.7%
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particularities of filter techniques for micro-
array data are extensively discussed by Lazar 
and al. (2012). With regard to the wrapper 
model, most methods use randomized search 
heuristics, although also a few examples adopt 
sequential search techniques (Saeys et al., 2007). 
Hybrid and more sophisticated feature selec-
tion techniques have been explored in recent 
microarray research efforts (Leung, & Hung, 
2010). In hybrid models, the key is to initially 
reduce the search space using a filter method 
and subsequently apply wrapper methods, hence 
reducing the computation time.

Similarly to our approach, evolutionary 
algorithms have been applied to microarray 
analysis in order to look for the optimal or 
near optimal sets of predictive genes (Jirapech-
Umpai & Aitken, 2005). For example, Huerta 
and al. (2006) address the problem of gene 
selection using a standard genetic algorithm 
which evolves populations of possible solutions, 
the quality of each solution being evaluated by 
an SVM classifier. Genetic algorithms have 
been employed in conjunction with different 
classifiers, such as K-Nearest Neighbor (Lee, 
Lin, Chen, & Kuo, 2011) and Neural Networks 
(Bevilacqua, Mastronardi, Menolascina, Para-
diso, & Tommasi, 2006).

CONCLUSION

The key idea of this paper is to balance two basic 
aspects of feature selection, i.e. effectiveness 
and representation level, in order to achieve 
a two-fold objective: finding good predictors 
for effective classification and providing a 
representation of the application domain with a 
model that fits as much as possible the reality.

According to such idea, the paper has 
presented a hybrid framework which com-
bines rankers, filters and wrappers methods in 
a multi-layer and modular architecture. Each 
layer involves a general class of methods by 
privileging, in turn, one of the two above as-
pects. This allows the framework to be loosely 
coupled with the specific algorithms chosen for 
its implementation.

The proposed framework has been vali-
dated on several microarray DNA-datasets 
and experimental results compare well with 
different hybrid methods proposed in literature. 
Results show that our approach is effective in 
finding small subsets of informative features 
with high classification accuracy and suitable 
representation level. In addition, results sug-
gest that the framework is able to significantly 
evaluate the relative importance of features 
in those contexts where multiple predictors 
may coexist, such as DNA-microarray data 
classification.

As future work, we will verify the proposed 
framework by considering a variety of high-
dimensional datasets from different application 
domains. In particular, preliminary experiments 
on text categorization seem to suggest that the 
framework is suitable for text-based data.
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