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Abstract

In this paper, we reconsider the overlapping generations (OLG) environmental model in-
troduced in John and Pecchenino (1994) and Zhang (1999) by adopting the specification
of the environmental dynamics proposed by Naimzada and Sodini (2010). The model
two different regimes that may alternate: one in which the economy and the environ-
ment co-evolve in the same direction; the other in which the environmental problem is
not internalized by the agents, that is, the agents do not devolve any private resource
to the environmental good, leading to a possible trade-off between environment and eco-
nomic growth. The analysis of the equilibrium dynamics, described by a two dimensional
piecewise smooth map, shows that starting from a parametric configuration in which the
dynamics are definitely driven by a unique regime, the increase of the negative effect of
the agents’ consumption activity ends up in scenarios where the two regimes alternate,
determining the arise of stable cycles or the occurrence of chaotic regimes. It is interesting
to notice that because of the nonsmoothness of the map, the rise in environmental harm
produced by economic activity may induce a sudden transition to chaotic regime.
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1 Introduction

In recent years, the literature focused on dynamic economic models has increasingly recognized
the importance of (exogenously or endogenously determined) constraints for investigating the
evolution of economic variables. From a mathematical point of view, in discrete time, this
implies the study of the so-called piecewise smooth dynamic systems whose state space can be
divided into regions where the specification of the map changes (see Mosekilde and Zhusub-
aliyev, 2003; Di Bernardo et al., 2008).

Several examples in this line of research can be found in the study of oligopoly dynamics. Among
others, we recall Tramontana et al. (2010) where the authors, reconsidering the duopoly model
in Puu (1991), introduce constraints to avoid negative replies by the rivals and focus on the role
of possible lower bounds of the production level showing how such bounds can cause very in-
teresting dynamic phenomena, different with respect to the original model of Puu (1991). Also
Bischi and Lamantia (2012) and Bischi et. al (2012) study oligopoly models whose dynamics
are characterized by a piecewise smooth dynamic system. The authors focus on the occurrence



of particular dynamic phenomena such as border collision and homoclinic bifurcations.

More recently, Sushko et al. (2016) reconsider the works of Matsuyama (2013) and Matsuyama
et al. (2016) to study a growth model where, in an overlapping generations framework, firms
arrive sequentially and, upon arrival, sell their endowment of inputs to acquire a certain net
worth successively used to finance two types of investment projects, good and bad (where these
have a different effect on the net worths of subsequent generations and thus on future levels
of capital stocks). The analysis of the one-dimensional nonlinear and homogeneous piecewise
map, generated by the two different types of investments, allows to observe the arise of border
collision bifurcations and the direct transition towards a chaotic regime from an attractive equi-
librium (or cycle), when exogenous parameters of the model are changed. Still in a overlapping
generations context, Agliari and Vachadze (2011) study a model with forward looking young
agents' who make endogenous labor supply decisions on the basis of two possible plans for the
subsequent generation: run a project (and thus access an imperfect credit market) or become a
depositor. These two possible choices determine a piecewise (differentiable) map. Concerning
the dynamic analysis, the authors show several phenomena, as the existence of a heteroclinic
connection or the occurrence of a homoclinic bifurcation that may be associated with global
indeterminacy, where given the initial condition of the state variable, the system may converge
to different invariant sets according to the initial value of the control variable.

In the present paper, in order to investigate the evolution of the economic-environmental vari-
ables we consider a variant of the model presented in Zhang (1999) where, differently from the
author, the equilibrium dynamics are described by a piecewise map, whose definition is driven
by the allocative choice made by the economic agents.

More specifically regarding the original article, the author studies the equilibrium dynamics in
an overlapping generations framework in which agents internalize the environmental problem
and contribute (with their own private resources) to environmental maintenance. Indeed, in
Zhang (1999), in contrast to John and Pecchenino (1994), some assumptions made by the au-
thor prevent having, as the optimal solution, that agents do not contribute to environmental
defense. The current article aims to investigate a slightly different specification of the envi-
ronmental dynamics, as introduced in Naimzada and Sodini (2010) and Caravaggio and Sodini
(2022), that allows to have two different regimes that may alternate: one in which the economy
and the environment co-evolve in the same direction; the other in which the environmental
problem is not internalized by the agents and where, therefore, they do not devolve any private
resource in favor of the environmental good, leading to a possible trade-off between environ-
ment and economic growth. Specifically, the study of the local and global properties of the
piecewise defined map allows to notice that, either starting from a parametric configuration
in which the dynamics definitely evolve in the regime with positive contribution, or starting
from a parametric configuration in which the agents definitely do not invest for environmental
maintenance, the increase of the negative magnitude of the agents’ consumption activity ends
up generating dynamics in which the two regimes alternate. From a mathematical point of
view, the onset of border collision bifurcations, able of generating sudden transitions (as the
reference parameter varies) from a stable cycle to a chaotic attractor, can be observed. The
remainder of the paper is organized as follows: Section 2 describes the structure of the model;
Section 3 provides the local analysis of the piecewise defined dynamic system; Section 4 shows,
through numerical exercises, the global dynamic properties of the model; Section 5 concludes.

In this context, forward looking agents are defined as economic agents who do not consider the variables to
be estimated as setted at their past value, but they perfectly foresee them.



2 The model

We consider a modification of the Overlapping Generations (OLG, hereafter) model proposed in
John and Pecchenino (1994) and Zhang (1999). Specifically, we assume that each representative
individual born at time t has preferences defined over consumption and environmental quality
at t + 1 (old age), Cy11 and Eyyq respectively. In particular, such preferences are described by
the utility function

U(Ct—l-l; Et+1) =In Ct+1 + n In Et+1 (1)

where 1 measures the relative weight individuals give to environmental quality rather than
consumption. During the youth, the agent supplies inelastically his time endowment (which
is normalized to 1) to the productive sector receiving a wage w; that he will divide between
saving, s;, for consumption when old, and investment in environmental maintenance, m,, for
improving the environmental quality at ¢ + 1.

Differently by John and Pecchenino (1994) and Zhang (1999), we assume that the environmental
quality index evolves according to

Eiy1= (1 —0)E, +bE — B¢, +ymy; (2)

where the parameter E > 0 represents the value toward the index tends when consumption
and environmental expenditures are null, b € (0,1) measures the speed of reversion of the
environmental quality to E and E; > 0 is the current level of the index. As in Zhang (1999),
the term [ ¢; is the consumption degradation of the environment by the old, while v m,; measures
environmental improvement.

Agent supplies his saving s; to firms and earns the gross return (1 + 7,11 — 0) where r,,; is the
real interest rate and ¢ € (0,1) is the depreciation rate of capital. Then, the individual faces
the following life-cycle budget constraints:

Crr1 = (14141 — 0)sy; (3)
wy =S¢ + my; (4)
Ct+1,mt75t Z O (5)

and the expression in (2).
On the production side, a consumption good is produced by N competitive firms where N is
normalized to 1. Then, the output y at time ¢ is produced according to the following Cobb-
Douglas technology

yr = h(k;) = Ak} (6)

where A is a positive parameter measuring the technological progress, assumed as given, and
a € (0,1) represents the elasticity of substitution of capital. Therefore, at the equilibrium we
have the following prices:

wy = (1 — ) Ak, (7)
ry = a AKX (8)

We can notice that the specification in (2) differs from John and Pecchenino (1994)’s one by
the introduction of the extra term bE. Before going any further, we point out some properties



of the model in Zhang (1999) where E = 0. Compared with the model in John and Pecchenino
(1994), the Zhang’s model makes a strong simplification. Indeed, it assumes the marginal rate
of substitution between ¢ and E as constant, that is

!
GeleB)E )
(¢, E)c
From one hand it can be proved that this assumption avoids the possibility of having solutions
with m; = 0. From the other hand, depending on the parameter set considered, the assumption
in (9) generates several problems regarding the well-defined trajectories. Specifically, by solving
the partial differential equation

Ug(e, EYE —nUl(¢, E)e =0 (10)

equivalent to (9), we can note that the unique functions having this property are functions
depending on the quantity yx%.
At this point, considering the economic assumption of monotonicity of U with respect to its
arguments, this last fact prevents having utility functions defined for both positive and negative
values of the environmental index. Thus, parameter configurations and initial conditions for
which the environmental index takes negative values make it impossible to define successive
iterations of the map. As we will show, the introduction of an appropriate term E actually
leads to results more in line with what was suggested, at least as a possibility, in John and
Pecchenino’s original article (see their footnote 21). In particular, we will show cases in which,
or in transient or definitively the case m; = 0 occurs.

2.1 Well-defined dynamics

From the budget constraint (3) and the market clearing condition k;yq = s;, we have that

e = (1—06)k: + Aaky. (11)

If all resources were devoted to saving and thus to consumption by the old, capital accumulation
is governed by the equation

ki1 = A(l — @)k (12)
Therefore, because the right hand side of the expression (11) is monotonically increasing with
respect ky, called k = [A(1 — Oz)]ﬁ the unique positive stationary point of (12), we have
that for any initial condition ko € [0,k], k assumes values lower that k for every ¢. Then,
¢ < ™ = (1 —0)k+ Aak”. Therefore, from the inequality Ey 1 >(1 —b)E, +bE — B ¢™* we
get the necessary and sufficient condition

po Rk (13)
b
such that every trajectory starting from the set of initial conditions?
(ko, Eo) € D={(k,E) € R* : k € [0,k], E >0} (14)

2We note that the assumption of restricting the set of initial conditions to pairs (ko, Ey) with kg < k does
not represent a strong limitation in the analysis of the model, as it imposes the condition that kg is no greater
than the maximum level of accumulation allowed for the economy, given the technology.
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is well defined, that is it lies in D, for every t.

2.2 Consumer’s choices

The agent’s problem is maximizing (1) with respect to ¢;1, s my, given the constraints in
(3)-(4)-(5). By substituting in the utility function the expressions of ¢, and s; in terms of m;
as can be obtained by (3)-(4), the optimization problem can be rewritten as

rerhz)mx )ln(wt—mt)+771n (L=b)E, +bE — B +ymy) . (15)

By considering the concavity property of the objective function with respect to m;, we obtain
that the optimal solution for m; is given by

nywi+Bes—(Eb+Ey(1-b)) - B =
my = v(n+1) if By(1 b) +bE — fey < myw _ (16)
otherwise

The optimal values of s; and ¢, are obtained by direct substitution of (16) into (3)-(4).
Therefore, the economic agents young in ¢ will contribute to the environmental good if and only
if the environmental quality they will experience in absence of environmental expenditures,
E;(1 —b) + bE — Be, is too low with respect to their financial resources, w;, weighted by
environmental awareness 7 and the efficacy of environmental expenditures, .

Since we have

Up(c, EE

Ulc,E)e T

we can notice that if the interior solution (m; > 0) solves (15) at ¢, then the relationship

Eir = vk (17)
holds at ¢t + 1.

3 Dynamics

By recalling the optimal solution in (16), the constraints in (3)-(4), the prices defined in (7)-(8),
the law of motion for the environment in (2) and the market clearing condition ki1 = s, we
have that, given the function

Q(k, E) = An(1 — )y + Ba)k® + k(1 — 8)3 — (1 — b)E — bE

the equilibrium dynamics of the model are defined by the two-dimensional piecewise-smooth
map M which reads as

Mzm : kt+1 = Wy = A(l — Oélfta B (18)
Eipi = (1= 0)Ey + bE — B(1 + a Ak — §)k,

if
Q(ky, Ey) <0 (19)

5



and

M, Rt = 5y (1= D) B+ 0 + ((4(1 — @) = Ba) ARY — k(1 = 6)5] (20)
Ep = o [(1=0)E +0E + ((v(1 = a) = Ba) Ak{ — k(1 = 6)8]
if
Q(kt; Et) > 0. (21)

The curve Q(k;, E;) = 0, obtained by considering the inequality in (16), divides the set D in
the two regions in which m; = 0 and m; > 0, respectively. By solving Q(k;, E;) = 0 in terms
of F;, we have that such a curve can be defined as follows:

A(n(1 — a)y + Ba)ky + (1 - 6)Bk, — bE
1-0 '
By straightforward calculations, we deduce that v' > 0 and v < 0 Vk > 0 (see Figure 1).

E, =v(k) = (22)

40
Eq

30

Figure 1: Parameter set: o = 0.1, 8 = 221, v =09, 6§ = 0.03, n = 0.75, A = 10, F =
36, b = 0.54. The set D partitioned by the curve Q(k:, Et) = 0 (depicted in black) in the
region in which mj = 0, (the white part in the positive orthant ®2 ., included the boundary in
black), and the one in which m; > 0 (in gray included the boundary in blue). The red region

describes the complement of D on R2 | that is the set of points with a value of k > k.

We notice that in the expression (18) wage is entirely saved and the environmental quality
experiences the negative effects produced by consumption, without any defensive action. In
this case, in order to contrast the low quality of environment, agents react by increasing the
consumption level, inducing a further decrease of environmental quality. This stage of growth
resembles the characteristics of interaction between environment and economic activity de-
scribed in Antoci et al. (2016) where the concept of maladaptation to pollution is introduced.
In other terms, because the non coordination among the generations, a non optimal allocation
of the resources happens, producing the so called tragedy of commons, that is a scenario where
even if the Pareto optimal allocation can require a positive amount of resources for environ-
mental quality, no one positively invest in environmental maintenance. In this last case, the



dynamics of the system are determined by the two-dimensional triangular dynamical system
M.,,. By imposing stationarity conditions for M,,, we get the following unique solution

AL+ 12 — HA(L - )0

=k =[A(l — )0 E=E =FE— 3

(23)
where Ef, > 0 because of the assumption in (13). In terms of existence and stability of the
fixed point, the following Proposition holds:

Proposition 1 The map M., admits a fixed point if and only if Q(kZ,,, EZ,,) < 0. In this case

the fized point is unique and given by (kI , E% ). Moreover, whenever the fixed point exists, it
18 always locally asymptotically stable.

Proof. From the previous analysis we have that the only possible fixed point for the dynamical
system in (18) is given by the expression (k¥ , E? ) in (23). This is a feasible fixed point if

zm?

and only if its coordinates satisfy the inequality in (19). By evaluating the Jacobian matrix

aA(l —a)ki! 0
CB(1 4+ a2AKSTE = 8) 1—b |
at the fixed point (k?

* L Er) we get that the two eigenvalues are A\; = @ and \y = 1 — b, with
0 < A1, A2 < 1. Then, the result follows. O

J(l{?t, Et) —

When this regime applies, because of the simple specification of the map, given the initial
conditions we can obtain the solution of the system of difference equations. Indeed, given the
map (18) and an initial condition (ko, Ey) satisfying Q(ko, Ep) < 0, the dynamics of k and E
are defined by the expressions

t

B=Y {a-van -y | (a0 - e ) 1o
+(Ey—E)1-b)'+E.

When economic agents contribute for the environmental maintenance, the dynamics of the
system are determined by the two-dimensional map M,y,,. Notice that within this regime even
if the agents of a specific generation start from a couple of states (k, E') outside the (17) because
the optimization process, the subsequent iterate will lie on (17), as highlighted in Figure 2.a.

Remark 1 If all the iterates satisfy the condition (21), then the dynamics of (20) can be
analyzed by studying the dynamics generated by the unidimensional map

1

My Eror = f(B,) = S0+

(=) =agma (2) + (- 0B+ 5y - 50 - 98]
(21)

The property in Remark 1 is exemplified in Figure 2.b. In light of this Remark, the following
results can be easily obtained:
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Figure 2: Parameter set: o« = 0.1, 8 = 1.488, v = 0.9, 6§ = 0.03, n = 0.75, A = 10, E =
36, b= 0.54. (a) Although the agents start from a couple of states (ko, Ey) = (9.5,6.8) outside
the line defined by (17), depicted in red, the subsequent iterates (see the arrow that highlights
the jump on the red line), represented by the blue points, lie on the red line and the sequence
converge to the fixed point (k;, ., Ex ) =~ (10.43,7.04) (the black point). (b) Cobweb diagram
representing the evolution of the environmental dynamics for ¢ > 1, in the plane (E;, Fyyq).
The black vertical line defines the boundary of the regime with m; > 0 obtained by considering
(22); the blue vertical line identifies the boundary for E such that, starting from FE;, the next

iterate satisfies the condition k, < k, given the relationship between k and E in (22).

Proposition 2 Let assume 3 < 7(1 @) The map My, admits a unique fized point if and only
if Q < el > > 0, where E, is the unique fized point of ]ijm.

yn ?TPm

Proof. By Remark 1, the existence of fixed points for M,,, can be performed by studying

the map Mpm. Because we have f(0) = b"E > 0 and the concavity of f(E;) ensured by the

assumption [ < @, the graph of the map ]\Ipm crosses the 45-degree line only one time and

then the fixed point, denoted by E;m, is unique. From (17) it follows that the k-coordinate of

the fixed point for My, is &, = Bom Then, the condition @) < o *m> > (0 guarantees the
feasibility of the stationary solutlon deﬁned by the equation f(F ) E.

Although the expression of the fixed point for M, cannot be found analytically, the following
Proposition classifies its stability:

Proposition 3 Let M, be the map defined in (20).

(a) If fyH" b ~ B < min {fy"[QZfﬁlég(O{)lSJra, 7(1;0‘)}, then there exists a threshold value Ey,

such that for E < Ey, (k;m, E;m) is locally asymptotically stable for M,,,, while for E > Ey,
(k;m, E; ) does not exist or is unstable.

(b) If v M<5<71 a),andQ(

) > 0 then (k’* E;m) s unstable.

pm7 pm?



Proof. By Remark 1, the stability of the fixed point for Mpm can be performed by studying

the map Mpm By evaluating the first derivative of f at E* = we get

pm

(41— ) —aB)ad (%) 41— byy — (1 0)p
v(n+1) '

It is straightforward to prove that, under the assumption 3 < 2
tonic relatlonshlp between E and E;,, and, as E tends to 400, E;m tends to +00. Furthermore,

F(Ep) =

1d=a) , there is a positive mono-

because 3 < 1=e) f’ (E) is monotonically decreasing with respect to E and then f is concave.
(a) For the assumptlon on 3, we get f'(Ey )lg—o € (=1,1) and lim f'(E; ) < —1. This
E— +o00

implies that there exists a threshold value Ey, such that f’ (Eyn)lz=5,, = —1. By taking into
account that (k;m, ;m) |5-5,, may be feasible or not, depending on the sign of @, the result

follows. (b) In this case, for E = 0 we have that f/(E% ) < —1 and due to the monotonic
behavior of f'(Ey ), the result trivially follows. O

Proposition 4 If 3 > @, then the function f is always decreasing and a fixed point exists.
If f'(Ey,,) > —1 then the fived point Ey  is the Q-limit set for the dynamics starting on the
diagonal with an initial condition (ko, Ey) such that Q(ko, Ey) < 0. For sufficiently high value
of E, the dynamics are captured by a 2-cycle or they exit the regime.

The previous results clarify the dynamic properties of the map My, from initial conditions
(ko, Eo) close to fixed point (k7,,, Ey.). We also note that from (13), in order to have well

pm>
C,,m has to hold, too. Regarding the map M,

* ) and (k;m, E;m) are mutually exclusive. Indeed,

defined dynamics in the set D, the condltlon B <
we can observe that the fixed points (k,,, £
the following result holds:

Proposition 5 The fized point (k,,, E3,,) exists if and only if Q (k. Eny) < 0.
Proof. Suppose by contradiction that (k;, ., £ ) exists. Therefore, we have @ ( p— D ) > 0.
A stationary point with m* = 0 would identify a point (&', E') with &' > k7 and E’ < E;.

because a lower level in m* induces both an higher level of & and a lower level of E. This
represents a contradiction, because the point (k’, E’) would belong to the region characterized
by Q(K', E') > 0 and then m* > 0.

Suppose now by contradiction that (kZ,,, E%,,) exists. Therefore, we have Q(kZ,,, EZ,,) < 0. A
stationary point with m* > 0 would identify a point (k”, E”) with k£ < k,, and E” > B
because a higher level in m* induces both a lower level of k and a higher level of FE. This
represents a contradiction, because the point (k”, E”) would belong to the region characterized

by Q(k”, E") < 0 and then m* = 0. O

We note that, in general, the regions defined by the curve (22) may be non-invariant, as shown
in Figure 3. In this case even if there is an area where Q(k, F') > 0, then no fixed point exists
for this regime. Figure 3.a and the enlargement in Figure 3.b show a trajectory generated by
an initial condition that verifies Q(ko, Eo) > 0. The dynamics synchronize on the half-line (17)
for the first three iterates, the last of which is, however, outside the region Q(k, E) > 0. From
the successive the dynamics develop in the region Q(ko, Ey) < 0, converging to equilibrium
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(kzm, E.m). Figure 3.c highlights that also the region where Q(k,E) < 0 is non-invariant.
Indeed, even if starting from an initial condition (ko, Fy) that satisfies Q(ko, Fp) < 0 and
converging to the fixed point (k¥,,, EZ ), the trajectory enters, at least for one iterate, the
region with Q(k;, Fy) > 0 before exiting again. We note that the cases in Figure 3.a and
Figure 3.c were obtained with the condition y(1 — a) — fa > 0. Figure 3.d shows that the

non-invariancy of Q(k, E') > 0 can also occur with (1 — a) — fa < 0.

0.0010 0.00070-
Et Et
0.0008 - .
0.00069-
0.0006 -
0.0004 -
0.00068-
0.0002 -
0 + : : 0.00067 | | |
0 002 004, 006 008 0.10 0.0675 0.0680 0.0685 0.0690 0.0695
k’t kt
(a) (b)
0.0010 1 0.0121
Et Et
0.0008 - 0.0101
0.008 1
0.0006 -
0.006 1
0.0004 -
0.004 1
2
0.0002 0.002 -
0 . : : 0 | . | . | .
0 002 004 006 008 0.10 0 0.01 0.02 0.03.0.04 005 0.06 0.07 0.08
kot [
(c) (d)

Figure 3: Panels (a) and (b) show the non-invariancy of the set Q(k, E) > 0 when (1 —
a) — fa > 0, starting from the initial condition (kg, Ey) = (0.01,0.00001). Panel (c) displays
the non-invariancy of the set Q(k, E) < 0 when (1 — a) — Sa > 0, starting from the initial
condition (ko, Ey) = (0.02,0.00051). The parameter set applied is « = f =~y =n= A =
b=0.1, § =1, E =0.0084. Panel (d) shows the non-invariancy of the set Q(k, E) > 0 when
v(1—a)— Ba < 0, starting from the initial condition (ko, Ey) = (0.005,0.0001). The parameter

set appliedisa=8=n=A=b=0.1, y=1, § =04, E = 0.0588.
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The next section will be devoted to the study of more complex configurations where infinite
switches between the two regimes occur.

4 Global analysis

In the previous section, we dealt with the definition of the piecewise map M and the local
analysis of the two possible regimes that may arise, M,,, and M,,,, depending on the value
assumed by m; (null or positive). In this section we will explore, by means of numerical exercises,
the global dynamics of the map M. Specifically, focusing on the role of 8 and E, we will show
that the dynamics (i) may exhibit an involvement (in the long run) of both regimes, and how
(ii) the emergence of peculiar dynamic phenomena unexplored in both John and Pecchenino
(1994) and Zhang (1999) can be observed. One of the features of the map is that, since in the
regime where Q(k, E') > 0 the dynamics are constrained on a half-line, even complex attractors
that will occupy the region where Q(k, E) < 0 will be strongly affected by this shape. This
means that for such a parametric configuration, regardless of the initial condition (ko, Ep), the
dynamics will be described from a certain ¢ onwards by the map M,y,.

Consider the parameter set: « = 0.1, v =0.9, § =0.03, n = 0.75, A =10, E = 36, b = 0.54.
The bifurcation diagram in Figure 4.a shows the phenomena that can be observed as [ increases.

0 . . . . h . . .
2.034 2.036 2.038 3 2.04 2.042
!

(b)

Figure 4: (a) Bifurcation diagram of E as [ increases. (b) Bifurcation diagram of m* for (
close to the first border collision bifurcation. From [ ~ 2.0393 one of the poles of the 2-cycle
involves null environmental investments.
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Indeed, as the value of 3 raises, we can notice that the fixed point loses its stability as a result
of a flip bifurcation (which occurs for 5 ~ 2.0367) and the system convergences to a 2-cycle
whose poles are both within the regime M,,,. By considering larger values of 3, we can observe
some interesting phenomena. At § =~ 2.0393 the dynamics of the system end up involving
both regimes (persistence border collision bifurcation), as also highlighted by the bifurcation
diagram of m* in Figure 4.b. Therefore, the iterations are no longer governed by only the map
M, (see Figure 5.a) and this means that for value of 8 higher than 2.0393, the 2-cycle has
one pole inside the blue region (with m; > 0) and the other outside it (the white region with
m; = 0), as shown by the phase plane (k, F) in Figure 5.b. This phenomenon reveals to be
interesting also because it shows that, once both regimes are involved, the dynamics that at a
certain t are outside the curve given by (17), coordinate on it at the next iterate, but outside
the region with my > 0.

157
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0 2 4 6 8 10 0 2 4 6 8 10
Et kt

(a) (b)

Figure 5: (a) The Cobweb diagram showing the iterates governed by the map M,,, starting
from the initial value Ey = 6.255. The black vertical line represents the value of F from which
the dynamics are governed by both M, and M.,,,. (b) The phase plane depicted for § = 2.21.
The poles of the 2-cycles lie on the two different regions of the plane, respectively. The empty
circle represents the unstable fixed point (&}, E,,).

From an economic point of view, we notice that a strong negative effect of consumption activ-
ity, in line with what has been shown in Zhang (1999), destabilizes the system and favors at
first (i) the onset of a cycle in which, in an alternating manner, agents first contribute more
(observing an insufficient level of E) and at the next time contribute, but with less intensity,
then it ends up producing (ii) reactions in the contribution of agents such that there will be
alternating periods in which m is very high in response to an insufficient level of E and periods
in which the level of environmental quality is so high that agents are encouraged to decide not
to contribute.

In the bifurcation diagram in Figure 4.a, one can notice a property of piecewise-smooth dy-
namical systems. Differently from what occurs in smooth systems, here the border collision
bifurcation at § ~ 2.43 causes a sudden transition from a stable 2-cycle to a chaotic attractor
divided into 4 pieces (or intervals), involving both regimes (see Figure 6.a).
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Figure 6: (a) 4-pieces chaotic attractor for § = 2.61. (b) 2-pieces chaotic attractor for g = 2.78.
(c¢) The merged chaotic attractor for 8 = 2.865. The empty circle in the phase plane represents
the unstable fixed point (k;, ., E> ). (d) The chaotic oscillations of E for 3 = 2.865.

pm>

From a dynamical point of view, for such values of 3, we have that alternating trajectories will
visit pairs (k, E) inside and outside the blue region, but in different intervals of the chaotic
attractor. Further increases of  suggest before the merging of the intervals first into two
intervals of greater amplitude (see Figure 6.b), and finally into a single chaotic area (see Figure
6.c). According to the latter phase plane, the time series for F, displayed in Figure 6.d, exhibits
chaotic oscillations.

Differently, consider the parameter set: a = 0.1, v = 0.9, § = 0.03, n = 0.75, A =10, E =
75, b = 0.54. We notice that, for a sufficient value of /3, the fixed point (k},,, E%,,) exists and
it is stable. As (3 increases, we can observe several phenomena, summarized by the bifurcation
diagram in Figure 7.a.

By increasing the value of 3, the fixed point (k?

zm?

E*.) no longer exists and there exists the
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Figure 7: (a) Bifurcation diagram of F as [ increases. (b) An enlarged bifurcation diagram of
m* highlighting that from [ ~ 2.927 the dynamics are attracted by a stable 2-cycle involving
both the regimes.

fixed point (k;m, E;m), which is unstable. Indeed, at § = 2.927, the system undergoes a border
collision bifurcation and a stable 2-cycle, involving both the regimes, becomes the attractor
(see also the bifurcation diagram of m* in Figure 7.b). A further increase in 8 induces the raise

of a attractive 4-cycle, as shown in Figure 8.
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Figure 8: (a) The phase plane (k, E) for § = 3.0616. The two poles of the 2-cycle lies in two
different regions of the plane. The empty circle represents the unstable fixed point (k;m, E;m)
(b) The phase plane (k, E) for 8 = 3.10. The poles of the 4-cycle lies in two different regions
of the plane.

At B ~ 3.12, the bifurcation diagram in Figure 7.a shows the emergence of a further border
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collision bifurcation that induces a sudden transition to a chaotic regime. As in the previous
numerical example, the chaotic attractor is first composed of four intervals (see Figure 9.a),
and for higher values of the parameter the intervals reduce to two (see Figure 9.b) and then to
a single chaotic area (see Figure 9.c). The final chaotic regime in which dynamics are trapped
for high values of 8 are also described by the time series for E in Figure 9.d.
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Figure 9: (a) 4-pieces chaotic attractor for § = 3.34. (b) 2-pieces chaotic attractor for § = 3.44.
(c) the merged chaotic attractor for 5 = 3.7. The empty circle in the phase plane represents
the unstable fixed point (k5 ., E* ). (d) The chaotic oscillations of £ for 8 = 3.7.

At the economic-environmental level, this means that, considering an initial parametric con-
figuration such that the system is attracted to a state (k, ) in which there is no contribution
to environmental maintenance (therefore, E will converge to E.,,,, < E,,), higher values of en-
vironmental damage stimulate a reaction of agents on their contribution’s decisions. However,
this reaction ends up generating dynamics that do not converge to an equilibrium in which (in
the long run) agents always contribute but rather to a state of the system where cyclically (or
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chaotically) agents first observe levels of E on which to intervene with their private resources
and then an E considered sufficiently high to incentivize non-contribution actions. Comparing
the dynamic phenomena of two numerical exercises proposed, we can additionally notice that
in this second scenario the emergence of an attractive 2-cycle is not caused by a flip bifurcation,
but it is a consequence of the border collision bifurcation involving the fixed point (k,,, EZ,,)
which becomes virtual.

5 Conclusions

In this paper, we have reconsidered the overlapping generations environmental model intro-
duced in John and Pecchenino (1994) and further studied in Zhang (1999), and adopted a
specification of the environmental dynamics in which the possible convergence to a natural
value of environmental quality in the absence of anthropogenic activity is taken into account
(as in Naimzada and Sodini, 2010 and Caravaggio and Sodini, 2022). This specification allows
to have agents who decide to do not devolve any private resource to the environmental issue.
Related to this point, we show that two different regimes may alternate: one in which the econ-
omy and the environment co-evolve in the same direction; the other in which the environmental
problem is not internalized by the agents and where, therefore, they do not devolve any private
resource to the environmental good, leading to a possible trade-off between environment and
economic growth. The analysis of the local and global properties of the resulting piecewise
defined dynamic system makes it possible to highlight that, either starting from a parametric
configuration in which the dynamics evolve in the regime with positive contribution, or start-
ing from a parametric configuration such as to determine dynamics with zero contribution,
the increase of the negative magnitude of the agents’ consumption activity ends up generating
dynamics in which the two regimes alternate, first in a cyclic manner, then in a chaotic one.
From a mathematical point of view, the occurrence of border collision bifurcations, typical of
piecewise maps and able of generating sudden transitions (as the reference parameter varies)
from a stable cycle to a chaotic attractor, may be observed.
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