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Abstract 

An experimental setup was designed to study the impact of concrete resistivity on the rate of 

chloride-induced reinforcement corrosion. Small pieces of mild steel were used to simulate 

pits (anodes) that form when chlorides come into contact with the reinforcement. The 

galvanic current was measured between the simulated anodes and a cathode network. 

Comparisons were made between the galvanic current and the concrete bulk resistivity. The 

bulk resistivity was varied using two mortar mixes (made of plain Portland cement and a 

blended Fly ash cement) which were exposed in different temperature and moisture 

conditions. Despite a high scatter in the results, it was clear that the relationship between bulk 

resistivity and corrosion rate depended on the mortars tested. The findings presented in this 

paper and the accompanying work strongly indicate that concrete bulk resistivity alone does 

not provide sufficient information for assessment of the corrosion rate for chloride-induced 

macro-cell corrosion. 
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1 Introduction 

Reinforcement corrosion in concrete due to chlorides causes costly damage and is considered 

one of the greatest infrastructure problems [1, 2]. Chloride-induced corrosion typically 

consists of a local corrosion attack with small areas of anodic activity (pits) surrounded by a 

large passive/cathodic area (Figure 1). Acidification takes place in the pits leading to iron 

dissolution (anodic partial process). The electrons released are consumed by a cathodic 

reaction (mostly oxygen reduction) on the passive steel surface (cathodic partial process). 

To equilibrate the half-cell reactions, current flows between the anode and the cathode 

through the concrete (ohmic partial process) as well as through the steel. The overall rate of 

the corrosion process depends on the rates of the anodic, cathodic and ohmic partial 

processes, the slowest of them being rate-limiting.  

 

 

Figure 1 – The electrochemical process of reinforcement corrosion induced by chlorides [1, 3]. 
 

There are various ways of determining the overall rate of the corrosion process. 

Electrochemical methods are commonly used both in experimental studies and in the field. 

However, they are subject to several sources of error [4-8]. 
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Simplified approaches for predicting the corrosion rate through an empirical relationship with 

the concrete resistivity have been proposed in the literature [9-11]. A literature review on this 

subject was prepared by three of the present authors [12]. Data and trends from the literature 

are summarized in Figure 2.  

 

 

Figure 2 – Trend lines for the relationship between corrosion rate and concrete resistivity (chloride-induced 
corrosion) from published literature [12-20]. 

 

The main conclusion of this literature review [12] was that while there does seem to be a 

general trend between increasing concrete resistivity and decreasing corrosion rate, the scatter 

within and between the various studies reviewed is high. It was suggested that the differences 

were partly caused by the different methodologies for determining concrete resistivity and 

corrosion rate and partly by the concrete composition. The literature reviewed contained 

limited discussion on the mechanisms that might underlie any direct correlation between 

concrete resistivity and corrosion rate. 

Concrete bulk resistivity ρbulk [Ωm]

1 10 100 1000 10000

C
or

ro
si

on
 ra

te
 i c

or
r [
µ

A
/c

m
2 ]

0,001

0,01

0,1

1

10

100

(Rodriguez et al. 1994)  - field data
(Bertolini et al. 1997) - 0.45, slag cements
(Bertolini et al. 1997) - 0.45, OPC
(Morris et al. 2002) - 0.4/0.6
(Gonzalez et al. 2004)- 0.5
(Hope et al. 1987)  - 0.45, slag cements
(Lopez et al. 1993)  - 0.5
(Feliu et al. 1989)  - 0.5



 

4 

 

 

Understanding the impact of concrete resistivity on the rate of chloride-induced reinforcement 

corrosion is relevant for both durability design and the assessment of existing structures. The 

relationship between concrete resistivity and corrosion rate has been further investigated using 

an experimental setup that simulates chloride-induced macro-cell corrosion. Results from the 

investigation are summarized in this paper. 

 

2 Experimental  

An experimental setup was designed using small pieces of mild steel to simulate pits (anodes) 

formed due to chloride-induced corrosion. The simulated anodes were located in a network of 

stainless steel tubes and bars that acted as cathode (the setup is sketched in Figure 3). The 

experimental setup, materials and exposure are described below; details can also be found in 

[21]. 

 

2.1 Experimental setup 

The simulated anodes were produced from a smooth mild steel bar cut into small pieces 

(S235JR Ø 6 mm, length ~ 6 mm). The mild steel pieces were sandblasted and coated with 

heat-shrink tubing leaving just one cut surface exposed (exposed area 28.3 mm2). To enhance 

the portability of corrosion onset, four mild steel pieces were mounted in one stainless steel 

tube (denoted C1, AISI 316, Ø 12 mm, exposed area 4270 mm2). The stainless steel tube and 

the mild steel pieces were electrically isolated from another. This instrumented tube and 

additional four stainless steel bars (denoted C1-1, C1-2, C2-1, C2-2, AISI 316L, Ø 10 mm, 

exposed area 3770 mm2 for each cathode bar) were placed at various distances from the 

simulated anodes. Simulated anodes and all cathodes were equipped with wires to allow 
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manually connections between them. A manganese dioxide reference electrode (ERE 20, 

Force Technology) was embedded in each specimen. 

 

Figure 3 – Experimental setup [21], the samples were exposed to chlorides from the lower surface of the 
specimen.. 

 

2.2 Materials and exposures 

Mortar specimens were prepared using two mortar mixes: a low-resistivity mix (with a 

water/binder ratio (w/b) = 0.55 using only Portland cement (CEM I 42.5 R)) denoted PC, and 

a high-resistivity mix (with a w/b = 0.4 in which 30% of the Portland cement was replaced by 

fly ash) denoted FA. 

 

The mortar specimens were cured by sealing for several weeks (PC mortars 4 weeks, FA 

mortars 18 weeks) in a climate chamber (20 °C) and then exposed to various environments, 

starting with a few weeks of exposure to a chloride solution, followed by a sequence of 

different temperature and moisture conditions (Table 1 and Table 2). The FA and PC 

specimens were not exposed to exactly the same conditions. The main aim of the exposure 

treatment was to achieve a large range of bulk resistivity. It was not within the scope of this 
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experiment to study the influence of moisture or temperature nor time on the corrosion 

process.  

 

 

Table 1 – Exposure conditions PC specimens (9 specimens in total).  

Exposure Temperature Weeks after Casting 
Casting 20 °C 1 
Curing (sealed, 20 °C, climate room) 20 °C 2-4 
Drying (oven) 30 °C 5-8 
Storage (laboratory) 20 °C 9 
Exposure to 3 mol/L NaCl solution 5 °C 20 °C 35 °C 10-17 
Stored in closed boxes (RH ~ 85 %) 5 °C 20 °C 35 °C 18-43* 
Stored in closed boxes (RH ~ 85 %) 20 °C 44 
Storage (laboratory) 20 °C 45-53 
Stored in closed boxes (RH ~ 30 %) 20 °C 54-91* 
Exposure to tap water 20 °C 92* 
Stored in closed boxes (RH ~ 85 %) 5 °C 20 °C 35 °C 93* 
Storage (laboratory) 20 °C 94* 
* measurements presented in the paper   

 

Table 2 – Exposure conditions FA specimens (9 specimens in total). 

Exposure Temperature Weeks after Casting 
Casting 20 °C 1 
Curing (sealed, 20 °C, climate room) 20 °C 2-20 
Drying (oven) 30 °C 21-23 
Storage (laboratory) 20 °C 24 
Exposure to 3 mol/L NaCl solution 5 °C 20 °C 35 °C 25 
Stored in closed boxes (RH ~ 85 %) 5 °C 20 °C 35 °C 26-54* 
Stored in closed boxes (RH ~ 85 %) 20 °C 55-87 
Storage (laboratory) 20 °C 88-92* 
Exposure to 3 mol/L NaCl solution 20 °C 93* 
Stored in closed boxes (RH ~ 85 %) 5 °C 20 °C 35 °C 94* 
Storage (laboratory) 20 °C 95* 
* measurements presented in the paper   

 

2.3 Methods of investigation 

After corrosion initiation (indicated by potential drops), detailed measurements were 

undertaken for just one simulated anode per specimen. The remaining three simulated anodes 



 

7 

 

were isolated. The selected simulated anode was manually connected to all cathodes during 

the whole study (C1, C1-1, C1-2, C2-1, C2-2, cf. Figure 3, cathode-to-anode area ratio 685.).  

 

2.3.1 Bulk resistivity and cell resistance 

The bulk resistivity (ρbulk) of the mortars on the level of the instrumented bar was determined 

by measuring the electrical resistance between the stainless steel bar (C1-2) and the 

instrumented tube (C1 – only tube without simulated anodes) using an LCR meter (frequency 

1 kHz), and by applying a pre-calibrated cell constant (0.142 – 0.187 m).  

 

The electrical resistance between the simulated anode and the cathode network, termed cell 

resistance (Rcell) in the following, was measured with electrical impedance spectroscopy 

(EIS), using a potentiostat of the type PRINCETON APPLIED RESEARCH PARSTAT 2273. The cell 

resistance depends not only on the geometry (anode and cathode size) and the bulk resistivity, 

but also on material inhomogeneities in front of the anode. This is in detailed described in an 

earlier publication [22].  

 

2.3.2 Galvanic current and corrosion rate 

The galvanic current (Igalv) between the simulated anode and the cathode network was 

measured using a zero-resistance ammeter.  

 

The overall corrosion rate was calculated by dividing the galvanic current by the total exposed 

area of the simulated anode (28.3 mm2). The amount of micro-cell corrosion (cathodic 

reactions occurring on the simulated anode) and the amount of non-corroded areas on the 

simulated anode were consequently disregarded.  
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Some of the specimens were opened after finishing the tests. The volume loss on the steel 

pieces (simulated anodes) after removing all corrosion products, was determined using 3D 

scanning and compared with the volume loss calculated on basis of the galvanic current 

measurements (details are given in [23]). The differences between the actual volume loss 

determined on the segments and the calculations from the galvanic current measurements was 

assumed to account for the extent of self-/microcell-corrosion. The results indicate limited 

micro-cell corrosion on the PC specimens, but a rather high degree (some 40–70%) of micro-

cell corrosion on the FA specimens. This suggests that the corrosion rate of the anodes 

calculated here is adequate for the PC specimens, but underestimates the actual corrosion rate 

for the FA specimens. The results for the FA specimens were not corrected because the actual 

amount of micro-cell corrosion will vary depending on e.g. the magnitude of the galvanic 

current [24]. Nevertheless, it is indicated in the figures as well as mentioned in the following 

discussions that the actual corrosion rate of the anodes are likely to be higher for the FA 

specimens. 

 

In general, the corrosion process had propagated considerably more in the PC specimens than 

in the FA specimens. This is presumably a combined effect of the different exposure and 

material properties.  

 

3 Results 

The instantaneous corrosion rate calculated from the galvanic current measurements was 

compared with the bulk resistivity (Figure 4 a)) and the cell resistance (Figure 4 b)). In Figure 

4 a), the data and trend lines derived from the literature (cf. literature review [12]) are 

indicated by light grey symbols and lines (cf. Figure 2). It is clear that the corrosion rates 

determined in the present study are considerably higher than those reported in the literature. 
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Moreover, the data for the two mortar compositions investigated appear in two clearly 

separated groups. The data shows significant scatter and no linear relationship in the log-log 

diagram. When the corrosion rate is compared with the cell resistance instead of bulk 

resistivity, the impact of the mortar composition becomes less pronounced (cf. Figure 4 b)). A 

linear relationship appears in the log-log diagram, but the data shows significant scatter also 

here.  

 

a)  
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b)  

Figure 4 – Comparison of the instantaneous corrosion rate calculated based on galvanic current measurements 
and a) the bulk resistivity, and b) the cell resistance after [21]. The dashed grey line indicates the position of the 
overall trend for the data of the FA specimens taking into account an increase in the corrosion rate due to self-

corrosion (factor of two) – see also explanations in the text. 
 

It should be remembered that micro-cell corrosion was deduced on anodes of the FA 

specimens. Consequently, the corrosion rate calculated from the galvanic current 

measurements underestimates the actual corrosion rate. This is taken into account by adding a 

dark grey dashed line in both graphs (Figure 4 a) and b)) to indicate the trend of the 

presumably higher corrosion rates for the FA specimens.  

 

4 Discussion 

4.1 Relationship between corrosion rate and concrete resistivity 

4.1.1 Dependency on mortar composition  

The data for the comparison between bulk resistivity and calculated corrosion rate (Figure 4 

a)) differs for the two mortar compositions (w/b=0.55, PC vs. w/b=0.4, PC+FA). This is in 

line with observations by Bertolini and Polder [14] who report that although concrete with a 

certain amount of slag exhibited one order of magnitude higher resistivity than concrete made 

of PC, the corrosion rates differed less than the resistivity. This corresponds to a change in the 

trends for the relationship between concrete resistivity and corrosion rate for the two different 

mortars tested (cf. Figure 2, data from [14]). 

 

Concretes containing supplementary cementitious materials, such as fly ash, silica fume or 

slag, typically exhibit a lower pH in the pore solution and a denser pore structure [25, 26]. 

This explains the higher resistivity of mixes prepared with supplementary cementitious 

materials. However, a decrease in the pH of the pore solution can favour higher corrosion 

rates, which has been demonstrated with reinforcing steel in simulated pore solution [27, 28]. 
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For a pore solution with constant chloride concentration, the corrosion rate increased with 

decreasing pH, i.e. increasing pore solution resistivity [27]. In the same study, solutions with a 

constant pH and differing chloride concentration exhibited distinctly different relationships 

between pore solution resistivity and the corrosion rate. Despite differences in resistivity, a 

solution with low pH (11.64–12.66) exhibited the same corrosion rate as a solution with high 

pH (12.8–13.0). This corresponds to the observed differences for the relationship between the 

bulk resistivity and the corrosion rate for the PC and FA mortars in the present study. No 

measurements of the pH in the pore solution were undertaken during the experiment. 

However, in an investigation using similar raw materials and mortar compositions, specimens 

prepared with PC showed a constant pH of 13.7 during the 140 days of investigation, whereas 

for mortars with 35% of PC replaced with fly ash, the pH decreased continuously from 13.6 to 

13.3 [29]. Presumably, the pH was even lower in the FA specimens investigated in the present 

study because they were tested over a longer period (~670 days). However, observations from 

pore solutions are not directly transferable to the corrosion kinetics in concrete. In addition to 

pore solution chemistry, a range of other parameters influence the corrosion rate, e.g. pore 

volume and connectivity. Differences in pore structure are presumably among the main 

reasons for the average corrosion rate of anodes in the FA mortars being lower than in the PC 

mortars. 

 

Variations in the pH of the pore solutions are one possible explanation for the shifted trends in 

the relationship between corrosion rate and bulk resistivity for the PC and FA mortars. The 

data showed that steel embedded in a high-resistivity concrete (made of supplementary 

cementitious materials exhibiting lower pH in the pore solution) will not necessarily corrode 

at a lower rate than steel embedded in low-resistivity concretes.   
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4.1.2 Rate-limiting step  

A considerable scatter was observed in the relationship between corrosion rate and bulk 

resistivity/cell resistance in the data sets of the two mortars tested. In fact, the scatter in 

corrosion rate ranged over two orders of magnitude for a given mortar resistivity or cell 

resistance (cf. Figure 4). This might be explained by differences in the rate-limiting step that 

controls the corrosion process (cf. Figure 1). The rate-limiting step differs depending on a 

variety of parameters, such as moisture content, stage of corrosion propagation, oxygen 

availability and geometry [14, 30-37].  

 

The influence of bulk resistivity or cell resistance on the partial processes is discussed in 

another publication of the present authors [21]. From the experiments, a rather poor 

correlation between mortar resistivity and the cathodic partial process (both Tafel constant βc 

and exchange current density) was obtained, which agrees well with findings in the literature 

[21, 37, 38]. Both the anodic and the ohmic partial processes showed a partial correlation with 

the bulk resistivity. A somewhat improved correlation was found with the cell resistance, 

indicating that, for the anode size tested here, local conditions are more decisive for the 

anodic and ohmic partial process than the bulk resistivity. However, here too a quite high 

scatter was obtained (cf. Figure 4 b)), which indicates that other parameters, not related to the 

electrical properties of the mortar matrix, affect the partial processes. For the anode size and 

cathode-to-anode ratio tested here, it was shown that none of the three partial processes alone, 

but rather a combination of all three, dominates the corrosion process [21]. This suggests that 

bulk resistivity alone cannot characterize the corrosion rate.  

 

The previously cited investigation [21] also discusses to what extent the dimensions of the 

tested specimens influences the rate-limiting step and consequently the corrosion rate. It is 
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suggested that with increasing sample size and for large-scale structures, the influence of the 

ohmic partial process may increase while cathodic reaction-rate-related properties will be less 

important [21]. This would imply that concrete resistivity can, under certain conditions (e.g. 

large structures with infinitively large cathodic area and low resistance of the anodic partial 

process), be more clearly related to the corrosion rate than was found in the present small-

scale experiments. However, data reported by Rodriguez and co-workers [13] from field 

measurements had by far the highest scatter of all the data reviewed in [12] (cf. Figure 2). 

Both findings suggest that the influence of the ohmic partial process (and the concrete 

resistivity) for large-scale structures with an infinitely large ratio between cathode and anode 

needs further attention.  

 

4.2 Concrete/mortar resistivity  

Concrete/mortar is an inhomogeneous material and typically regarded as biphasic from an 

electrical point of view, with non-conductive aggregates surrounded by conductive cement 

paste [39, 40]. In most resistivity measurements, a large material volume is enclosed by the 

current field applied; consequently, what is measured is an average of a variety of individual 

electrical properties. However, in cases where the measurements cover just a small area, 

comparable in size to aggregates and voids (e.g. for the current flow between small anodes 

and a large cathode network, cf. ‘cell resistance’), the respective electrical properties of the 

inhomogeneities are of great importance. This was investigated in an experimental study 

conducted by the present authors [22], where dimensions comparable to the presented study 

were used. It was found that the cell resistance is not directly correlated to the bulk resistivity, 

a fact which was explained by the influence of possible inhomogeneities located in front of 

the simulated anodes.  
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4.2 Corrosion rate measurements 

Quantitative information on the corrosion rate of steel in concrete is of great importance for 

(residual) service life prediction, assessment of corroding structures, and for the evaluation of 

repair methods both in the laboratory and in the field [41]. As input into models for lifetime 

prediction, what is required is the average corrosion rate as an ‘engineering’ value. Values 

calculated from the observed loss of cross-section of the steel (on site) are usually erroneously 

estimated, because the time of depassivation (time when corrosion started) is not known. On 

the other hand, the instantaneous corrosion rate, icorr, can be obtained using various 

electrochemical methods. The linear polarization technique (LPR) is often used. This links the 

polarization resistance (Rp) to the corrosion rate (icorr) by the well-known Stern-Geary 

equation [42]. However, it has recently been shown that the Stern-Geary equation cannot be 

used for localized corrosion [4]. Furthermore, the fact that the area of the locally corroding 

spot is generally unknown is a practical limitation with this approach, as has been discussed in 

literature [41]. Experimental data from both laboratory and on-site measurements have shown 

that the real, local corrosion rates are 5 to 10 times higher than the values determined when 

relating Rp to the geometric area of the sample [43]. This huge difference can be taken into 

account by including a (somewhat arbitrary) ‘pitting factor’ in the calculations. Factors 

between 4 and 8 are reported for steel in concrete [44, 45], however the examination of pit 

depths in old RC structures have led to values greater than 10 [43], and laboratory 

experiments with model macro-cells have resulted in factors as high as 15 [46].  

 

In this research, the area of local corrosion was known (cf. Section 2.3.2), and the galvanic 

current measured between local anode and the cathode network can be considered a true 

measure of the instantaneous corrosion rate. But the fact remains that the corrosion rates 

determined are considerably higher than is reported in the literature (Figure 4 a)). This 
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discrepancy can be explained by the small corroding area in this research compared to the 

total steel area. The trend lines depicted in Figure 2 and Figure 4 a) are based on experimental 

investigations, where the corrosion rate was determined by dividing the measured corrosion 

current (e.g. by Liner Polarisation Resistance (LPR))  by the entire exposed steel area 

(detailed information is given in [12]); this would lead to a difference of the above-mentioned 

factor of 5–10. Another reason for the observed high corrosion rates is that a ‘worst case 

scenario’ was tested in the present experiment, with presumably high chloride contents at the 

reinforcement (not tested here), pre-dried concrete microstructure, and favourably high 

relative humidity, which all facilitate high corrosion activity.   

 

The differences observed indicate that the actual corrosion rate can be considerably 

underestimated when the corrosion current measured is normalized to an area larger than the 

actual actively corroding area. This also means that the comparability of studies in which 

different-sized areas are polarized by the electrochemical measurements becomes 

questionable, because this alone could explain the differences observed between the studies 

compared in Figure 2. 

 

5 Conclusions 

The applicability of using bulk resistivity as an indirect measure of corrosion rate was 

investigated using a custom-made experimental setup simulating chloride-induced macro-cell 

corrosion. Mortar specimens with and without fly ash were investigated.  

 

An inverse trend of increasing corrosion rate with decreasing bulk resistivity was observed for 

both mortars tested. However, the material composition was found to affect the trend between 

bulk resistivity and the rate of chloride-induced macro-cell corrosion. Steel embedded in a 
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high-resistivity mortar (made of supplementary cementitious materials exhibiting lower pH in 

the pore solution) will not necessarily be corroded at a lower rate than steel embedded in low-

resistivity (OPC) mortar. 

 

A high scatter was observed in the data for similar mortar composition. This was explained by 

a) the bulk resistivity not representing the actual ohmic resistance in the macro-cell, and b) 

not only ohmic, but in part also anodic and cathodic control of the corrosion process.  

 

In conclusion, the bulk resistivity can only provide a rough indication of the corrosion rate, 

but it can in no case be used as an indirect measure of the actual corrosion rate for chloride-

induced macro-cell corrosion.  
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