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Abstract: Extended Thermodynamics of Dense Gases with an arbitrary but fixed number of
moments has been recently studied in literature; the arbitrariness of the number of moments is
linked to a number N and the resulting model is called an (N)— Model. As usual in Extended
Thermodynamics, in the field equations some unknown functions appear; restriction on their
generalities are obtained by imposing the entropy principle, the Galilean relativity principle
and some symmetry conditions.

The solution of these conditions is called the ” closure problem” and it has not been written
explicitly because an hard notation is necessary, but it has been shown how the theory is self-
generating in the sense that, if we know the closure of the (N) — Model, than we will be able
to find that of the (N + 1) — Model. Instead of this, we find here an exact solution which

holds for every number N.
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1. Introduction

Extended Thermodynamics of Dense Gases (ETDG) with many moments pro-
poses for every number N the following balance equations

atGilmim + 8kaz1Zm —_ Qil"'im form = 07 ...N.

and the resulting model is called an N — M odel.

We recall that the earlier versions of Extended Thermodynamics (ET) used
only egs. (1), obtaining the important result to have a symmetric hyperbolic
system of partial differential equations, with finite speed of propagation of shock
waves and other important properties (See refs. [1]-[6] ). These properties
were not satisfied by the models of Ordinary Thermodynamics except for some
simple cases. But the structure of ET implied a restriction on the state function
relating the pressure p to the mass density p and energy density ¢, that is p =
% pe. This problem have been overcome in ETDG by considering all the balance
equations (1) of which the first one is called the ”"Mass-Block” of equations
and the second is called the ”Energy-Block” of equations (See refs. [7]-[14] as
examples).

In (1) the independent variables are F» and G m; the quantities
Fkiv-in and GFiim are their corresponding fluxes. We see that each flux
is equal to the independent variable of the subsequent equation, except for the
flux in the last equation of the Mass-Block and for that in the last equation of
the Energy-Block; for these last fluxes we know only that they are symmetric
tensors. We will refer to this property as "the symmetry conditions”. The
problem will be closed when we know the expressions of F#¥1iN+2 and GFi1-in
as functions of the independent variables. Restrictions on their generality are
obtained by imposing the entropy principle, the Galilean relativity principle
and the symmetry conditions.

The Entropy Principle can be exploited through Liu’ s Theorem [15] and
by using a bright idea conceived by Ruggeri [16]; so it becomes equivalent to
assuming the existence of Lagrange Multipliers 4 and Ap which can be taken
as independent variables and, after that, we have
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which expresses all the moments in terms of only two unknown functions, the
4-potentials h', A’F. A nice consequence of eqs. (2) is that the field equations
assume the symmetric form. Another consequence of (2) is that the above
mentioned symmetry conditions and the Galilean Relativity Principle can be
expressed as
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We don’ t go in the details on how the the Galilean Relativity Principle, thanks
also to the other conditions, is equivalent to (3); this equivalence can be already
found in literature as [17]-[18] and others. In the next section, eqs. (4) and
(5), we will exhibit a particular but significative solution of the conditions (3),
which is expressed through a Taylor’ s expansion around equilibrium; this is
defined as the state where p;,..;, = 0 forn =1,--- N +2, \;,..;,, = 0 for
m=1,---, N, so that the only variables which are not zero at equilibrium are
w and A. The first of these is the chemical potential, while A = % with T
absolute temperature.

In sect. 3 we will report a part of the proof that egs. (4) and (5) give a
solution of (3). The second and final part of the proof is described in sect. 4.

2. An Exact Solution of Conditions (3)

Before writing our solution we need to describe an hard but straightforward
Notation: To do the derivatives with respect to pu;,...;, a number p, of
times, we use the compact form A, ;1 to indicate a set of n indexes, A4, 2 to
indicate another set of n indexes, and so on up to A4,,,,. For example,
oPp2 h'k
81“111471 a:uh2k2 T 8th2 Ep,
oPp2 Rk
8HA2,18MA2,2 T aMAQ,pQ

in the compact notation becomes
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because the first index of A... ... indicates how many indexes has the correspond-
ing ft..., while the second index of A... ... indicates how many derivatives we are
taking with respect to it.
or3 plk
Similarly,
8Mh1k1j1 8Mh2/€2j2 T 8/'th3kp3jp3
ops h/k
becomes

a:UA3,1 a/“5143,2 T 8/’LA3,p3

and so on. By using this notation, we can now write our solution and it is
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+
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where 1, is a family of functions depending only on p and A and constrained
only by

8wn—l— 1
op

Despite the appearance, these expressions are not complicated. In fact, the
factorial ﬁ appears also in the Taylor’ s expansions of functions depending on
a single variable; we have here one of these for every variable, both of the mass
block than of the energy block. Moreover, in these expressions appears the sum
of these numbers p; +pa+ - - -+ py+2 of the mass block and r; +r2+- - - +7y of
the energy block. Moreover, these numbers appear also through p; +2po+-- -+
(N 4+ 2)pNy2+7r1+2r9+ -+ -+ Nry where these numbers are multiplied by the
order of the Lagrange multiplier which they represent; after that, their sum is
taken. The condition "p; +2pa+- -+ (N +2)pnt2+71+2r2+- - -+ Nry odd”
in the expression of A’¥ is necessary because the following 6" must have an even
number of indexes; similarly, for the expression of h’. Here we find only a letter
0 but it is understood that it is a shortened symbol denoting the product
of some 0 each one with 2 indexes, and with a final symmetrization over all
these indexes. Finally, in the last line there is the product of the variables with
respect to which we have done the Taylor’ s expansions.

3. Proof of the Solution (4), (5) — Part I

We prove now that (4), (5) is a solution of (3),_,, while (3); will be considered
in the next section.
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e Let us begin with (3), in the case n > 1.

To verify it we have to take into account that p;,..;, here is denoted with
KA, ., or with pa, ,, and so on up to pa, , . Similarly, pg;,..;, is denoted
with pa, ., ,, or with pa, ., ,, and so on up to P Ani1p Consequently,
the left hand side of (3); with n > 1 causes, with respect to the expression
(5), a rise of one unity of the index p,; similarly, the right hand side of
(3); with n > 1 causes, with respect to the expression (4), a rise of one
unity of the index p,+1. More precisely, we obtain for both sides the
following expression

Of 11 1 11 1
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e Regarding (3), in the case n = 0, we have the same situation of the above

case for its right hand side, while for its left hand side we have to take
simply the derivative of (5) with respect to u. More precisely, we obtain
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for both sides the following expression

0---00
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e It is easy to verify (3) .

e Let us continue verifying (3), in the case m > 1.

To verify it we have to take into account that \;,..;, here is denoted
with Ag,, ,, or with Ag,_ ,, and so on up to Ag,,, . Similarly, Ag;...i,,
is denoted with Ap, ., ,, or with Ap ., ,, and so on up to )\Bm+1mm+1’
Consequently, the left hand side of (3); with m > 1 causes, with respect
to the expression (5), a rise of one unity of the index r,,; similarly, the
right hand side of (3)5 with m > 1 causes, with respect to the expression
(4), a rise of one unity of the index r,,+1. More precisely, we obtain for
both sides the following expression
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e Let us conclude verifying (3), in the case m = 0.

We have the same situation of the above case for its right hand side,
while for its left hand side we have to take simply the derivative of (5)
with respect to A\. More precisely, we obtain for both sides the following
expression

Ooee 11 111 1
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So we have finished to verify that (4), (5) is a solution of (3),_, and there
remains to prove that it satisfies also (3);.

4. Proof of the Solution (4), (5) — Part II

We prove now that (4), (5) is a solution of (3);. To this regard we note firstly
that in this condition we can put under an unique summation the coefficients
of p..., from the first coefficient of a \... we can isolate the term with n = 1 and
in the other ones we can change the index of the summation according to the
law n = 2+ s. In this way (3); can be rewritten as

N+1 N-1
on' on
— (n+ D pijyoj, + 2Ny jo————— + (7)
,;) Okejy---jo, R ; P Oty g
8h/ N-1 ’
+

Oh ;
A+ S — (e Dy, + S = 0.
D SZ:; FIv— (s + D) Ainy-h.

e Now, for the first term of this relation we can use (4) and the derivation
causes a presence of the factor pp1, the substitution of pia, .\, -+ ftA, 1y,
with g, - HAni1 -1 and the new free indexes kj; - - - j, in the ex-
pression of §"" ; more precisely, that term becomes

N+1 o N+1
Z (n + 1)#1‘3‘1...3‘”87 = Z (n + 1)pn+1 : (8)
n:() ijl”'jn n—o
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where we have also substituted p;j,...;, With p1j,...;,,,6’+1*. Now in this expres-
sion we can insert a symmetrization over all the indexes of the set

J1 InrtAnsil Anlpaga—1

because that expression remains the same if we exchange two of these indexes.
This fact is evident if the two indexes are taken between jj --- jn+1; for the
proof in the other cases, let us consider the shortened expression

¢! +1Z5( Jurdni i )Mjl---jn+1ﬂk1~~kn+1’

here we can exchange the nomes of the indexes j. with those of the k., so that
the above shortened expression becomes

K16 s(kk1-Enjt - jnjni1-- o
ghnigl " et )Mk1---kn+1uj1---Jn+1'

Now we can exchange the indexes kj - - - k,, with the indexes ji - - - j, in the
expression of §(kk1knjiinint1) hecause this is a symmetric tensor.
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We obtain 5k"+1i5(kj1“'j"k1"'k"j”““')ukl...kn+lujl...jn+1. By comparing this
result with the expression which we started from, it is the same if he had
exchanged the indexes j,4+1 and k,y1. This completes the proof of the fact
that the expression (8) remains the same if we exchange two indexes of the set

J1o Jns1Ans11  Angipass—1; SO we can insert there a symmetrization over
those indexes and (8) becomes
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where underlined indexes denote symmetrization over these indexes. Now
we observe that (n 4+ 1)p,4+1 is exactly the number of the indexes of the set
J1 Jnk1Ang11 - Angip,y,—1 and that, thanks to the summation Zg:ol the
index near 4 in /»+!* can be every index of the set

A Arp - Apiin Apiipnsr - - ANg21 - ANG 2y sa-
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These facts allow to rewrite (9) as

N+1 o N+1
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e For the fourth term of (7) we can do similar passages (the difference is

that we have the \... instead of the p..., N — 2 instead of IV and s instead
of n); in this way that term becomes
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o If we look at the last term of (7), we see that it can be written together
with (10) and (11) and they become
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where also the index k£ has been put under the symmetrization and we recall
for the sequel is that a property of symmetrization is §%£45() = §ikg= = §k)
It is interesting to see that the coefficient in square bracket at the beginning of
the right hand side of eq. (12) has become equal to the denominator of the half

factorial of that right hand side!

e For the second term of (7), we can use (4) and the derivation causes
someway the rising of one unity of the index po; more precisely we have
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(13)

e There remains to consider the third term of (7); for it we can use (4) and
the derivation causes someway the rising of one unity of the index ps43;

more precisely we have
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In this expression, we can substitute Aj,..; , with )‘Bs+1,rs+1+1 and j1 -+ jsa1

: , : 1 repitl
with Bsy1,,,,+1; moreover, we substitute o with CNRES ] and, after that,
decrease r541 of one unity (which is equivalent to a change of index). So this
expression becomes
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It is true that with change of index we have in the summation the extra term
with 41 = 0; but it doesn’t effect the result for the presence of the coefficient
Ts+1-

If we look at the expressions (12), (13) and (15) we conclude that to prove
(7) it is sufficient that the following relation holds

814*2,{\7;{2 pi+2§\’:1 T 1 %[E -1 sz+2 1.77'3]
T |(B) |

'w%[pl+2p2+"'+(N+2)pN+2+7‘1+27‘2+,,,+N7,N}:| +
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P nitey R DALY -1 > 3 2+ im0 ]

+2) -1
DT 7 92t X b (2)\

w% [2+p1+2p2+~~~+(N+2)pN+2+r1+27~2+..._,_NTN}] +
N+

31+ZZN:J§2 Pt i ( _1) 2+ ipi A ]
2) '

N-1
+ 2rs41
; F oA 8;12*2?;52 pi

'w%[2+P1+2p2+"'+(N+2)PN+2+T1+2T2+"'+NT’N}] =0.

Now, for the last two terms of this expression we can use (6), after that only
the function
¢%[p1+2p2+___+(N+2)pN+2+T1+2T2+___+NTN] will be present there and to prove that
relation it will be sufficient to prove that

T T o —14r o
O gyl (—119)+2 0 ( 119)20, (16)

% o\ 2x "o+ \ 2n
where we have put r =r; +r9 +--- +ry and
9 — {(__1)%[p1+2p2+---+(N+2)pN+2+r1+2r2+~~~+N7’N] )
= [\2x

w% [pl+2p2+~..+(N+2)p1\7+2+7‘1+27‘2+--.+N7‘N}:| .
Obviously, eq. (16) is an identity because we have

o or -1 o (-1 o~ /1
o’ = o (_” 519> = o (ﬁﬂ) ~ T <ﬁﬁ>

so we have finished all the arguments which we had to prove.

Conclusions

We observe that in the particular case N = 0, we obtain the 11 moments model
and the solution here indicated is exactly that already obtained in literature
with the macroscopic approach. In the case N = 1 we have that the present one
is a particular solution of those already known in literature. Aim of a future
research is to find the explicit expression of the general solution.
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