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Abstract

This paper deals with a nonlinear and weakly coupled parabolic system,
containing damping terms, under Dirichlet boundary conditions. Precisely, for
the solutions which blow up in finite time, the blow-up time is determined by
means of an appropriate resolution method; moreover, the same algorithm is
also implemented to discuss some properties of these solutions.
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1. Introduction. In this work we analyze the following weakly coupled
system

(1)















ut = ∆u + vp − |∇u|q, x ∈ Ω, t ∈ (0, t⋆), (a)
vt = ∆v + up − |∇v|q, x ∈ Ω, t ∈ (0, t⋆), (b)
u = 0 and v = 0, x ∈ ∂Ω, t ∈ (0, t⋆), (c)
u = u0(x) ≥ 0 and v = v0(x) ≥ 0, x ∈ Ω, (d)

where t⋆ is the blow-up time, Ω is a bounded and convex domain of R
3, with the

origin inside and whose boundary ∂Ω is sufficiently smooth, p > q > 1, and u0(x)
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and v0(x) are nonnegative functions in Ω, satisfying the compatibility conditions
on ∂Ω. It follows by the maximum principle that in the interval of existence
u(x, t) ≥ 0 and v(x, t) ≥ 0. Furthermore, let us remark that the gradient terms
in (1) have a damping effect, contrasting the power source terms and working
against blow-up.

If only an unknown is considered, system (1) is reduced to a single equation,
strongly studied in [1–3], and for which distinct results about blow-up have been
obtained under more general assumptions on the equation and the boundary
conditions (see [4]). In the same way, [5–7] provide good references about upper
and lower bounds of blow-up time for solutions of nonlinear parabolic problems
under various boundary conditions. Furthermore, we refer to [8,9] for some results
concerning the elliptic case.

On the other hand, in [10] an explicit lower bound of the blow-up time for a
classical solution of system (1) is directly derived. This estimate depends on the
geometry of Ω, and on the data of the problem p, q, u0(x) and v0(x) (see Section
2). In this parallel work, we want to calculate the real value of the blow-up
time. In this sense, we remark that there exist numerous papers devoted to the
computational solutions of blow-up problems on bounded or unbounded domains
of R and R

2 (see for example [11,12]).

Herein (see Section 3), starting from the weak formulation of (1), and using
a semidiscrete finite element method (see [13]), system (1) is solved and, conse-
quently, the value of t⋆ is computed. Moreover, some numerical examples that
confirm the theoretical result obtained in [10] and allow to observe other inter-
esting phenomena connected to the behaviour of the solution are shown. Finally,
some concluding remarks are drawn in Section 4.

2. Main result: an explicit lower bound. In [10], for any solution (u, v)
of (1), the authors introduce the following auxiliary function

(2) W (t) =

∫

Ω
(u2p + v2p)dx,

and give this
Definition 2.1. The solution of problem (1) blows up at time t⋆ in W -norm

if

lim
t→t⋆

W (t) = +∞.

In order to derive a lower bound for the blow-up time, they prove the following
fundamental

Theorem 2.1. Let (u, v) be a classical solution of (1); then a lower bound

for the blow-up time t⋆ of any blowing up solution in W -norm (2) is

(3) t⋆ ≥ 1

2AW 2
0

.
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In (3), W0 = W (0) =
∫

Ω(u2p
0 + v2p

0 )dx and A = A(p, q, |Ω|, d, ρ0, λ1), being

ρ0 = min
∂Ω

(x · ν) > 0 and d = max
Ω

|x|,

with ν the normal unit vector to ∂Ω, and λ1 the first eigenvalue of the problem

{

∆w + λw = 0 x ∈ Ω, w > 0,

w = 0, x ∈ ∂Ω.

The proof of this theorem is structured as follows: by supposing W (t) blowing
up at time t⋆, there exists a time t1 (that might also be 0) such that W (t1) = W (0)
and W (t) > W (t1), t ∈ (t1, t

⋆) (see Fig. 1). Therefore, by using both functional
and algebraic inequalities (all the details are in [10]), this relation

(4) W ′(t) ≤ AW 3(t), ∀ t ∈ [t1, t
⋆),

is proven. Lastly, (3) is directly obtained by integrating (4) from t1 to t⋆:

(5)
1

2AW 2
0

=

∫ W (t⋆)=∞

W (t1)=W0

dW

AW 3
≤

∫ t⋆

t1

dτ ≤
∫ t⋆

0
dτ = t⋆.

Remark 2.1. We want to underline that estimate (3) can be obtained in
different way, so that it represents one of the possible lower bounds of t⋆ in W -
norm; anyway, once the data are given, by arranging the proof of Theorem 2.1
(see, again, [10]) it is possible to consider a constrained minimization problem on
A, whose resolution leads to the optimal lower bound, i.e. the greatest value of

T =
1

2AW 2
0

verifying (3). Our interest to this optimal value is connected with

the maximal interval of existence of the solution (u, v) of (1).
In the rest of this work we focus on investigating for which value of t⋆

lim
t→t⋆

W (t) = +∞.

(a) W (t) increasing; t1 = 0 (b) W (t) oscillating; t1 = 0 (c) W (t) oscillating; t1 > 0

Fig. 1. Possible behaviour of the W -norm in terms of time, once W (t) is supposed to blow up
at finite time t⋆
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T a b l e 1

Computation of the blow-up time t⋆. The necessary input data are the
threshold ε0, the time step ∆t and the initial datum (u0, v0); successively,
it is possible to calculate the sequences (um, vm) and εm and, consequently,

to compute t⋆

Input: (u0, v0), ∆t, ε0, m = 0

solving (8a) and (8b)

��
(um, vm)

computing threshold by (9)
SSSSS

))SSSSSSSS

εm

if εm≤ε0

llllllll

uullllll
if εm>ε0

'g'g'g'g

U5
'g'g

m = m + 1

solving (8a) and (8b)

OO

Solution: t
⋆
≈ m∆t

3. Numerical discretization and examples. In this section a resolution
procedure for system (1), based on a mixed semidiscrete in space and a single-step
method in time, is presented.

3.1. Finite element method: semi-discretization in space. If a mesh
of Ω is fixed, and N represents the total number of nodes of Ω, let (U ,V) be the
numerical approximation of the solution (u, v) of (1): therefore,

(6)























U(x, t) =

N
∑

i=1

ui(t)ϕi(x),

V(x, t) =
N

∑

i=1

vi(t)ϕi(x),

where ϕi(x) ∈ H1
0 (Ω) is the standard hat basis at the vertex xi, for i = 1, . . . , N .

Thanks to the divergence theorem and the homogeneous boundary conditions
(1c), by multiplying both (1a) and (1b) by a generic test function ϕj(x), the
following variational form in space is achieved:

(7)







(Ut, ϕ
j) + (∇U ,∇ϕj) = (Vp, ϕj) − (|∇U|q, ϕj),

(Vt, ϕ
j) + (∇V,∇ϕj) = (Up, ϕj) − (|∇V|q, ϕj),

j = 1, . . . , N, t ≥ 0,

where (f, g) =
∫

Ω f(x)g(x)dx denotes the L2 inner product.
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To compute the evolutions in time of both coefficients ui and vi appearing
in (6), let ∆t = tm+1 − tm be a given time step, with m = 0, 1, 2, . . . (t0 = 0),
and (Um,Vm) the approximation of (U(x, t),V(x, t)) at time tm. By applying an
implicit Euler finite difference approximation to system (7), it is seen that







(Um+1−Um

∆t
, ϕj) + (∇Um+1,∇ϕj) = (Vp

m, ϕj) − (|∇Um|q, ϕj),

(Vm+1−Vm

∆t
, ϕj) + (∇Vm+1,∇ϕj) = (Up

m, ϕj) − (|∇Vm|q, ϕj),

i.e., taking into account (6),

(8)











M
um+1 − um

∆t
+ Kum+1 = Fp(vm) − Gq(um), (a)

M
vm+1 − vm

∆t
+ Kvm+1 = Fp(um) − Gq(vm), (b)

with






























M ∈ R
N×N (mass matrix) : Mij =

∫

Ω ϕi(x)ϕj(x)dx,

K ∈ R
N×N (stiffness matrix) : Kij =

∫

Ω ∇ϕi(x) · ∇ϕj(x)dx,

Fp(vm) ∈ R
N : Fp(vm)j =

∫

Ω(
∑N

i=1 vi
mϕi(x))pϕj(x)dx (similarly Fp(um)j),

Gq(um) ∈ R
N : Gq(um)j =

∫

Ω(
∑N

i=1 ui
m|∇ϕi(x)|)qϕj(x)dx (similarly Gq(vm)j),

being um = (u1
m, . . . , uN

m)T and vm = (v1
m, . . . , vN

m)T , where T represents, in
this case, the transposition operator. In these circumstances, (ui

m, vi
m) is the

approximation of the solution (u, v) of problem (1) at time tm, for m = 0, 1, 2, . . .,
and at space point xi, for i = 1, 2, . . . , N.

With regards to the estimate of the blow-up time t⋆, the following numerical
resolution algorithm is proposed. Let ε0 be a fixed threshold: once the initial
datum (u0, v0) is given, u1 and v1 are computed from (8a) and (8b), respectively.
Successively, (u1, v1) is used to actualize (u2, v2), and so on. Moreover, according
to (2), we exit the loop when the W -norm at step m

(9) εm =

∫

Ω

[(

n
∑

i=1

ui
mϕi(x)

)2p

+
(

n
∑

i=1

vi
mϕi(x)

)2p]

dx,

is greater than the initial threshold ε0 (Stopping Criterion); consequently, t⋆ ≈
m∆t (see the scheme in Table 1).

Remark 3.1. It is well known that the Euler method presents only a linear
accuracy with respect to the step size, i.e. it is a first order method. On the
other hand, some modifications of this same method can return a better accuracy
of the result; for instance, a very common approach is the so called Crank–
Nicolson method (see [13]), that is a quadratic (i.e. second order) method. In
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many situations this method is unconditionally stable; however, the approximated
solutions could contain some kind of oscillations. Contrary, the less accurate Euler
method is stable and immune to oscillations; moreover, it is also very simple to
implement, very intuitive, and the computed solution can be as close to the exact
one as desired. As a consequence, since it is appropriate to the aims of this
research, it is the one we will use.

3.2. Numerical tests. Let us solve system (1) and discuss the following
examples:

– Test 1 deals with the computation of the blow-up time t⋆ in terms of the

integration step ∆t and the comparison with the lower bound T =
1

2AW 2
0

estimated in Theorem 2.1.

– Test 2 focuses on the analysis of the value of t⋆ with p and q varying.

– Test 3 shows the influence of the initial data on t⋆.

All these cases are computed in the domain Q = Ω×R
+
0 , being Ω =

[

−π

2
,
π

2

]3

the cube with centre in the origin and length π. Therefore, it is checked that

|Ω| = π3, d =

√
3

2
π, ρ0 =

π

2
, λ1 = 3 (see Theorem 2.1).

Test 1. Let us fix p = 3, q = 1.1, u0(x) = 2(π/2 − |x|)(π/2 − |y|)(π/2 − |z|)
and v0(x) = 1.5(π/2 − |x|)(π/2 − |y|)(π/2 − |z|); moreover let ε0 = 107. Table 2
shows the values of the blow-up time t⋆. The approximated value of t⋆ approaches
to 0.021 and εm gets closer to the fixed threshold ε0 with ∆t decreasing. On the
other hand, as explained in Remark 2.1, it is possible to show that these data
return this optimal lower bound of T = 7.1 × 10−15; as a consequence, the lower
bound T ≪ t⋆. Lastly, the qualitative solution (u, v) is represented in Fig. 2 in
three different instants of time, t1 = 0.01, t2 = 0.018 and t3 = 0.025.

Test 2. The data of the problem are ∆t = 10−3 and ε0 = 107; moreover
u0(x) = 5 log(1 + cos(y))| cos(x) cos(z)| and v0(x) = 1.5| cos(x) cos(y)|(π

2 − |z|).
Table 3 illustrates how the blow-up time t⋆ depends on the values of p and q.
Furthermore, let us observe that not any choice of p and q (with p > q > 1)
returns a blow-up phenomenon; in fact, the last row of the same table reflects
that for p = 3 and q = 1.8 the damping terms break the source ones, producing
bounded solutions, and therefore a decreasing behaviour of εm through the time.

Test 3. In this test we study the blow-up time t⋆ in terms of the initial data
u0(x) and v0(x), more exactly depending on W0-norm. Let p = 3 and q = 1.1;
moreover ε0 = 107. Four cases, corresponding to the following initial conditions
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(a) Solution u at time t1 = 0.01. The
value of u at O is approximately 8.49

(b) Solution u at time t2 = 0.018. The
value of u at O is approximately 12.59

(c) Solution u at time t3 = 0.025. The
value of u at O is approximately 53.38

(d) Solution v at time t1 = 0.01. The
value of v at O is approximately 8.1

(e) Solution v at time t2 = 0.018. The
value of v at O is approximately 12.54

(f) Solution v at time t3 = 0.025. The
value of v at O is approximately 53.38

Fig. 2. Numerical solution. Evolution of the solution (u, v) and its graphical representations;
the darker the shade of gray the highest the value of the solution. The values of u and v at the
center of the cube (the origin O), that is the blow-up point, increase with time, but slower than

the W -norm (9) (see Table 2)
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(I.C.), are analyzed:
{

u1 = 5 log(1 + cos(y))| cos(x) cos(z)|,
v1 = 0,

{

u2 = 5 log(1 + cos(y))| cos(x) cos(z)|,
v2 = 0.7(π/2 − |x|)(π/2 − |y|)(π/2 − |z|),

{

u3 = 5 log(1 + cos(y))| cos(x) cos(z)|,
v3 = 0.8(π/2 − |x|)(π/2 − |y|)(π/2 − |z|),

{

u4 = 5 log(1 + cos(y))| cos(x) cos(z)|,
v4 = 0.9(π/2 − |x|)(π/2 − |y|)(π/2 − |z|).

The results are shown in Table 4; also in this case, the blow-up time is
connected to the magnitude of the initial data. In particular, certain initial
conditions can produce global solutions in time, as illustrated in the first row of
the same Table 4.

4. Concluding remarks. This paper studies the blowing-up solutions of
a nonlinear and weakly coupled parabolic system defined in a bounded domain
of R

3; the equations contain power source and damping terms, and Dirichlet
boundary conditions are fixed. Starting from a theoretical result concerning a

T a b l e 2

Computing the blow-up time t⋆ in terms
of ∆t; comparison with respect the lower

bound T

∆t t⋆ T εm

10−2 0.05 7.1 ×10−15 2.8 × 106

10−3 0.024 7.1 ×10−15 5.5 × 106

10−4 0.0215 7.1 × 10−15 8.3 × 106

10−5 0.0211 7.1 × 10−15 9.1 × 106

T a b l e 3

Analyzing the blow-up time t⋆ in terms of p

and q

p q t⋆ εm

3 1.1 0.148 2.9 × 106

3.4 1.8 0.06 4.5 × 106

3.3 1.8 0.08 9.3 × 106

3 1.8 1.14 7.6 × 10−6
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T a b l e 4

Analyzing the blow-up time in terms of W0

I.C. W0 t⋆ εm

(u1, v1) 1810.75 1.6 4.8 × 10−10

(u2, v2) 1846.81 0.288 9.3 × 106

(u3, v3) 1891.11 0.165 5.3 × 106

(u4, v4) 1973.63 0.128 3.14 × 106

lower bound for the blow-up time, we propose and employ a procedure capable to
directly calculate its real value. It is achieved by applying a mixed semidiscrete
in space and a single-step method in time algorithm to the system. Furthermore,
the problem is numerically solved in different cases; the analysis of the results
shows that:

• the numerical method is coherent with respect to the theoretical approach,
in the sense that in those cases in which the solution blows up the blow-up
time verifies the lower bound estimate,

• the optimal lower bound for the blow-up time (in W -norm) is significantly
smaller with respect to its real value,

• the W -norm of the solution can grow up more and more with respect to the
value of the solution at its blow-up point,

• the system is sensitive with respect to small variations of its data: in fact,
initial conditions or parameters slightly different from each other can return
both blowing up or global solutions.
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