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Abstract: Extended Thermodynamics of Dense Gases with an arbitrary but fixed number of
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linked to a number N and the resulting model is called an (N)−Model. As usual in Extended
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1. Introduction

Extended Thermodynamics of Dense Gases (ETDG) with many moments pro-
poses for every number N the following balance equations

∂tF
i1···in + ∂kF

ki1···in = P i1···in forn = 0, · · ·N + 2. (1)

∂tG
i1···im + ∂kG

ki1···im = Qi1···im form = 0, · · ·N .

and the resulting model is called an N −Model.

We recall that the earlier versions of Extended Thermodynamics (ET) used
only eqs. (1)1 obtaining the important result to have a symmetric hyperbolic
system of partial differential equations, with finite speed of propagation of shock
waves and other important properties (See refs. [1]-[6] ). These properties
were not satisfied by the models of Ordinary Thermodynamics except for some
simple cases. But the structure of ET implied a restriction on the state function
relating the pressure p to the mass density ρ and energy density ǫ, that is p =
2
3ρǫ. This problem have been overcome in ETDG by considering all the balance
equations (1) of which the first one is called the ”Mass-Block” of equations
and the second is called the ”Energy-Block” of equations (See refs. [7]-[14] as
examples).

In (1) the independent variables are F i1···in and Gi1···im; the quantities
F ki1···in and Gki1···im are their corresponding fluxes. We see that each flux
is equal to the independent variable of the subsequent equation, except for the
flux in the last equation of the Mass-Block and for that in the last equation of
the Energy-Block; for these last fluxes we know only that they are symmetric
tensors. We will refer to this property as ”the symmetry conditions”. The
problem will be closed when we know the expressions of F ki1···iN+2 and Gki1···iN

as functions of the independent variables. Restrictions on their generality are
obtained by imposing the entropy principle, the Galilean relativity principle
and the symmetry conditions.

The Entropy Principle can be exploited through Liu’ s Theorem [15] and
by using a bright idea conceived by Ruggeri [16]; so it becomes equivalent to
assuming the existence of Lagrange Multipliers µA and λB which can be taken
as independent variables and, after that, we have

F i1···in =
∂h′

∂µi1···in
, Gi1···im =

∂h′

∂λi1···im
(2)

F ki1···in =
∂h′k

∂µi1···in
, Gki1···im =

∂h′k

∂λi1···im
.
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which expresses all the moments in terms of only two unknown functions, the
4-potentials h′, h′k. A nice consequence of eqs. (2) is that the field equations
assume the symmetric form. Another consequence of (2) is that the above
mentioned symmetry conditions and the Galilean Relativity Principle can be
expressed as

∂h′k

∂µi1···in
=

∂h′

∂µki1···in
forn = 0, · · · , N + 1 ;

∂h′[k

∂µi1]i2···iN+2

= 0

∂h′k

∂λi1···im
=

∂h′

∂λki1···im
form = 0, · · · , N − 1 ;

∂h′[k

∂λi1]···iN
= 0 .

∂h′

∂µk
µi +

N+1
∑

n=1

∂h′

∂µkj1···jn
[(n + 1)µij1···jn + 2λj1···jn−1

δjni] +

+
N−1
∑

s=0

∂h′

∂λkh1···hs

(s+ 1)λih1···hs
+ h′δki = 0 . (3)

We don’ t go in the details on how the the Galilean Relativity Principle, thanks
also to the other conditions, is equivalent to (3)5; this equivalence can be already
found in literature as [17]-[18] and others. In the next section, eqs. (4) and
(5), we will exhibit a particular but significative solution of the conditions (3),
which is expressed through a Taylor’ s expansion around equilibrium; this is
defined as the state where µi1···in = 0 for n = 1, · · · , N + 2, λi1···im = 0 for
m = 1, · · · , N , so that the only variables which are not zero at equilibrium are
µ and λ. The first of these is the chemical potential, while λ = 1

2T with T

absolute temperature.
In sect. 3 we will report a part of the proof that eqs. (4) and (5) give a

solution of (3). The second and final part of the proof is described in sect. 4.

2. An Exact Solution of Conditions (3)

Before writing our solution we need to describe an hard but straightforward
Notation: To do the derivatives with respect to µi1···in a number pn of

times, we use the compact form An,1 to indicate a set of n indexes, An,2 to
indicate another set of n indexes, and so on up to An,pn . For example,

∂p2h′k

∂µh1k1∂µh2k2 · · · ∂µhp2
kp2

in the compact notation becomes

∂p2h′k

∂µA2,1
∂µA2,2

· · · ∂µA2,p2
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because the first index of A··· ,··· indicates how many indexes has the correspond-
ing µ···, while the second index of A··· ,··· indicates how many derivatives we are
taking with respect to it.

Similarly,
∂p3h′k

∂µh1k1j1∂µh2k2j2 · · · ∂µhp3
kp3jp3

becomes
∂p3h′k

∂µA3,1
∂µA3,2

· · · ∂µA3,p3

and so on. By using this notation, we can now write our solution and it is

h′ =

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
· (4)

·

[

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1 rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(A1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · · λBN,1
· · ·λBN,rN

,

h′k =
0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj odd

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
· (5)

·





N+2
∑

i=1

ipi +
N
∑

j=1

jrj



!! ·
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·
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [1+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[1+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(kA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

where ψn is a family of functions depending only on µ and λ and constrained
only by

∂ψn+1

∂µ
= ψn . (6)

Despite the appearance, these expressions are not complicated. In fact, the
factorial 1

p1!
appears also in the Taylor’ s expansions of functions depending on

a single variable; we have here one of these for every variable, both of the mass
block than of the energy block. Moreover, in these expressions appears the sum
of these numbers p1+p2+ · · ·+pN+2 of the mass block and r1+ r2+ · · ·+ rN of
the energy block. Moreover, these numbers appear also through p1+2p2+ · · ·+
(N +2)pN+2+ r1+2r2 + · · ·+NrN where these numbers are multiplied by the
order of the Lagrange multiplier which they represent; after that, their sum is
taken. The condition ”p1+2p2+ · · ·+(N +2)pN+2+ r1+2r2+ · · ·+NrN odd”
in the expression of h′k is necessary because the following δ··· must have an even
number of indexes; similarly, for the expression of h′. Here we find only a letter
δ··· but it is understood that it is a shortened symbol denoting the product
of some δ··· each one with 2 indexes, and with a final symmetrization over all
these indexes. Finally, in the last line there is the product of the variables with
respect to which we have done the Taylor’ s expansions.

3. Proof of the Solution (4), (5) – Part I

We prove now that (4), (5) is a solution of (3)1−4, while (3)5 will be considered
in the next section.
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• Let us begin with (3)1 in the case n ≥ 1.

To verify it we have to take into account that µi1···in here is denoted with
µAn,1

, or with µAn,2
, and so on up to µAn,pn

. Similarly, µki1···in is denoted
with µAn+1,1

, or with µAn+1,2
, and so on up to µAn+1,pn+1

. Consequently,

the left hand side of (3)1 with n ≥ 1 causes, with respect to the expression
(5), a rise of one unity of the index pn; similarly, the right hand side of
(3)1 with n ≥ 1 causes, with respect to the expression (4), a rise of one
unity of the index pn+1. More precisely, we obtain for both sides the
following expression

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN

n+
∑N+2

i=1 ipi+

+
∑N

j=1 jrj odd

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·



n+

N+2
∑

i=1

ipi +

N
∑

j=1

jrj



!! ·

·
∂2+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [n+1+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[n+1+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(ki1···inA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

.

• Regarding (3)1 in the case n = 0, we have the same situation of the above
case for its right hand side, while for its left hand side we have to take
simply the derivative of (5) with respect to µ. More precisely, we obtain
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for both sides the following expression

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj odd

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·





N+2
∑

i=1

ipi +

N
∑

j=1

jrj



!! ·

·
∂2+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [1+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[1+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(kA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · · λBN,1
· · ·λBN,rN

.

• It is easy to verify (3)2,4.

• Let us continue verifying (3)3 in the case m ≥ 1.

To verify it we have to take into account that λi1···im here is denoted
with λBm,1

, or with λBm,2
, and so on up to λBm,rm

. Similarly, λki1···im
is denoted with λBm+1,1

, or with λBm+1,2
, and so on up to λBm+1,rm+1

.

Consequently, the left hand side of (3)3 with m ≥ 1 causes, with respect
to the expression (5), a rise of one unity of the index rm; similarly, the
right hand side of (3)3 with m ≥ 1 causes, with respect to the expression
(4), a rise of one unity of the index rm+1. More precisely, we obtain for
both sides the following expression
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0···∞
∑

p1, · · · , pN+2, r1, · · · , rN

m+
∑N+2

i=1 ipi+

+
∑N

j=1 jrj odd

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·



m+

N+2
∑

i=1

ipi +

N
∑

j=1

jrj



!! ·

·
∂2+

∑N+2

i=1
pi+

∑N
j=1 rj

∂λ1+
∑N

j=1 rj∂µ1+
∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [m+1+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[m+1+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(ki1···imA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

.

• Let us conclude verifying (3)3 in the case m = 0.

We have the same situation of the above case for its right hand side,
while for its left hand side we have to take simply the derivative of (5)
with respect to λ. More precisely, we obtain for both sides the following
expression

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj odd

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·





N+2
∑

i=1

ipi +
N
∑

j=1

jrj



!!·
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·
∂2+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ1+
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [1+
∑N+2

i=1
ipi+

∑N
j=1 jrj]

·

·ψ 1

2
[1+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(kA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · · λBN,rN

.

So we have finished to verify that (4), (5) is a solution of (3)1−4 and there
remains to prove that it satisfies also (3)5.

4. Proof of the Solution (4), (5) – Part II

We prove now that (4), (5) is a solution of (3)5. To this regard we note firstly
that in this condition we can put under an unique summation the coefficients
of µ···, from the first coefficient of a λ··· we can isolate the term with n = 1 and
in the other ones we can change the index of the summation according to the
law n = 2 + s. In this way (3)5 can be rewritten as

N+1
∑

n=0

∂h′

∂µkj1···jn
(n+ 1)µij1···jn +

N−1
∑

s=0

2λj1···js+1

∂h′

∂µkj1···js+1i

+ (7)

+
∂h′

∂µki
2λ+

N−1
∑

s=0

∂h′

∂λkh1···hs

(s+ 1)λih1···hs
+ h′δki = 0 .

• Now, for the first term of this relation we can use (4) and the derivation
causes a presence of the factor pn+1, the substitution of µAn+1,1

· · ·µAn+1,pn+1

with µAn+1,1
· · ·µAn+1,pn+1−1

and the new free indexes kj1 · · · jn in the ex-
pression of δ··· ; more precisely, that term becomes

N+1
∑

n=0

(n+ 1)µij1···jn
∂h′

∂µkj1···jn
=

N+1
∑

n=0

(n+ 1)pn+1 · (8)
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0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δjn+1iδ
(kj1···jnA1,1···A1,p1

···An+1,1···An+1,pn+1−1···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···BN,1···BN,rN

)µA1,1
· · ·µA1,p1

· · ·µAn+1,1
· · · µAn+1,pn+1−1

µj1···jn+1
· · ·µAN+2,1

· · ·µAN+2,pN+2
·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

where we have also substituted µij1···jn with µj1···jn+1
δjn+1i. Now in this expres-

sion we can insert a symmetrization over all the indexes of the set

j1 · · · jn+1An+1,1 · · ·An+1,pn+1−1

because that expression remains the same if we exchange two of these indexes.
This fact is evident if the two indexes are taken between j1 · · · jn+1; for the
proof in the other cases, let us consider the shortened expression

δjn+1iδ(kj1···jnk1···knkn+1··· )µj1···jn+1
µk1···kn+1

;

here we can exchange the nomes of the indexes j· with those of the k·, so that
the above shortened expression becomes

δkn+1iδ(kk1···knj1···jnjn+1··· )µk1···kn+1
µj1···jn+1

.

Now we can exchange the indexes k1 · · · kn with the indexes j1 · · · jn in the
expression of δ(kk1···knj1···jnjn+1··· ) because this is a symmetric tensor.
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We obtain δkn+1iδ(kj1···jnk1···knjn+1··· )µk1···kn+1
µj1···jn+1

. By comparing this
result with the expression which we started from, it is the same if he had
exchanged the indexes jn+1 and kn+1. This completes the proof of the fact
that the expression (8) remains the same if we exchange two indexes of the set
j1 · · · jn+1An+1,1 · · ·An+1,pn+1−1; so we can insert there a symmetrization over
those indexes and (8) becomes

N+1
∑

n=0

(n+ 1)µij1···jn
∂h′

∂µkj1···jn
=

N+1
∑

n=0

(n+ 1)pn+1 · (9)

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δjn+1iδ
(kj1···jnA1,1···A1,p1

···An+1,1···An+1,pn+1−1···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···BN,1···BN,rN

)µA1,1
· · ·µA1,p1

· · ·µAn+1,1
· · · µAn+1,pn+1−1

µj1···jn+1
· · ·µAN+2,1

· · ·µAN+2,pN+2
·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

where underlined indexes denote symmetrization over these indexes. Now
we observe that (n + 1)pn+1 is exactly the number of the indexes of the set
j1 · · · jn+1An+1,1 · · ·An+1,pn+1−1 and that, thanks to the summation

∑N+1
n=0 the

index near i in δjn+1i can be every index of the set

A1,1 · · ·A1,p1 · · ·An+1,1 · · ·An+1,pn+1
· · ·AN+2,1 · · ·AN+2,pN+2

.
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These facts allow to rewrite (9) as

N+1
∑

n=0

(n+ 1)µij1···jn
∂h′

∂µkj1···jn
=

[

N+1
∑

n=0

(n+ 1)pn+1

]

· (10)

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1 rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δjn+1iδ
(kj1···jnA1,1···A1,p1

···An+1,1···An+1,pn+1−1···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···BN,1···BN,rN

)µA1,1
· · ·µA1,p1

· · ·µAn+1,1
· · · µAn+1,pn+1−1

µj1···jn+1
· · ·µAN+2,1

· · ·µAN+2,pN+2
·

·λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

,

• For the fourth term of (7) we can do similar passages (the difference is
that we have the λ··· instead of the µ···, N − 2 instead of N and s instead
of n); in this way that term becomes

N−1
∑

s=0

(s+ 1)λih1···hs

∂h′

∂λkh1···hs

=

[

N−1
∑

s=0

(s+ 1)rs+1

]

· (11)
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0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δhs+1iδ
(kh1···hsA1,1···A1,p1

···AN+2,1···AN+2,pN+2

B1,1···B1,r1
···Bs+1,1···Bs+1,rs+1−1···BN,1···BN,rN

)
·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

·λB1,1
· · · λB1,r1

· · ·λBs+1,1
· · · λBs+1,rs+1−1

· · ·λBN,1
· · ·λBN,rN

.

• If we look at the last term of (7), we see that it can be written together
with (10) and (11) and they become

N+1
∑

n=0

∂h′

∂µkj1···jn
(n+ 1)µij1···jn +

N−1
∑

s=0

∂h′

∂λkh1···hs

(s+ 1)λih1···hs
+

+h′δki =

[

1 +

N+1
∑

n=0

(n+ 1)pn+1 +

N−1
∑

s=0

(s+ 1)rs+1

]

·

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·
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·

[

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

1 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1 jrj]

·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δkiδ
(A1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · · µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

, (12)

where also the index k has been put under the symmetrization and we recall
for the sequel is that a property of symmetrization is δikδ(···) = δikδ··· = δ(ik··· ).
It is interesting to see that the coefficient in square bracket at the beginning of
the right hand side of eq. (12) has become equal to the denominator of the half
factorial of that right hand side!

• For the second term of (7), we can use (4) and the derivation causes
someway the rising of one unity of the index p2; more precisely we have

∂h′

∂µki
2λ = 2λ

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!
· · ·

1

pN+2!

1

r1!
· · ·

1

rN !
·

·



1 +

N+2
∑

i=1

ipi +

N
∑

j=1

jrj



!! ·

·
∂2+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [2+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·
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·ψ 1

2
[2+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(kiA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · · µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

, (13)

• There remains to consider the third term of (7); for it we can use (4) and
the derivation causes someway the rising of one unity of the index ps+3;
more precisely we have

N−1
∑

s=0

2λj1···js+1

∂h′

∂µkj1···js+1i

=

N−1
∑

s=0

2λj1···js+1
· (14)

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN

s+ 3 +
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

s+ 4 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

s+ 4 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂2+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [s+3+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[s+3+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(kj1···js+1iA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · · µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

.
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In this expression, we can substitute λj1···js+1
with λBs+1,rs+1+1

and j1 · · · js+1

with Bs+1,rs+1+1; moreover, we substitute 1
rs+1!

with rs+1+1
(rs+1+1)! and, after that,

decrease rs+1 of one unity (which is equivalent to a change of index). So this
expression becomes

N−1
∑

s=0

2λj1···js+1

∂h′

∂µkj1···js+1i

=

N−1
∑

s=0

2rs+1 · (15)

0···∞
∑

p1, · · · , pN+2, r1, · · · , rN

2 +
∑N+2

i=1 ipi+

+
∑N

j=1 jrj even

1

p1!

1

p2!
· · ·

1

pN+2!

1

r1!

1

r2!
· · ·

1

rN !
·

·

[

3 +
∑N+2

i=1 ipi +
∑N

j=1 jrj

]

!!

3 +
∑N+2

i=1 ipi +
∑N

j=1 jrj
·

·
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ−1+
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [2+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[2+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

·

·δ
(kiA1,1···A1,p1

···AN+2,1···AN+2,pN+2
B1,1···B1,r1

···BN,1···BN,rN
)
·

·µA1,1
· · ·µA1,p1

· · ·µAN+2,1
· · ·µAN+2,pN+2

·

λB1,1
· · ·λB1,r1

· · ·λBN,1
· · ·λBN,rN

.

It is true that with change of index we have in the summation the extra term
with rs+1 = 0; but it doesn’t effect the result for the presence of the coefficient
rs+1.

If we look at the expressions (12), (13) and (15) we conclude that to prove
(7) it is sufficient that the following relation holds

∂1+
∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ1+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

+
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+2λ
∂2+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [2+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[2+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

+

+

N−1
∑

s=0

2rs+1
∂1+

∑N+2

i=1
pi+

∑N
j=1

rj

∂λ−1+
∑N

j=1
rj∂µ2+

∑N+2

i=1
pi

[

(

−1

2λ

)
1

2 [2+
∑N+2

i=1
ipi+

∑N
j=1

jrj]
·

·ψ 1

2
[2+p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

= 0 .

Now, for the last two terms of this expression we can use (6), after that only
the function
ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ] will be present there and to prove that

relation it will be sufficient to prove that

∂r

∂λr
ϑ+ 2λ

∂r

∂λr

(

−1

2λ
ϑ

)

+ 2r
∂−1+r

∂λ−1+r

(

−1

2λ
ϑ

)

= 0 , (16)

where we have put r = r1 + r2 + · · ·+ rN and

ϑ =
[

(

−1
2λ

)
1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

·

·ψ 1

2
[p1+2p2+···+(N+2)pN+2+r1+2r2+···+NrN ]

]

.

Obviously, eq. (16) is an identity because we have

∂r

∂λr
ϑ =

∂r

∂λr

(

−2λ
−1

2λ
ϑ

)

= −2λ
∂r

∂λr

(

−1

2λ
ϑ

)

− 2r
∂−1+r

∂λ−1+r

(

−1

2λ
ϑ

)

so we have finished all the arguments which we had to prove.

Conclusions

We observe that in the particular case N = 0, we obtain the 11 moments model
and the solution here indicated is exactly that already obtained in literature
with the macroscopic approach. In the case N = 1 we have that the present one
is a particular solution of those already known in literature. Aim of a future
research is to find the explicit expression of the general solution.
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