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Pinning Control of Hypergraphs
Pietro De Lellis , Senior Member, IEEE, Fabio Della Rossa ,
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Abstract—A standard assumption in control of network
dynamical systems is that its nodes interact through pair-
wise interactions, which can be described by means of a
directed graph. However, in several contexts, multibody,
directed interactions may occur, thereby requiring the use
of directed hypergraphs rather then digraphs. For the first
time, we propose a strategy, inspired by the classic pinning
control on graphs, that is tailored for controlling network
systems coupled through a directed hypergraph. By draw-
ing an analogy with signed graphs, we provide sufficient
conditions for controlling the network onto the desired tra-
jectory provided by the pinner, and a dedicated algorithm
to design the control hyperedges.

Index Terms—Pinning control, higher-order interactions,
directed hypergraphs, consensus and synchronization,
simplicial complexes, networks.

I. INTRODUCTION

IN THE last decades, network science made strides towards
understanding how to analyze and control the behav-

ior of complex dynamical systems composed by several
interconnected units [1], [2]. A landmark achievement from
the research community has been the discovery of how
collective behaviors such as consensus and synchroniza-
tion may spontaneously emerge or be induced within the
system [3], [4]. Uncovering these fundamental mechanisms
has been paramount in a plethora of applications, which
include robotic flocking [5], [6], control of epidemics [7],
[8], [9], migration dynamics [10], [11], and control of power
grids [12]. In all these diverse contexts, it was observed how
the collective behaviors emerging in the system were the result
of the individual dynamics taking place at each unit, combined
with the effect of their mutual interactions.
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The study of network dynamical systems has typically relied
on the assumption that interactions between the units are pair-
wise, whereby a directed graph was the natural framework
to describe the system: each unit was a node in the graph,
whereas a link from node j to node i implied an influence of
the dynamics of unit j on the dynamics of unit i. However, the
exclusive focus on pairwise interactions is a fundamental lim-
itation of classic network descriptions, as in many empirical
systems, such as neuronal networks, opinion dynamics, social
contagion, and control of epidemics, we observe many-body
interactions [13], [14], [15], [16].

Hypergraphs and simplicial complexes are instead the ideal
framework to encapsulate the higher-order interactions taking
place in complex systems, and can be viewed as generaliza-
tions of the concept of graphs, as they consider also many-
body interactions encompassing more than two nodes [17].
Recently, local conditions for the emergence of a synchronous
behaviour have been derived in [18], consensus-like dynam-
ics have been studied [19], [20], [21], and a series of rich and
novel behaviors were observed in networks of Kuramoto oscil-
lators coupled through simplicial structures [22], [23], [24],
suitable to describe undirected interactions.

Considering multi-body interactions is also crucial towards
control applications, where directed interactions should be
considered. For instance, in pinning control a virtual node,
the pinner, exerts a control action that is proportional to
the difference between its state and that of a unit in the
system [25], [26], [27]. The hidden assumption here is that
the pinner can measure the state of a given network node, so
that this interaction can be well represented by a directed edge
from the pinner to the controlled node. However, due to lim-
itations on sensing and actuation, in several applications it is
not possible to measure the state of a given node, but rather
a function of the state of a group of nodes. For instance, in
feedback control of microbial consortia, fluorescence cannot
always be measured at the level of the single node (i.e., the
single cell) but rather an aggregated measurement of the fluo-
rescence of groups of cells is obtained [28]. Similarly, limits
on the actuation imply that the same control signal has to be
injected on more nodes (i.e., more cells).

In this letter, we propose to model these kinds of con-
trol actions in terms of directed hyperedges from the pinner
(the tail of the hyperedge) to a subset of nodes (the heads of
the hyperedge). This modeling approach allows to encompass
cases where a group of nodes is subject to the same control
action. The manuscript contributions are as follow:

• we generalize the concept of pinning control to consider
the presence of higher-order interactions by using the
formalism of directed hypergraphs [29],
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• we show how dynamics over a directed hypergraphs can
be studied over an equivalent signed graph, and build a
mapping between the two formulations.

This cogent mapping further allowed us to
• show that the standard conditions for pinning control on

digraphs do not trivially extend in the presence of higher-
order interactions,

• derive sufficient conditions on the hypergraph structure,
on the hyperedges connecting the pinner with the con-
trolled network, and on the individual dynamics so that
the higher-order network is asymptotically controlled to
the trajectory of the pinner, and

• introduce a heuristic algorithm that, when the network
topology is known, allows to select the pinning hyper-
edges to control the network onto the desired trajectory.

II. MATHEMATICAL PRELIMINARIES

A. Matrices and Vector Fields
Given a positive scalar n, we denote by In the identity matrix

of size n, by 1n and 0n the vectors of all ones and all zeros
in R

n, respectively. The canonical basis for Rn is {e1, . . . , en},
where ei is the i-th column of In. Given a matrix M ∈ R

n×n,
MT is its transpose, Msym = (M + MT)/2 its symmetric part,
det(M) its determinant, and M > 0 (M ≥ 0) means that it is
positive (semi-)definite.

Given two matrices M1 ∈ R
a×b and M2 ∈ R

c×d, we denote
(M1 ⊗ M2) ∈ R

ac×bd their Kronecker product [30], and, when
they have the same number of columns (b = d), we denote
[M1; M2] ∈ R

(a+c)×b their vertical concatenation, whereas
when they have the same number of rows (a = c), we denote
[M1, M2] ∈ R

a×(b+d) their horizontal concatenation. When M1
and M2 are square and have the same size (a = b = c = d),
we denote M1 � M2 their bialternate product [31].

Lemma 1 [32]: Let λ1, . . . , λn be the eigenvalues of M ∈
R

n×n. The eigenvalues of 2A � In are λ(i−1)n+j = λi + λj,
i, j = 1, . . . , n.

In what follows, given a matrix M ∈ R
n×n, we sort its eigen-

values λ1(M), . . . , λn(M) so that their real part is in ascending
order, that is, �(λ1(M)) ≤ . . . ≤ �(λn(M)).

Definition 1 [33]: A vector field φ : R
n × R≥0 → R

n is
QUAD if, for any P = PT > 0, there exist a positive definite
diagonal matrix � such that, for all y, z ∈ R

n, t ∈ R≥0

(y − z)TP(f (y, t) − f (z, t)) ≤ (y − z)T�(y − z). (1)

Globally Lipschitz vector fields and differentiable vector
fields with bounded Jacobian fulfil (1) [33], whereas equiv-
alences with the Demidovich condition and boundedness of
the matrix measure of the Jacobian can be found in [34].

B. Directed Hypergraphs [29]
A directed hypergraph H is a pair (V, E), where V =

{ν1, . . . , νN} is the set of nodes, and E = {ε1, . . . , εM} is the
set of directed hyperedges; the i-th directed hyperedge εi of
H is an ordered pair (T (εi),H(εi)) of (possibly empty) dis-
joint subsets of the hypergraph nodes. Namely, the ordered
subsets T (εi) and H(εi) of V , are the set of tails and heads
of the hyperedge εi, with cardinality |T (εi)| and |H(εi)|,
respectively, and such that T (εi) ∩ H(εi) = ∅. The functions
t(ε, i) and h(ε, j) associate to the i-th tail and j-th head of a

hyperedge ε ∈ E the corresponding labels in V , respectively.
Furthermore, given two node subsets V1,V2 ⊆ V , we denote
EV1,V2 = {ε ∈ E : V1 ⊆ T (ε) ∧ V2 ⊆ H(ε)}; with a slight
abuse of notation, when a subset is a singleton, we will refer to
it by its only element, e.g., if V1 = {νj} we write E j,V2 in place
of E {νj},V2 . Finally, we denote E ·,j = {εi ∈ E : νj ∈ H(εi)} as
the subset of hyperedges having νj as a head.

C. Signed Graphs [35]
A weighted signed graph S is defined by the triple

{V, E,W}, where V is the set of nodes, E ⊆ V × V is
the set of edges, and the function W : V × V → R asso-
ciates 0 to each pair (i, j) ∈ V × V that is not in E , and a
non-zero weight to each edge in E . Different from standard
weighted digraphs, also negative weights can be associated
to edges. The adjacency matrix associated to S is such that
its ij-th entry aij is equal to the weight W(i, j) associated to
edge (i, j). The Laplacian matrix for signed graphs has been
defined as L = D − A, where D = diag{dout

1 , . . . , dout
|V |}, with

dout
i = ∑|V |

j=1 aij being the out-degree of node i. By definition,
L is zero row-sum, which implies that 0 ∈ spec(L), and that
1N is its associated (right) eigenvector.

Definition 2 [36]: Given a matrix S ∈ R
(|V |−1)×|V |, whose

rows are an orthonormal basis for the orthogonal comple-
ment of span(1|V |), matrix L = SLST, which belongs to
R

(|V |−1)×(|V |−1), is called the reduced Laplacian of the signed
graph S .

The superimposition of two signed graphs S 1 =
{V, E1,W1} and S 2 = {V, E2,W2} is the graph S =
S 1 ⊕ S 2 = {V, E,W}, where E = E1 ∪ E2, and W(i, j) =
W1(i, j) + W2(i, j).

III. PINNING CONTROL OF HYPERGRAPHS

A. Controlled Network on a Directed Hypergraph
Let us consider a network dynamical system on a hyper-

graph H c = {Vc, Ec}, which we call the controlled hyper-
graph, where Vc = {ν1, . . . , νN} is the set of controlled
nodes, and Ec = {ε1, . . . , εN} the set of directed hyper-
edges of H c. We associate to a node νi ∈ Vc a state
variable xi ∈ R

n, and to a hyperedge ε ∈ Ec a tail state
matrix xτ

ε = [xt(ε,1), . . . , xt(ε,|T (ε)|)] and a head state matrix
xh
ε = [xh(ε,1), . . . , xh(ε,|H(ε)|)], with xt(ε,i) and xh(ε,j) being the

state of the i-th tail and of the j-th head of ε, respectively. The
node dynamics are given by

ẋi = f (xi, t) +
∑

ε∈E ·,i
c

σε(x
τ
εαε − xh

εβε) + ui, (2)

where f : R
n × R≥0 → R

n is the continuous and dif-
ferentiable vector field describing the individual dynam-
ics, σε is the coupling gain associated to the hyper-
edge ε; αε = [(αε)t(ε,1), . . . , (αε)t(ε,|T (ε)|)]T and βε =
[(βε)h(ε,1), . . . , (βε)h(ε,|H(ε)|)]T are the (ordered) vectors
stacking the weights associated to the tails and heads of ε,
respectively, such that αT

ε 1|T (ε)| = βT
ε 1|H(ε)| = 1.

The hyperdiffusive coupling protocol in (2) implies that
each head of a hyperedge receives a signal which is the dif-
ference between a convex combination of the states of the
tails and a convex combination of the states of the heads of
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the hyperedge. This protocol is a synchronization noninvasive
coupling functions, according to the definition given in [18].
Indeed, when all the states are identical, the summation in (2)
would be naught. Furthermore, we note that, if H c were a
digraph, one would have

∑

ε∈E ·,i
c

σε(x
τ
εαε − xh

εβε) =
∑

j∈Nin(i)

σij(xj − xi),

with Nin(i) being the in-neighborhood of i, that corresponds
to the diffusive coupling protocol for networks on digraphs.

The goal of the control input ui is to steer the dynamics
of network (2) onto the trajectory of an additional node vs,
the pinner, sharing the same individual dynamics of the con-
trolled nodes, and whose state is denoted xs ∈ R

n. The desired
trajectory is defined as the solution of

ẋs = f (xs, t), (3)

where xs(0) = x0
s is the pinner’s initial condition.

The enlarged network system that includes the controlled
nodes and the pinner can be described in terms of an aug-
mented hypergraph H = {V, E}, of which H c is a proper
sub-hypergraph. More specifically, the node set V also includes
the pinner, that is, V = Vc ∪ {vs}. Note that the dynamics of
the pinner, by definition (3), are not influenced by those of the
controlled nodes, and therefore it is a node that cannot be a
head of any hyperedge, that is, E is such that s /∈ ⋃

ε∈E H(ε).
We can then decompose E as

E = Ec ∪
N⋃

i=1

E s,i,

where E s,i is the set of hyperedges having the pinner vs as a
tail, and node vi as a head. We define the set P of the pinned
nodes, that is, the nodes who are directly influenced by the
pinner, as P = {i ∈ V : E s,i �= ∅}. Accordingly,

ui =
{∑

ε∈E s,i kε(xτ
εαε − xh

εβε), i ∈ P,

0, otherwise,
(4)

where kε is the control gain associated to the hyperedge ε.
Note that the pinner’s state xs is one of the elements of xτ

ε .
Definition 3: We call a hyperdiffusive protocol homoge-

neous when αε = 1|T (ε)|/|T (ε)| and βε = 1|H(ε)|/|H(ε)|.

B. Control Objective and Pinning Error Dynamics
As in pinning control of graphs, we define the pinning error

of node i as ei = xi − s, and the network pinning error as
e = [e1; · · · ; eN]. The goal of the pinning control action ui,
defined in (4), is to steer the dynamics of the nodes in the
controlled network toward the pinner’s trajectory, that is,

lim
t→+∞ ‖e(t)‖ = 0. (5)

From (2)–(3), the pinning error dynamics can be written as

ėi = f (xi, t) − f (xs, t) +
∑

ε∈E ·,i
c

σε(x
τ
εαε − xh

εβε) + ui. (6)

Note that, by summing and subtracting the state of the pinner
to each element in the summation in (6), one obtains

ėi = f (xi, t) − f (xs, t) +
∑

ε∈E ·,i
c

σε(e
τ
εαε − eh

εβε) + ui, (7)

where eτ
ε and eh

ε are the matrices stacking the error vectors of
the tails and heads of ε, respectively.

IV. MAIN RESULTS

Here, we show that the dynamics taking place on directed
hypergraphs can be studied on an equivalent network on a
signed graph. We start by showing that, given any directed
hyperedge ε ∈ E , the following proposition holds:

Proposition 1: Given any edge ε ∈ E , for all i ∈ H(ε)

xτ
εαε − xh

εβε =
∑

j∈T (ε)

(
(αε)j(xj − xi)

)

−
∑

j∈H(ε)

(
(βε)j(xj − xi)

)
(8)

Proof: Equations (8) can be obtained by summing and
subtracting (xh

ε)i to the left-hand side, and considering that
αT

ε 1|T (ε)| = βT
ε 1|H(ε)| = 1.

From Proposition 1, it follows that the presence of a directed
hyperedge ε of weight σε is equivalent to having positive
incoming edges from all its tails to all its heads and negative
edges between any two heads. In particular, one has that the
edge from one of its tails, say i, to any of its heads has weight
(αε)iσε, whereas the edge from one of its heads, say j, to any
of its other heads is (βε)jσε. To formally show this, let us
introduce z = [z1; . . . ; zN+1], where zi = xi for i = 1, . . . , N,
and zN+1 = xs, which stacks the states of the nodes of the con-
trolled network and that of the pinner. Proposition 1 implies
that the following equivalence hold:

Proposition 2: The dynamics (2)-(4) on the hypergraph H
can be equivalently written as

żi = f (zi, t) +
N+1∑

j=1

aij(zj − zi), (9)

where aij is the ij-th entry of the adjacency matrix A of the
signed graph S = {V, Es,W}, defined as

aij =
∑

ε∈E j,i
c

(αε)jσε −
∑

ε∈E ·,{i,j}
c

(βε)jσε

+ IP (i)

⎛

⎜
⎝

∑

ε∈E {s,j},i
(αε)jkε −

∑

ε∈E s,{i,j}
c

(βε)jkε

⎞

⎟
⎠, (10)

with IP (i) = 1 if i ∈ P , and zero otherwise.
Proof: From Proposition 1, and by direct comparison

between (2)-(4) and (9)-(10), the thesis follows.
Fig. 1 gives a graphical illustration of this equivalence.
Next, let us consider the Laplacian matrix L associated to A,

and let us sort its eigenvalues in ascending order by their real
part, so that �(λ1(L)) ≤ · · · ≤ �(λN+1(L)). Since the pinner’s
dynamics are independent of those of the other nodes, L can
be written in block-triangular form as

L =
[

M ξ

0T
N 0

]

. (11)

Lemma 2: If �(λ2(L)) > 0, then there exist symmetric
positive definite matrices P and Q such that

− PM − MTP ≤ −Q. (12)
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Fig. 1. A hypergraph (panel A) and its equivalent signed graph
(panel B).

Proof: Since L is zero row-sum, 0 ∈ spec(L), with asso-
ciated eigenvector 1N . From the hypotheses, all the other
eigenvalues will have a positive real part. From the block-
triangular decomposition (11), spec(L) = spec(M) ∪ {0},
which implies all the eigenvalues of M have positive real part,
whereby −M is Hurwitz, and the thesis follows.

We are now ready to state the following result:
Theorem 1: If f is QUAD, �(λ2) > 0, and

λmin
(
(PM)sym

)
> δmax, (13)

where P is defined in (12) and δmax = maxi �ii, then
network (2)-(4) is asymptotically pinning controlled.

Proof: Let us consider the Lyapunov function candidate

V = 1

2
eT(P ⊗ In)e, (14)

Using Proposition 2, error dynamics (7) can be rewritten as

ėi = f (xi, t) − f (xs, t) −
N∑

j=1

mijej, (15)

where mij is the ij-th entry of matrix M in (11). In com-
pact form, one can write ė = F(x, xs, t) − (M ⊗ In)e where
F(x, xs, t) = [f (x1, t)−f (xs, t); · · · ; f (xN, t)−f (xs, t)]. We can
then differentiate V , thereby obtaining

V̇ = eT(P ⊗ In)ė = W1 + W2, (16)

where W1 = ∑N
i=1 eT

i P(f (xi, t) − f (xs, t)) and W2 = −eT

(PM ⊗ In)e.
A) Bounding W1: Since the vector field f is QUAD, we then

have that

(xi − xs)
TP(f (xi, t) − f (xs, t)) ≤ (xi − xs)

T�(xi − xs)

for all i = 1, . . . , N, which implies

W1 ≤ eT(IN ⊗ �)e ≤ δmaxeTe. (17)

B) Bounding W2: Note that W2 = −eT((PM)sym ⊗ In)e.
From Lemma 2, all the eigenvalues of (PM)sym are positive,
whereby we have

W2 ≤ λmin
(
(PM)sym

)
eTe. (18)

C) Bounding V̇: Combining (17) and (18) yields

V̇ ≤ (δmax − λmin
(
(PM)sym

)
)eTe, (19)

From (13), the thesis follows.

Fig. 2. Sample hypergraph H , where node 9 is the pinner, and its
associated Laplacian matrix L.

One of the main results in pinning control over standard,
positively weighted digraphs is that, if the coupling between
any two nodes is sufficiently high, then it is sufficient to
pin just one node in each root strongly connected component
(RSCC) in the graph, so that there is a path from the pinner
to any other network node [37]. This result does not trivially
extend to hypegraphs, as the existence of a hyperpath from the
pinner to all other nodes does not guarantee that �(λ2(L)) > 0,
as shown in the following paradigmatic example.

Example 1: Let us consider the hypergraph H illustrated
in Fig. 2. The controlled hypergraph has one RSCC (the nodes
highlighted in blue) pinned by a hyperedge with one tail, cor-
responding to the pinner node, and three heads, one for each
of the nodes of the RSCC. Note that the Laplacian L associ-
ated to S has a 0 eigenvalue with multiplicity 2 (its associated
eigenvectors are 19 and the eigenvector v, whose i-th element
is equal to any scalar η if i belongs to the strongly connected
component (SCC) in yellow, to −η if it belongs to the SCC
in green, and to zero otherwise). This implies that �(λ2) = 0,
and the assumptions of Theorem 1 do not hold.

This simple counterexample shows that the results on stan-
dard graphs do not trivially extend to hypergraphs. Indeed,
the existence of a path from the pinner to all the other nodes
is not sufficient anymore to enforce pinning controllability.
In what follows, we are going to obtain a corollary that
provides a sufficient condition, which can be algorithmically
tested, to check whether it is possible to guarantee pinning
control of a hypergraph just by increasing the control and cou-
pling gains. The recursive nature of the condition will allow
to identify the critical hyperedges that may prevent pinning
controllability.

To start with, let us rewrite equations (2) and (4) as

ẋi = f (xi) + σ
∑

ε∈E ·,i
c

ςε(x
τ
εαε − xh

εβε) + ui, (20)

ui =
{

σ
∑

ε∈E s,i cε(xτ
εαε − xh

εβε), i ∈ P,

0, otherwise,
(21)

where σ > 0 represents the overall coupling strength between
interacting nodes, and ςε = σε/σ and cε = kε/σ . Next, let
us define E− = {(i, j) : aij < 0}, E+ = {(i, j) : aij > 0},
and W+(i, j) = W(i, j) if (i, j) ∈ E+, whereas W+(i, j) = 0
otherwise, and let us denote by S + = {V, E+,W+} the sub-
graph of S that only contains the positive edges of S . We can
then compute the binary variable b with the iterative procedure
described in Algorithm 1.

Note that Algorithm 1 leverages the continuity of the eigen-
values and Lemma 1, which allow to compute δ� as the
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Algorithm 1 Computation of Parameter b

1: Initialization: b = 1, S curr = S +, and E1 = E−.
2: If the Laplacian matrix of S + has 0 as a simple eigen-

value, set S curr = S + and go to the next step. Otherwise,
set b = 0 and terminate the algorithm.

3: Set S 1 = S curr, and take randomly an edge (i, j) ∈ E1.
Then, set S 2 = {V, E2,W2}, with E2 = {(i, j) ∪ (j, i)},
W2(i, j) = −δσij and W2(j, i) = −δσji, with σij = −aij
if −aij < 0, whereas σij = 0 otherwise, and σji = −aji if
aji < 0, whereas σji = 0 otherwise. Set E1 = (E1∪E2)\E2.

4: Compute δ� as

min
δ>0

δ s.t. det(2(L̄ + δL̄2) � In−1) = 0, (22)

with L̄ and L̄2 the reduced Laplacian of S curr and S 2
5: If δ� ≤ 1, set b = 0 and terminate the algorithm. If

δ� > 1 and E1 = ∅, terminate the algorithm with b = 1.
Otherwise, update S curr to S 1 ⊕ S 2, and go to step 3.

normalized weight at which an eigenvalue (or a pair of com-
plex eigenvalues) would cross the imaginary axes. Therefore,
when the algorithm outputs b = 1, the Laplacian matrix asso-
ciated to S has a simple 0 eigenvalue, and all its remaining
eigenvalues have positive real part.

Corollary 1: If f is QUAD and b = 1, then there exists a
finite σ in (20)-(21) such that network (2)-(4) is asymptotically
controlled to the pinner’s trajectory.

Proof: Since b = 1, then �(λ2) > 0, and thus a positive def-
inite symmetric matrix P exists such that λmin((PM)sym) > 0.
As (20)-(21) ensure that increasing σ linearly increases
λmin((PM)sym), it is always possible to find a sufficiently large
σ such that λmin((PM)sym) > δmax. From Theorem 1, the
thesis follows.

Remark 1: From Step 2 of Algorithm 1, assuming b = 1 in
Corollary 1 means that S + is such that there exists a directed
spanning tree rooted in s, which is a necessary and sufficient
condition for having a simple 0 eigenvalue in the Laplacian
associated to S + and all other eigenvalues with positive real
part. The next steps of the algorithm are used to check that
the addition of negative edges does not change this property,
and does not yield another eigenvalue to have 0 or negative
real part. In other words, Algorithm 1 identifies these critical
negative edges in S , and therefore the hyperedges in H that
have a detrimental effect for control. In the next section, we
provide a heuristic then provides a pinning hyperedge selection
that counteracts these effects.

V. HEURISTIC FOR PINNING HYPEREDGE SELECTION

Here, we propose a heuristic for control design, whose
iterative structure is reported in Algorithm 2, and which is
based on Algorithm 1, that we devised to compute the vari-
able b. Specifically, Steps 1 and 2 of Algorithm 2 leverage
a structural condition for the existence in S + of a directed
spanning tree from the pinner, so that a necessary condition
for having b = 1 is fulfilled (namely, Step 2 of Algorithm 1).
Algorithm 2 is then used to identify the critical negative edges,
and to subsequently add hyperedges in one of the SCCs of
their endpoints (Steps 3-4). Note that the heuristic stops adding
hyperedges only when b = 1, that is, when we are guaranteed

Algorithm 2 Heuristic for Pinning Hyperedge Selection

1: Perform the condensation of the digraph S +
2: For each RSCC of S +, add a pinning hyperedge whose

heads are all in that RSCC. Update H and S + accord-
ingly.

3: Run Algorithm 1. If b = 1, terminate the algorithm, oth-
erwise store the negative edge e− in E− that changed b
to 0 in Step 5 of Algorithm 1.

4: Pick one of the two nodes that e− connects, say i, and add
a pinning hyperedge with heads only in the SCC to which
i belongs to (including i). Update H and S + accordingly,
and return to step 1.

Fig. 3. Dynamics of the pinning error norm for a controlled network
of 8 Chua systems when the hypergraph is that in Fig. 2 (panel A) and
when the pinning hyperedge whose heads are node 6, 7, and 8 is added
(panel B).

by Corollary 1 that we can find a sufficiently large coupling
strength σ to control the hypergraph to the pinner’s trajec-
tory. In what follows, we demonstrate the effectiveness of this
heuristic in the following illustrative application.

A. Pinning Control of Chua’s Circuits
In the general equation (2), we consider as individual

dynamics the well-known Chua’s circuit [38]. Namely, we set
f (xi, t) = [9(xi2 − R(xi1)); xi1 − xi2 + xi3;−100/7 xi2], where
R(xi1) = m1xi1 + (m0 − m1)(|xi1 + 1| − |xi1 − 1|)/2, with
m0 = −1/7 and m1 = 2/7 selected so that, in the absence
of noise and coupling, the dynamics exhibits the double scroll
chaotic attractor. Initially, the hypergraph through which the
nodes are coupled is that in Fig. 2, where node 9 is the pinner,
σε = 30 for all ε, and the hyperdiffusive protocol is homoge-
neous (see Definition 3). Fig. 3A shows that the pinning error
norm does not converge to zero. Consistently, Algorithm 1
yields b = 0, and Step 3 of Algorithm 2 identifies (5, 7) as a
critical negative edge in the equivalent signed graph. Following
Step 4, we then add a pinning hyperedge to the multibody
group to which node 7 belongs (that is, a hyperedge whose tail
is the pinner, node 9, and whose heads are nodes 6, 7, and 8)
and go back to Steps 1-2. Running again Algorithm 1, we
obtain b = 1 and terminate the pinning hyperedge selection.
Then, as the Chua’s circuit is QUAD [2], both assumptions of
Corollary 1 are fulfilled and, consistently, Fig. 3B shows that
the pinning error norm converges to zero.

We emphasize that the heuristic not only achieves the con-
trol goal, but also strongly reduces the number of hyperedges
required to control the network when compared to the case of
a random addition of pinning hyperedges to those connecting
the pinner with the RSCCs. Indeed, when tested on 100 ran-
domly generated uniform hypergraphs of N = 100 nodes, the
heuristic required only adding 3.2 ± 2.9 hyperedges, whereas
a random selection yielded 31.0 ± 20.6 hyperedges.
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VI. CONCLUSION

In this letter, we have introduced for the first time pinning
control in networks of units coupled through a directed hyper-
graph. By establishing a fundamental equivalence between
dynamics over hypergraphs with those on a special class
of signed graphs, we have derived sufficient conditions for
pinning controllability, which generalize those on standard
digraphs. Different from what is observed on graphs, the exis-
tence of a spanning tree from the pinner to all other nodes is
not sufficient for pinning control. Accordingly, we have intro-
duced an algorithm that is capable of identifying the critical
negative edges in the equivalent signed graphs that may hin-
der pinning control, which is then used by our heuristic for
control design to select the pinning hyperedges.

There are several directions along which this letter could
be extended. For instance, the design of nonlinear higher-
order pinning inputs could be considered to enhance control
performance. Moreover, as in standard graphs [39], decentral-
ized estimation and control strategies could be sought to avoid
the need of knowing the network structure, thus enhancing
scalability. Finally, the impact of possible mismatches in the
individual dynamics of the units on the convergence of the
pinning error should be investigated.
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