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Engineering design commonly assumes nominal values for uncertain parameters to sim-
plify the design process: the design of a gas turbine, or one of its modules, is generally
approached with some specific operating conditions in mind (its design point). Unfortu-
nately, engine components never exactly meet their specifications and do not operate at
just one condition, but over a range of power settings. This simplification can then lead to
a product that exhibits performance significantly worse than nominal in real-world condi-
tions. This problem is exacerbated in the presence of heavily optimised designs, which tend
to lie in extreme regions of the design space.14 In gas turbine design, safe and satisfactory
off-design operation must be guaranteed and is generally evaluated before moving to the
next phase of the design process. This approach, while guaranteeing that some minimum
requirements are met, introduces a further loop in the design process and does not ensure
the final design will be optimal with respect to this new requirement. The introduction
of some robustness considerations into the design process can reduce the level of fragmen-
tation and iteration typical of gas turbine engine design and produce further (and more
robust) improvements relative to the traditional method. In this study, two approaches for
dealing with off-design performance analysis are presented, integrated into an automatic
optimisation system and applied to the preliminary design of a core compression system
from a three-spool modern turbofan engine. Designs that are more robust than those found
if only design-point performance is considered are successfully identified.

Nomenclature

Roman
m̄ (pseudo) non-dimensional mass-flow
ṁ mass-flow
x design vector
cp specific heat capacity at constant pressure
DF Diffusion Factor
DH De Haller number
f objective function
H boundary layer shape factor
Hn Hermite polynomial
Hv fuel lower calorific value
In generic Wiener-Askey polynomial
k generic input variable
Koch Koch factor
m number of modules
MSD mean square deviation
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N number of random dimensions
n total number of stages
N0 quadrature order
P total pressure
p probability density function
Pi orthogonal polynomial
PR Pressure Ratio
SM Surge Margin
SPR static pressure rise coefficient
T temperature
W weighting function
X a random process

Greek
η isentropic efficiency
ηis,tot total system isentropic efficiency
γ ratio of specific heats
µ mean value
Φ Wiener-Askey Chaos
Ψ Hermite Chaos
σ2 variance
θ a generic random event
ξ random variable
ξ vector of noise factors

Subscripts
0 total (stagnation) conditions
c cold gas (referred to cp)
comb combustion
dp design point
h hot gas (referred to cp)
is isentropic
pl part-load

Acronyms
CFD Computational Fluid Dynamics
FOFM First Order First Moment
FOSM First Order Second Moment
H&J Hooke and Jeeves
HC Hermite Chaos
HPC high pressure compressor
IPC intermediate pressure compressor
LTM Long Term Memory (Tabu Search algorithm)
MCS Monte Carlo Simulations
MTM Medium Term Memory (Tabu Search algorithm)
NIPC Non-intrusive Polynomial Chaos
PC Polynomial Chaos
PDF probability density function
SOFM Second Order First Moment
SOSM Second Order Second Moment
STM Short Term Memory (Tabu Search algorithm)
TS Tabu Search

I. Introduction

The design of a new gas turbine is a challenging task described in more detail in a companion paper.9

Engineering design commonly assumes nominal values for uncertain parameters to simplify the design process.
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Unfortunately, this simplification can lead to a product that exhibits performance significantly worse than
nominal in real-world conditions. This problem is exacerbated in the presence of heavily optimised designs,
which tend to lie in extreme regions of the design space.14 In real-world applications, it is important not
only to achieve good performance, but also to be able to maintain it over a range of operating conditions and
during the whole course of the life of the product. Some consideration of the impact of off-design conditions
on performance should therefore be embedded in the design process to avoid bigger problems during the
later development or testing phases. Two different (but equivalent) illustrations of the concept of robust
design are given in Figure 1.
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Figure 1: Two different (but equivalent) illustrations of the concept of robust design

The starting point for the development of robust design methodologies is the work of Dr Genichi Taguchi,
a Japanese engineer who, between the 1950s and 1960s, built the theoretical foundations of Robust Design
and applied them successfully in the design of a number of products. Ross24 and Phadke22 give a good
overview of the Taguchi method and of its implications. Phadke defines Robust Design as a method for
improving the quality of a product through the minimisation of the effect of the causes of performance
variability without eliminating the causes themselves.

The causes of performance variability are usually defined as noise factors. A robust design is a design
that is less sensitive to the presence of noise factors, which are categorised by Phadke22 into three groups:

• External : External sources of performance variation, independent of the product itself.

• Unit-to-unit variation: Variation due to manufacturing variability (or manufacturing tolerances).

• Deterioration: Variation due to the change in product performance with time and wear.

In Taguchi’s work there is no reference to the reliability of the method (or model) used to quantify this
quality. Modern engineering relies heavily on a number of ever more sophisticated computational models.
These can represent an additional source of uncertainty in the product’s performance. A more realistic
classification of uncertainty sources is given by Oberkampf and Trucano,21 who distinguish between aleatory
and epistemic uncertainty: the former is associated with the physical system under consideration and its
operating environment (already identified by Phadke), while the latter arises from lack of knowledge in
the modeling process and can be made negligible if sufficient data are available.14 Walters and Huyse26

concentrate on the role of uncertainty in CFD, further subdividing epistemic uncertainty into discretisation
and model uncertainty: discretisation errors can be driven to zero (or to very low levels) with sufficient
computational resources, while model uncertainty can be only estimated by comparing experimental and
computational results.

Robust design can be considered as the methodology for finding the set of control factors (or design
variables) that minimise the sensitivity of the product to the noise factors. Putko et al.23 subdivide the
whole process into 3 steps:

• Uncertainty quantification: Determination of noise factors and their distribution.

• Uncertainty propagation: Determination of the effect of the noise factors on the performance of the
product.
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• Robust optimisation itself: Identification and selection of the “best solution”.

The importance of Taguchi’s work lies in the consideration of quality as a characteristic to be included
directly in the design of a product: in his approach this was ensured through the minimisation of a signal-to-
noise ratio, defined as −10log10MSD(x, ξ), where MSD(x, ξ) is the mean square deviation of the objective
function f(x, ξ) from a target value ftarget (see equation (1)), x the vector of control variables and ξ the
vector of noise factors. Taguchi used Orthogonal Arrays as a method for reducing the number of experiments
necessary to evaluate the quality metric; Phadke22 suggests the use of Monte Carlo Simulations (MCS) and
Taylor Series Expansions as alternatives to Orthogonal Arrays. Standard Analysis of Variance (AnoVa)
techniques are then used to derive the signal-to-noise ratio.14

MSD(x, ξ) = 〈(f(x, ξ)− ftarget)2〉 = limm→∞

m∑
i=1

(f(x, ξ(i))− ftarget)2

m
(1)

An alternative approach is to consider the problem as a multi-objective optimisation problem, aiming to
minimise simultaneously the mean µf and variance σ2

f of the objective function. Design for six sigma (an
approach widely adopted in industry) aims to maintain six standard deviations of f within acceptable limits
(or equivalently to minimise the weighted objective function µf + 6σf ).30

Walters and Huyse26 give an exhaustive overview of the principal methods available for uncertainty anal-
ysis (focusing on fluid mechanics applications), separating deterministic methods (such as interval analysis
and sensitivity derivatives), which are based on a number of deterministic evaluations and are relatively
inexpensive, from probabilistic ones (MCS, moments methods and Polynomial Chaos), which attempt to
approximate the probability distribution of the objective function, but are computationally more expensive
and require a more detailed estimation of the probability distribution of the noise factors.

The basic idea of the interval analysis approach is to evaluate the performance of the system for a number
of combinations of the noise factors to produce an estimation of the maximal error bounds for the nominal
performance (or, equivalently, a worst case scenario evaluation). A similar estimation can be performed with
sensitivity derivatives and a first order Taylor series approximation of the objective function

∆f =

√√√√ N∑
i=1

∂f

∂ξi
∆ξi (2)

where N is the number of uncertain parameters and the ∆ξi their uncertainty bounds.
Given an accurate estimation of the noise factors’ probability distributions, Monte Carlo Simulations

represent the only method that allows an exact estimation of the probability distribution of the objective
function (and then of its moments). The major limitation is the number of simulations needed to achieve
an accurate estimation (the convergence rate of MCS is O(1/

√
m), which means that the number of samples

has to be increased by a factor of 100 to improve the accuracy by one decimal place14): this is why for
real-world applications this technique is always used in association with some sort of response surface.

Moment methods are based on an approximation of the objective function f through a Taylor series
expansion about its nominal value f̄ = f(ξ̄). If only one uncertain parameter is considered, first and second
order expansions of the objective function are respectively

f(ξ) = f(ξ̄) +
∂f

∂ξ
(∆ξ) +O(∆ξ2) (3)

f(ξ) = f(ξ̄) +
∂f

∂ξ
(∆ξ) +

1
2
∂2f

∂ξ2
(∆ξ)2 +O(∆ξ3) (4)

First Order First Moment (FOFM), First Order Second Moment (FOSM), Second Order First Moment
(SOFM) and Second Order Second Moment (SOSM) approaches take their names from the order of the
expansion considered and of the moment analysed. SOFM and SOSM can be calculated as follows

µf =
∫ ∞
−∞

f(ξ)p(ξ)dξ =
∫ ∞
−∞

[f(ξ̄) +
∂f

∂ξ
(∆ξ) +

1
2
∂2f

∂ξ2
(∆ξ)2]p(ξ)dξ = f(ξ̄) +

σ2(ξ)
2

∂2f

∂ξ2

∣∣∣∣
ξ̄

(5)
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σ2
f =

∫ ∞
−∞

[f(ξ)− f(ξ̄)]2p(ξ)dξ =
∫ ∞
−∞

[
∂f

∂ξ
(∆ξ) +

1
2
∂2f

∂ξ2
(∆ξ)2]2p(ξ)dξ =

(
∂f

∂ξ

∣∣∣∣
ξ̄

)2

σ2(ξ) (6)

where p(ξ) represents the noise factor’s probability density function (PDF).
Clearly the above approximations are exact only when the noise factors are Gaussian-distributed and the

objective function is well represented by a second order Taylor series. The more the noise factors and the
objective function(s) depart from these assumptions, the less reliable these estimates are.

In recent years, Polynomial Chaos (PC) has received much attention as it offers an exact means of
propagating uncertainties through a system, providing high order information (similar to MCS) at a much
reduced cost.29 The basic idea is to express the stochastic variable(s) as an expansion in terms of orthogonal
polynomials: the first formulation by Wiener27 employed Hermite polynomials in terms of standard Gaussian
variables and proved very efficient in the propagation of Gaussian-distributed uncertainties; an extension
has been formulated by Xiu28 to analyse a wider spectrum of input distributions. The resulting equations
are simplified via a Galerkin projection on the elements of the orthogonal basis and the main moments
evaluated based on the resulting PC expansion.6 A non-intrusive alternative has also been developed, based
on the observation that the coefficients of the different modes can be obtained by projecting deterministic
computations onto the PC basis,16 and offers considerable advantages in the presence of complex systems or
non-easily accessible evaluation tools.

II. Model

This study concentrates on the robust preliminary aerodynamic optimisation of the core compression
system of a three-spool modern aeroengine, shown in Figure 2 and composed of an intermediate pressure
compressor (IPC), an s-shaped duct and a high pressure compressor (HPC). The advantages of an integrated
design (and optimisation) approach have been demonstrated by Jarrett et al.13 and Ghisu et al.:9 the
elimination of the “artificial contraints” dictated by the structure of the design process rather than by real
physical limits allows the full exploitation of the capabilities of the system, while the use of sophisticated
search algorithms (design optimisation) can provide a faster means of conducting a more thorough exploration
of the design space, with significant benefits for both achievable performance and design times. Only the
main characteristics of the system are summarised here; a detailed description is provided in.9

Figure 2: Meridional view of a core compression system (IPC, duct and HPC)

• Evaluation Tool : A proprietary code for mean-line performance prediction is used to evaluate the com-
pressor preliminary design. Given geometry and operating point, the code estimates the performance
in terms of efficiency and operating margin, both at design-point and off-design conditions. A predic-
tion for the surge margin is made based on a number of different correlations. The duct is modeled
using the Finite Volume axi-symmetric CFD solver developed by Ghisu et al.8 in combination with a
Reduced Order Model based on the Radial Basis Function approach to minimise the number of CFD
calls. The absence of (or a sufficient margin from) separated flow in the duct is ensured by limiting
the value of the maximum shape factor H for the duct boundary layers.

• Geometry Modeler : The shape of each compressor annulus is specified through the definition of mean-
line and area distributions: a fourth order polynomial is used in the mean-line definition, while a fifth
order one is used to define the area distribution, in order to give greater flexibility in each stage flow
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function. As required by the analysis software, pressure ratios across each stage and stator exit angles
are specified. For each blade row, the number of blades and axial chords are allowed to vary. Solidities
and aspect ratios can easily be calculated as a function of axial chord and blade stagger and number.
Thickness-on-chord ratios and tip clearances were kept fixed, as they involve structural, material and
manufacturing considerations that go beyond the scope of this work. The same parameterisation used
for the compressor annulus is also used for the duct endwalls, with C1 continuity being imposed at the
interfaces to ensure smooth hub and casing surfaces. The design space is summarised in Table 1.

Table 1: Design space definition (m represents the number of modules and n the total number of stages)

Variable Type Count

mean-line 2m+ 2

area distribution 3m+ 2

stage pressure ratios n

stator flow exit angles n

blade axial chords 2n

blade numbers 2n

Total 5m+ 6n+ 4

Some of the total 5m + 6n + 4 variables were then fixed to meet the requirements of the contiguous
components, depending on the specific optimisation problem (inlet and exit values for radius and inlet
and exit swirl angles are typical examples), while lower and upper bounds were set to avoid the search
of clearly infeasible regions.

• Optimiser : The TS algorithm developed by Jaeggi12 was selected for this work. TS is a meta-heuristic
method designed to help a search negotiate difficult regions by imposing restrictions.10 The local search
phase at its heart is conducted with the Hooke and Jeeves (H&J) algorithm:11 a suitable increment is
chosen for each variable and the value of the objective function is calculated in turn for x

′

i = xi + δi
and x

′

i = xi− δi while keeping the other variables at their base values. The best allowed move is made.
The Short Term Memory (STM) records the last S visited points, which are tabu and thus cannot be
revisited. The effect of the STM is that the algorithm behaves like a normal hill-descending algorithm
until it reaches a minimum, then it is forced to climb out of the hollow and explore further. Two other
important characteristics of the TS algorithm are intensification and diversification. Intensification is
associated with the Medium Term Memory (MTM) where the best M solutions located are stored.
Diversification is associated with the Long Term Memory (LTM), which records the areas of the search
space that have been searched reasonably thoroughly by dividing the design space into a number of
sectors and recording how many times each sector has been visited. On diversification the search is
restarted in an under-explored region of the design space. The extension to multi-objective problems
is straightforward: the MTM contains the set of non-dominated solutions found, while at every H&J
move, in the absence of a single non-dominated solution, a random move is selected among the set of
non-dominated new designs. The discarded designs are not lost, as they are stored in the MTM, if
appropriate, and can then be selected during intensification.

II.A. Traditional Optimisation

The optimisation of the design-point performance of the system in Figure 2 was presented in.9 The op-
timisation aimed to maximise system efficiency and IPC and HPC surge margin, subject to a number of
aerodynamic constraints, limiting the load on the different blade rows and on the duct boundary layer (sum-
marised in Table 2), for a total of 95 design variables and 3 objectives. Figure 3 reports the Pareto front found
(the colour scale indicates the level of efficiency improvements): substantial increments in all the objectives
can be achieved thanks both to the use of an intelligent search algorithm (which allows a more thorough
exploration of the design space) and to the integrated design approach (which allows the elimination of the
“artificial constraints”, needed to simplify the design problem by subdividing it into smaller tasks – the
design of each module – but detrimental from an optimisation point of view).

Figure 4 presents the solution of the same optimisation problem for a variable number of stages in the
IPC (which initially had 8 stages, while the HPC had 6). The same results are also shown in Figure 5 in the
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Table 2: Definition of the optimisation problem

maximise ηis,tot

SMIPC

SMHPC

subject to DHmin ≥ DH
SPRmax ≤ SPR
DFmax ≤ DF
Kochmax ≤ Koch
HmaxDUCT ≤ H
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Figure 3: Results from the optimisation of the core compression system

form of contour plots: the maximum achievable efficiency for a combination of IPC and HPC surge margins
is shown, for designs with different numbers of stages. It is evident how the larger compressor exit Mach
number allows a reduction in the number of stages (from 8 to 7) with a minimal increase in losses. A further
reduction in the number of stages requires a larger compromise in the achievable performance level (Figure
5(c)).
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Figure 4: Reducing the number of IPC stages
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(b) 7 stages
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Figure 5: Reducing the number of IPC stages (contour plots of system efficiency)

III. Methodology

The design of a compression system (and of a gas turbine or an aircraft more generally) is usually
approached with some specific operating conditions in mind (its design point): in the previous section,
the core compression system from a three-spool modern turbofan engine was optimised with respect to its
design-point performance. Unfortunately, engine components never exactly meet their aerodynamic design
specifications and do not operate at just one condition, but over a range of power settings: satisfactory
performance and safe operation must be guaranteed at all off-design conditions,4 including engine starting,
idling, reduced power, maximum power, acceleration and deceleration.2 Compressor blades have a limited
range of incidence before losses rise markedly, causing a rapid deterioration in compressor efficiency, if not
unacceptable problems such as stall and surge. Even in the absence of such problems, is it guaranteed that
optimising design-point performance does not worsen off-design performance? In this case, is the “optimised”
design really better than the initial one? Is the optimisation of the design-point performance the real goal
of the design process, or do we perhaps need to reformulate the problem?

The compressor being part of a larger system, it is important to understand how its operating conditions
depend on the general engine operating point. This section first presents a review of compressor off-design
operation, then two methods for dealing with off-design working conditions within the design process are
introduced and integrated into the system.

III.A. Uncertainty Quantification

As with other aerodynamic metrics, compressor performance is generally expressed in non-dimensional
(or corrected) terms: the compressor map reports pressure ratio and efficiency as a function of the non-
dimensional mass-flow for several values of the constant non-dimensional speed. More details on the deriva-
tion of these non-dimensional groups, the generation of compressor maps and the reasons for their specific
form can be found in a number of specialised texts.2–5,19,25

Figure 6 shows the compressor map of a generic IPC. The most important features are: the constant
corrected speed lines (extending from choke to surge), with the last almost parallel to the vertical axis
because of the first stages’ choking at high rotational speeds; the surge line, which represents the location
of surge (or rotating stall at low rotational speeds) at different rotational speeds because of excessive flow
separation due to the increased flow incidence on the blade at reduced mass-flows; and the working line,
which represents the locus of stable (or non-transitional) compressor operation at the different rotational
speeds. Excursions from working-line operation happen during acceleration/deceleration or because of power
off-take or bleed.

III.A.1. Determination of the Working-line

The working-line is the locus of stable operation of the compressor (which happens when compressor and
turbine mounted on the same shaft have the same rotational speed, mass-flow and power produced/required).
The determination of the working-line for any of the engine components (generally known as engine match-
ing) is typically an iterative process (each component’s operation is influenced mutually by other engine
components). The operation of a compressor is greatly influenced by the turbine mounted on the same
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Figure 6: Typical IP compressor map: pressure ratio as a function of corrected mass-flow is shown for several
constant corrected speed lines together with isentropic efficiency contours

shaft. Unfortunately, during compression system design it is quite common to have only limited information
about the turbine. Two common assumptions are to have a turbine working between choked nozzles and with
a constant efficiency. Clearly, if the turbine characteristics are known, all this information can be obtained
through an iterative process that also involves compressor characteristics. If the change in combustion losses
with fuel flow is significant, these need to be taken into account too.4

COMBUSTOR

3 425 5
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Figure 7: Schematic of a three-spool gas turbine

With these assumptions, the compressor working-line can be calculated. Detailed derivation is omitted.



P0,25
P0,2

=
(

1 + k1
cp,h
cp,c

T0,4
T0,2

ηLPC

) γ
γ−1

m2 = k2
P0,3
P0,2

√
T0,2
T0,4

P0,3
P0,25

=
(

1 + k3
cp,h
cp,c

T0,4
T0,25

ηHPC

) γ
γ−1

m25 = k4
P0,3
P0,25

√
T0,25
T0,4

(7)

The notation in equation (7) is standard with the numbered subscripts corresponding to states at entry
to/exit from the components shown schematically in Figure 7.

An iterative process is required since both pressure ratios and non-dimensional mass-flows are dependent
on the compressors’ isentropic efficiencies, which, in turn, are functions of pressure ratios and non-dimensional
mass-flows. The operating point thus depends (for a given system) only on the ratio T0,4

T0,2
(a function of the

fuel flow or engine throttle), which can be regarded as the control variable of the system. It is clear how the
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working-line becomes flatter for larger design pressure ratio compressors, leading to significant part-speed
problems for large multi-stage compressors, generally attenuated through the use of variable guide vanes
and/or bleed.3 The IPC encounters a larger variation in operating point and its off-design performance must
therefore be considered with particular care.

III.A.2. Off-design Operational Limits

The design-point value for the ratio T0,4
T0,2

can be determined from the design-point performance, while excur-
sions from this value depend on the engine and compressor operational limits. The design point is generally
much closer to the maximum T0,4

T0,2
, established by the maximum allowable turbine entry temperature and

compressor rotational speed, than to its minimum, which then represents the most dangerous condition from
an aerodynamic point of view.4 The minimum value is normally encountered during engine idling operations
(during descent) and can be calculated based on the blow out air-fuel ratio (a typical value for aircraft engine
fuels is 25017). The temperature change in the combustion process can be calculated as a function of the
air-fuel ratio and the fuel lower calorific value Hv (43 MJ/kg is a typical value for aircraft fuels):

∆Tcomb =
ṁfuel

ṁ

Hv

cp
(8)

The minimum combustion temperature rise can be calculated from equation (8) and the minimum value
for the ratio T0,4

T0,2
found by imposing the condition

T0,4

T0,2
≥ T0,3 + ∆Tcomb,min

T0,2
=
(
T0,4

T0,2

)
min

= f(PRIPC , PRHPC , ηIPC , ηHPC) (9)

III.B. Uncertainty Propagation

A review of the main methods available for uncertainty propagation in physical systems was given in Section
I, while an analysis of the system performance under off-design operating conditions was given in Section
III.A.1, where the role of the ratio T0,4

T0,2
as the system’s control variable was highlighted. As the compressor is

expected to operate along its working-line for the majority of the time, only these conditions will be considered
for the analysis and optimisation of robust performance. Safe transient operation must be ensured through
a sufficient surge margin along the entire working-line. Several methods for calculating engine transients
exist5,19 but will not be considered here because of the limited impact on mean performance.

Due to the large extent of the compressor working-line, methods based on the evaluation of the objective
function derivatives (such as sensitivity analysis and moment methods) are unlikely to provide accurate
results, while the computational cost of MCS is incompatible with the requirements of an optimisation pro-
cess, unless used in conjunction with a surrogate model. For these reasons, interval analysis and Polynomial
Chaos represent the most promising approaches for the problem at hand and will be analysed in more detail.

III.B.1. Interval Analysis

When computational resources are limited or there is no detailed information on the distribution of the
input uncertainties (or, in this case, on the power settings’ PDF), interval analysis offers a simple way of
evaluating the system’s robustness, in the form of the maximum performance drop from its nominal value
due to deviation from the design point. Compression systems require their off-design performance to be
analysed in detail during the design process before any further decisions are made. This analysis is normally
completed at the end of the preliminary design process. This approach, while guaranteeing that the minimum
requirements are satisfied, introduces a further loop in the design process and, more importantly, does not
ensure the design solution will be optimal with respect to this new requirement. The automation and
integration of robustness analysis into the preliminary design process can lead simultaneously to improved
design-point and off-design performance (or at least to a better understanding of the trade-offs between these
two conflicting objectives) at the cost of an increase in computational time.

As mentioned, the proprietary code used for mean-line multi-stage compressor performance analysis can
calculate off-design performance (as a function of non-dimensional rotational speed and mass-flow). The
compressor working-line (Section III.A.1) is a function of design-point specifications, engine throttle and
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efficiency variation. For a given value of T0,4
T0,2

, an iterative procedure is needed to calculate the operating
point and the relative efficiency. Given that the local search at the heart of the optimisation algorithm is
based on a H&J move, the design under consideration does not change dramatically from one calculation
to the next, and the iterative procedure converges in a limited number of steps (less than 5). The worst
condition will be for the lowest value of T0,4

T0,2
, as explained in Section III.A.2.

III.C. Polynomial Chaos

If the PDF of the control variable T0,4
T0,2

is available, Polynomial Chaos offers a means of calculating high order
information (mean, variance and successive moments) at a much reduced cost compared to MCS.

The roots of PC are to be found in the Homogeneous Chaos expansion first proposed by Wiener27 who
employed Hermite polynomials in terms of Gaussian random variables to express stochastic processes with
finite variance. Cameron and Martin1 demonstrated that “any Fourier-Hermite series of any functional F (x)
of L2(C) converges in the L2(C) sense to F (x)” (i.e. any variable with finite variance – or second order –
can be represented exactly through a Homogeneous Chaos expansion). The natural application is modeling
uncertainty propagation in physical applications: stochastic differential equations can be solved based on
a truncated PC representation, employing Galerkin projections onto a finite subspace spanned by these
polynomials as a way of simplifying the equations themselves.6

Any second order process X(θ) (where θ is a generic random event) can be represented in the form

X(θ) = a0H0 +
∞∑
i1=1

ai1H1(ξi1(θ)) +
∞∑
i1=1

i1∑
i2=1

ai1i2H2(ξi1(θ), ξi2(θ)) +

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2,i3H3(ξi1(θ), ξi2(θ), ξi3(θ)) + · · · (10)

where Hn(ξi1(θ), ..., ξin(θ)) denotes the Hermite polynomial of order n in terms of the multi-dimensional
non-correlated standard Gaussian random variables ξ = (ξi1 , ..., ξin) with zero means and unit variances.
The general expression of Hermite polynomials is given by

Hn(ξi1 , ..., ξin) = e
1
2 |ξ|

2
(−1)n

∂n

∂ξi1 · · · ∂ξin
e−

1
2 |ξ|

2
(11)

For notational convenience, the Hermite Chaos (HC) expansion (equation (10)) can be rewritten as

X(θ) =
∞∑
j=0

âjΨj(ξ) (12)

where there is a one-to-one correspondence between the functions Hn(ξi1 , ..., ξin) and Ψj(ξ), and also between
the coefficients âj and ai1,...,in . The polynomial basis Ψj(ξ) of HC forms a complete orthogonal basis, i.e.

〈ΨiΨj〉 = 〈Ψ2
i 〉δij (13)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. This is the inner product in the
Hilbert space of the Gaussian random variables

〈f(ξ)g(ξ)〉 =
∫
f(ξ)g(ξ)W (ξ)dξ (14)

where the weighting function W (ξ) is

W (ξ) =
1

(2π)n/2
e−

1
2 |ξ|

2
(15)

The particularity that distinguishes the HC expansion from other types of expansion is the use of Her-
mite polynomials in terms of Gaussian random variables as the basis functions. Hermite polynomials are
orthogonal with respect to the weighting function W (ξ), which has the form of a multi-dimensional Gaussian
PDF. The use of HC is particularly efficient when the input uncertainty is Gaussian-distributed (meaning
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that it can be expressed through a first order HC expansion). Lucor et al.18 demonstrated that an exponen-
tial convergence rate can be achieved in this case, while for differently distributed input uncertainties the
convergence rate may be substantially slower.

III.C.1. Generalised Polynomial Chaos

An extension of the HC expansion (named Wiener-Askey Polynomial Chaos) was proposed by Xiu and
Karniadakis28 to deal with more general random inputs more efficiently. The underlying concept remains
the same (expansion of the generic random process through a set of orthogonal polynomials) but the Hermite
polynomials basis is replaced by a generic basis of orthogonal polynomials. A random process X(θ) can still
be expressed as

X(θ) = c0I0 +
∞∑
i1=1

ci1I1(ξi1(θ)) +
∞∑
i1=1

i1∑
i2=1

ci1i2I2(ξi1(θ), ξi2(θ)) +

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2,i3I3(ξi1(θ), ξi2(θ), ξi3(θ)) + · · · (16)

where In(ξi1(θ), .., ξin(θ) represents the Wiener-Askey polynomial of order n in terms of the random vector
ξ = (ξi1 , ..., ξin). The polynomials In now are not restricted to the Hermite polynomials but can be any
orthogonal polynomials. For notational convenience, equation (16) can be rewritten as

X(θ) =
∞∑
j=0

ĉjΦj(ξ) (17)

where there is a one-to-one correspondence between the polynomials In(ξi1 , ..., ξin) and Φj(ξ) and between
the coefficients ĉj and ci1,...,in . These polynomials are again orthogonal.

The PC basis and supporting distribution can be chosen from the Askey scheme (see Table 3) as most
appropriate for the given input uncertainty distribution: this can allow (as in the case of Gaussian distribu-
tions and Hermite Chaos) certain input uncertainties to be expressed exactly through a first order expansion,
simplifying significantly the task of solving the stochastic differential equations governing the problem and
improving the accuracy of the solution. With this approach, Xiu and Karniadakis28 achieved exponential
convergence for a number of different input distributions.

Table 3: Orthogonal polynomials from the Askey scheme28

Random Variable Polynomial Chaos Basis

Continuous Gaussian Hermite

Gamma Laguerre

Beta Jacobi

Uniform Legendre

Discrete Poisson Charlier

Binomial Krawtchouk

Negative Binomial Meixner

Hypergeometric Hahn

III.C.2. Non-intrusive Polynomial Chaos

Even though PC has been applied successfully to the solution of a wide range of problems, its application to
the analysis of complex systems can be far from straightforward. Appropriate modification of the equations
governing the system behaviour can be very time-consuming and the implementation of PC is non-trivial.
Modern engineering design involves a large number of disciplines and quite often relies on third party software
products, the modification of which to suit the needs of the PC approach is frequently out of the question.
A non-intrusive alternative has been developed based on the observation that the coefficients of the different
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modes can be obtained by projecting deterministic computations onto the PC basis:15 considering Hermite
Chaos

ui =
1
〈Ψ2

i 〉

∫ +∞

−∞
dξ1 · · ·

∫ +∞

−∞
dξNu(ξ)Ψi(ξ)W (ξ) (18)

As u(ξ) and Ψi(ξ) are both polynomials (Ψi is a polynomial by definition and the Cameron-Martin
theorem ensures the convergence of the Fourier-Hermite representation of any functional with finite variance
to the functional itself1), the above integral can be calculated exactly through a Gaussian quadrature formula

ui =
1
〈Ψ2

i 〉

N0∑
n1=1

· · ·
N0∑

nN=1

u(ξn1 , · · · , ξnN )Ψi(ξn1 , · · · , ξnN )
N∏
k=1

wnk (19)

where the couples (xk, wk) represent the one-dimensional Gaussian quadrature points and weights. This
formula is exact when the integrand is a polynomial of degree less than or equal to 2N0−1.20 The quadrature
points are the zeros of the orthogonal polynomial of degree N0 and the weights can be calculated as

wk =
1

[ψ′n(xk)]2

∫ +∞

−∞
W (x)

[
ψn(x)
x− xk

]2

dx (20)

in which ψ′n(xk) is the first order derivative of the orthogonal polynomial of order n at quadrature point xk.
It is important to note that the number of deterministic calculations required by the non-intrusive PC

(NIPC) approach is equal to (N0 + 1)N , which is always greater than the (N0+N)!
N0!N ! calculations required by

intrusive PC15 (N is the number of random dimensions and N0 the quadrature order). Nevertheless, the
possibility of treating the analysis software as a black box is a significant advantage.

III.C.3. Non-standard Distributions

As noted in Section III.C, the Cameron-Martin theorem1 ensures the possibility of using HC to represent any
second order process. In principle, any set of orthogonal polynomials from the Askey scheme (Table 3) can
be used to express any distribution. Choosing the weighting function to match the random variable’s input
distribution (and choosing the PC basis as a consequence) has the advantage that the input random variable
can be expressed exactly as a first order expansion with respect to the PC basis, simplifying significantly the
computations and, more importantly, ensuring an exponential convergence. In the case of a non-standard
distribution (or if, for any reason, a particular set of orthogonal polynomials is preferred) the input variable
needs to be expressed as a function of the support variable (or, equivalently, the coefficients of its expansion
in terms of the elements of the PC basis need to be determined). As for NIPC, the coefficients can be
obtained by a projection of the generic input variable k onto the PC basis:

ki =
〈kΦi〉
〈Φ2

i 〉
=

1
〈Φ2

i 〉

∫ b

a

kΦi(ξ)W (ξ)dξ (21)

The main assumption here is that the variables k and ξ are fully correlated (i.e. a univocal relation exists
between ξ and k).28 In this form, the integral in equation (21) cannot be evaluated as the variables k and
ξ belong to two different probability spaces. By taking a support variable x, uniformly distributed in the
interval (0,1), it is possible to apply a variable transformation such as

dx = f(k)dk = dF (k) dx = g(ξ)dξ = dG(ξ) (22)

where f(k) and g(ξ) are the PDFs of k and ξ respectively and F (k) and G(ξ) their cumulative distribution
functions. It follows that

x =
∫ k

−∞
f(t)dt = F (k) x =

∫ ξ

−∞
g(t)dt = G(ξ) (23)

and
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k = F−1(x) = h(x) ξ = G−1(x) = l(x) (24)

Equation (21) thus becomes

ki =
1
〈Φ2

i 〉

∫ b

a

kΦi(ξ)W (ξ)dξ =
1
〈Φ2

i 〉

∫ 1

0

h(x)Φi(l(x))dx (25)

The inverses of the cumulative distribution functions for some common distributions are known.28 Al-
ternatively, they can be calculated numerically given the corresponding PDFs.

III.C.4. Constructing Generic Orthogonal Polynomials

A more efficient approach for handling non-standard distributions is to determine the set of orthogonal
polynomials with respect to the generic distribution (which here has been normalised between 0 and 1 for
simplicity). A generic expression for an orthogonal polynomial of order m is

Pm(ξ) =
m∑
j=0

bm,jξ
j (26)

The orthogonality condition can be expressed as∫ 1

0

Pm(ξ)W (ξ)ξkdξ = 0 for k = 0, ...,m− 1 (27)

The integral in equation (27) simplifies significantly if the weighting function W (ξ) can be expressed as
a polynomial (or can be calculated numerically for a non-polynomial PDF)

W (ξ) =
n∑
i=0

aiξ
i (28)

In this case∫ 1

0

Pm(ξ)W (ξ)ξkdξ =
∫ 1

0

m∑
j=0

bm,jξ
j

n∑
i=0

aiξ
iξkdξ = 0 for k = 0, ...,m− 1 (29)

The integrals in equation (29) give the following conditions:

m∑
j=0

bm,j

n∑
i=0

ai
i+ j + k + 1

= 0 for k = 0, ...,m− 1 (30)

The system in (30) has m equations for m+1 unknowns (the coefficients of Pm). The remaining condition
can come from the choice of a value for the intercept (bm,0 = 1 for example). This system of equations can
then readily be solved, as detailed in.7

Application Consider the following non-standard multi-modal PDF, illustrated in Figure 8:

f(x) = 18.2342x− 95.2432x2 + 164.5764x3 − 87.5675x4 (31)

The basis of orthogonal polynomials with respect to this PDF can be determined as described above.
The resulting orthonormal polynomials are reported in Table 4.

A first order expansion in terms of this new set of orthonormal polynomials (with respect to a weighting
function with the same distribution as f(x)) will express the input distribution exactly. The roots of the
generic orthonormal polynomial of degree G, the values of the orthonormal polynomials of degree less than
G at the quadrature points and the weights can now all be calculated.7 The results are reported in Figure
9, where the order of the polynomial can be identified by recalling that a polynomial of degree m has m− 1
stationary points, and in Table 5.
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Figure 8: A non-standard probability density function

Table 4: System of orthonormal polynomials

Order P ∗i 〈(P ∗i )2〉
0 1 1

1 2.0293− 3.4512ξ 1

2 2.6955− 16.3218ξ + 16.0617ξ2 1

3 4.0995− 42.7907ξ + 98.4216ξ2 − 62.8152ξ3 1

4 5.0015− 81.4621ξ + 347.0134ξ2 − 524.4300ξ3 + 258.0990ξ4 1

5 6.5207− 149.9490ξ + 963.9440ξ2 − 2444.9253ξ3 + 2661.0726ξ4 − 1041.7694ξ5 1

6 7.7384− 237.3649ξ + 2133.9160ξ2 − 8103.0401ξ3 + 14720.2905ξ4...

...− 12687.9273ξ5 + 4172.7058ξ6 1

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

P
m

(ξ
)

ξ

Figure 9: Orthonormal polynomials up to degree 6, with quadrature points values

Table 5: Roots and weights of a sixth order quadrature

ROOT ξi WEIGHT wi P0 P1 P2 P3 P4 P5

0.0538 0.0652 1.0000 1.8436 1.8638 2.0723 1.5435 0.8841

0.1763 0.1665 1.0000 1.4208 0.3170 -0.7299 -1.1989 -0.9582

0.3808 0.1146 1.0000 0.7150 -1.1908 -1.3917 0.7695 1.8071

0.6542 0.2437 1.0000 -0.2284 -1.1083 0.6407 0.6665 -0.9837

0.8285 0.3053 1.0000 -0.8299 0.1974 0.4829 -0.9285 0.6723

0.9471 0.1046 1.0000 -1.2394 1.6445 -1.5083 1.2597 -0.6773

The NIPC approach was applied to the system (IPC, duct and HPC) to evaluate the performance PDF for
an input parameter T0,4

T0,2
with a PDF as in Figure 8. The results are compared with Monte Carlo Simulations

in Figure 10: the convergence of the MCS results towards those given by NIPC is evident and the two curves
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are almost indistinguishable for 105 MCS. On the other hand, the difference in computational time required
is striking: 6 simulations are sufficient for NIPC while some thousands are required for MCS.
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Figure 10: Convergence of Monte Carlo Simulations towards Polynomial Chaos

The relevant statistics can then be calculated. Only mean, variance and third order moment are reported
(equations (32) et seq.):

µ =
∫ 1

0

p∑
i=0

yiPi(ξ)W (ξ)dξ = y0 (32)

σ2 =
∫ 1

0

(
p∑
i=0

yiPi(ξ)

)2

W (ξ)dξ =
p∑
i=1

y2
i (33)

s3 =
∫ 1

0

(
p∑
i=1

yiPi(ξ)

)3

W (ξ)dξ =
p∑
i=1

p∑
j=1

p∑
k=1

yiyjyk〈ΨiΨjΨk〉 (34)

where y(ξ) =
∑p
i=0 yiΨi(ξ) is the response of the system in terms of the adopted PC expansion and the

triple product 〈ΨiΨjΨk〉 can be calculated as

〈PiPjPk〉 =
i∑

i1=0

j∑
i2=0

k∑
i3=0

n∑
i4=0

bi,i1bj,i2bk,i3ai4
i1 + i2 + i3 + i4 + 1

(35)

where n is the degree of the weighting function W (ξ) (equation (28)).

IV. Results

IV.A. Interval Analysis

IV.A.1. A Posteriori Analysis

An analysis of the off-design behaviour of the optimal designs obtained from the design-point optimisation
completed in Section II is useful not only to verify the robustness of these solutions but also to gain a better
understanding of their weaknesses. Figure 11 compares the design-point and part-load (for the limiting value
of T0,4

T0,2
) efficiencies of the maximum efficiency solutions, for both the 8-stage and 7-stage IPC configurations,

together with the datum design. The 6-stage configuration is not included as the working-line crosses the
surge-line before reaching the limiting value of T0,4

T0,2
. All values are expressed as percentage changes from the

design-point efficiency of the datum design. It is evident how the significant improvement in design-point
performance is achieved at the price of a consistent deterioration in part-load efficiency.

IV.A.2. Robust Optimisation

The aim of this optimisation problem is to maximise simultaneously design-point and off-design performance
of the core compression system introduced in Section II. As shown, both part-load efficiency and operating
margins are important objectives in compression system design: to avoid an excessive rise in computa-
tional costs, the operating margins have been considered here as inequality constraints, treated with penalty
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Figure 11: Design-point and limit performance for the maximum efficiency designs (all values relative to the
design-point performance of the datum design)

functions to minimise the complexity of the design space. The optimisation problem (95 variables and 2
objectives) is summarised in Table 6.

Table 6: Definition of the first robust optimisation problem

maximise f1 = ηis,dp − a1max
ˆ
0, (SMdp − SMdp)

˜
f2 = ηis,pl − a2max

ˆ
0, (SMpl − SMpl)

˜
subject to DHmin ≥ DH

SPRmax ≤ SPR
DFmax ≤ DF
Kochmax ≤ Koch
HmaxDUCT ≤ H

The optimisation run took approximately 3 days on an AMD Athlon 2.0 GHz machine, for a total of
1,200 optimisation steps and 48,000 solutions evaluated.

The results from this robust optimisation are reported in Figure 12: it is evident than substantial
improvements in off-design performance can be achieved without compromising excessively the design-point
efficiency, for both the 8-stage and 7-stage IPC configurations. Figure 12(b) shows the variation of the design
variables’ values for the non-dominated solutions (8-stage IPC). It is evident that only the first 55 design
variables (defining the IPC and duct designs) exhibit appreciable variations, while the remaining variables
are almost fixed at their initial values (the non-robust solution), reflecting the larger operating range of the
IPC, the off-design performance of which needs to be considered with particular care.

IV.B. Polynomial Chaos

IV.B.1. A Posteriori Analysis

As for the interval analysis approach, the optimal designs obtained from the non-robust optimisation of
Section II have been analysed using the PC approach to verify their mean performance. The PDF of Figure
8 has been assumed for the ratio T0,4

T0,2
, with one maximum near the design point and one for a lower value,

near idling. A different PDF (more closely reflecting real engine usage) could be substituted if available,
without requiring any modifications to the method developed here; the general conclusions of this section
would remain still valid. Figure 13 shows the results from the robust analysis of the core compression
system configurations that are optimal with respect to design-point performance, expressed as a function
of IPC and HPC surge margins and mean system isentropic efficiency. The conclusion is the same as that
already reached with the interval analysis approach (Section IV.A.1): the improvements in mean efficiency
are substantially lower than those in design-point efficiency, because of the worse off-design behaviour of the
improved design-point efficiency solutions.

Figure 14 reports only the non-dominated designs. Only 15% of the original Pareto front is non-
dominated, suggesting that better designs (from an overall performance point of view) can probably be
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Figure 12: Results for the first robust optimisation problem
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Figure 13: Robust analysis of the optimal designs of Section II

obtained by integrating robustness analysis in the optimisation process.
In Figure 15 the maximum values of design-point and mean efficiency are compared as a function of IPC

and HPC surge margins. The drop in mean performance is due to the sub-optimal off-design behaviour of
the design solutions resulting from the optimisation of the design-point performance alone.

IV.B.2. Robust Optimisation

The optimisation problem is similar to that of Section II. The mean efficiency has replaced the design-
point value as an objective, while a minimum part-speed surge margin has been guaranteed through a
penalty function. The variance of the system efficiency from its mean value has been not considered in the
optimisation problem so as not to increase the computational costs even further, and because of the greater
importance of the mean value from a design point of view (the mean value of the efficiency – not its variance
– has a direct impact on the mean cycle efficiency). Furthermore, having verified that design-point efficiency
and part-load efficiency are competing objectives, maximisation of mean performance will naturally lead to a
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Figure 14: Non-dominated robust designs from the optimal designs of Section II
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Figure 15: Comparison of design-point and mean efficiency for the optimal designs from Section II

minimisation of its variance. Safe off-design behaviour is, in any case, guaranteed through the use of penalty
functions. The optimisation problem is summarised in Table 7. The total run-time was about 3 weeks on
an AMD Athlon 2.0 GHz machine, for 3,500 optimisation steps and about 140,000 solution evaluations.

Table 7: Definition of the second robust optimisation problem

maximise µη

SMIPC

SMHPC

subject to DHmin ≥ DH
SPRmax ≤ SPR
DFmax ≤ DF
Kochmax ≤ Koch
HmaxDUCT ≤ H

The results are reported in Figure 16: again, a consistent improvement in performance can be achieved
through the robust optimisation approach. A fundamental difference between this and the optimisation of
Section II is the sparsity of points in the low IPC surge margin region of the Pareto front, due to the flatness
of this region, and thus to the minimal improvements in mean efficiency that are possible for lower values
of the IPC surge margin. This result is consistent with the large extent of the IPC working-line, and thus
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with the better off-design performance achievable from a compressor with a larger design-point surge margin.
The same is even more evident in Figure 17, where the maximum value of efficiency achievable for a given
combination of IPC and HPC surge margins is reported.
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Figure 16: Pareto front for the robust optimisation using Polynomial Chaos
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Figure 17: Efficiency contours for the robust optimisation using Polynomial Chaos

V. Conclusions

Complexity in gas turbine design has traditionally been managed through a modular approach, where a
conceptual design phase fixes the values for some global parameters and dimensions in order to subdivide the
overall task into simpler problems. Apart from the subdivisions present between different modules, further
fragmentation is present within the design of each module, both relative to the level of fidelity and among
disciplines. Jarrett et al.13 and Ghisu et al.9 demonstrated how significant improvements can be achieved
through a reduction in the level of fragmentation and modularity of the current design process, while a
consistent reduction in development time is possible through the elimination of a number of iteration loops

20 of 22

American Institute of Aeronautics and Astronautics



required by the modular approach before all the constraints are satisfied simultaneously. In the resulting
large and complex design space – with several objectives and constraints to be considered concurrently –
the chances of being able to locate the optimal design by simple trial-and-error (or “design-by-analysis”) are
next to nil: a more intelligent search approach – design optimisation – is essential to achieve a satisfactory
exploration of the design space, leading to improved designs and a reduction in the development time thanks
to the automation of the whole process.

A common simplification in the design of gas turbine engines is to consider nominal operating conditions
(the design point) during the design process, while off-design operation is considered only at a later stage.
While guaranteeing that some minimum requirements are met, this approach introduces a further loop into
the design process and, more importantly, is very unlikely to lead to a product with optimal design-point and
off-design performance. If design-point performance is considered as the only objective in the optimisation,
the risk is that the off-design behaviour will be (significantly) worse (a common situation for heavily optimised
products14). In this case, is the optimised design really better than the original one? Only the inclusion
of a figure of merit quantifying robustness in the optimisation problem can produce a design with better
design-point and off-design behaviour or, at least, provide a trade-off between the two performance metrics.

As the aim of this work is to incorporate robustness analysis in the optimisation process, the computa-
tional cost of each robustness evaluation is of fundamenteal importance: two methods – one deterministic
(interval analysis) and one stochastic (Polynomial Chaos) – are presented and integrated into a representa-
tive design system. Both methods are able to identify solutions that are significantly more robust (or less
sensitive to changes in operating conditions) than those found by the traditional optimisation approach.
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