
1

Cooperative Task Assignment for Distributed
Deployment of Applications in WSNs

Virginia Pilloni∗, Pirabakaran Navaratnam†, Serdar Vural†, Luigi Atzori∗, Rahim Tafazolli†
∗DIEE, University of Cagliari, Italy {virginia.pilloni,l.atzori}@diee.unica.it

†CCSR, University of Surrey, Guildford, UK {p.navaratnam,s.vural,r.tafazolli}@surrey.ac.uk

Abstract—Nodes in Wireless Sensor Networks (WSNs) are
becoming more and more complex systems with the capabilities to
run distributed structured applications. Which single task should
be implemented by each WSN node needs to be decided by
the application deployment strategy by taking into account both
network lifetime and execution time requirements. In this paper,
we propose an adaptive decentralised algorithm based on non-
cooperative game theory, where neighbouring nodes negotiate
among each other to maximize their utility function. We then
prove that an increment of the nodes utility corresponds to the
same increment of the utility for the whole network. Simulation
results show significant performance improvement with respect
to existing algorithms.

Index Terms—Wireless Sensor Networks, network lifetime,
game theory.

I. INTRODUCTION

The great progress in Wireless Sensor Networks (WSNs)
nodes’ technology, both in terms of processing capability and
energy consumption reduction, has made them more complex
systems capable not only of gathering information about the
monitored environment, but also of making decisions and
acting upon them. These developments have contributed in
considering WSNs as one of the pillars of the Future Internet,
where they interface with other technologies in order to create
an horizontal ambient intelligent infrastructure wherein the
sensing, computing and communicating infrastructure is set
with a programmable middleware that allows for quickly
deploying different applications running on top of it.

Since nodes in a WSN are mainly battery powered, one
of the major issues related to WSNs has always been the
maximization of the network lifetime. A great effort has been
spent by researchers into this problem, taking into account
many different approaches. Only recently the attention has
been drawn on the development of algorithms that, starting
from the partition of applications into small tasks, are able
to find more rational task assignments that could help in
improving the network performance, be it the improvement
of the network lifetime or the reduction of the completion
time to perform the application assigned to the network.

In this paper, an adaptive distributed algorithm for the
improvement of the network lifetime and the contemporary
reduction of the application completion time is proposed.
We consider a heterogeneous hierarchical network, where
neighbouring nodes negotiate among each other following the
rules of non-cooperative game theory to maximize their own
utility function. In the following, we will prove that the game

under examination is a potential game, which means that every
improvement of the nodes’ utility corresponds to the same
improvement in the utility perceived by the whole network,
and this implies that the problem has a unique outcome that is
reachable in a finite time. Simulation results show significant
performance improvement for both overall energy consump-
tion and completion time in a typical reference scenario,
with respect to gateway-oriented and DLMA-oriented task
assignment approach presented in [1].

This paper is organized as follows. The second section
provides the preliminaries; the third section introduces the
problem and adopted approach; the fourth section describes
the task assignment model whereas section five describes
the resulting algorithm; the following section presents some
simulation results and conclusions.

II. PRELIMINARIES

A. Past Studies

Since nodes in WSNs are mainly battery powered, a great
effort has been spent by researchers in finding strategies to
increase the nodes’ battery lifetime. Many different approaches
have been studied to come to the same goal: convenient de-
ployment of sensors [2], use of efficient routing techniques [3],
use of relay nodes that help in balancing the network energy
consumption among nodes [4] are some examples.

The increased processing capabilities of modern nodes have
made them suitable for more complex applications, such as
those of the forthcoming Future Internet [5]. For this reason,
network lifetime optimization is not only centred on the
reduction of the transmission power anymore, but convenient
processing could also reduce the amount of data to be de-
livered to the Gateway, thus reducing the transmission energy
consumption. This is the principle that lies behind LEACH [6],
where sensors serve as Cluster Heads aggregating data and,
indeed, decreasing the amount of data sent over the network.

A step forward could be taken considering not only aggre-
gation, but also any processing task that could be performed
on data, on the basis of network topology, battery power, and
node processing capabilities. In [7] the maximization of the
clusters lifetime is proposed. This approach has two main
limitations: it focuses on homogeneous networks, that are not
common in real scenarios, and it considers only communica-
tion tasks. An adaptive task allocation that aims at reducing the
overall energy consumption by maximizing energy balancing
was introduced in [8]. However, this mechanism requires the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54604427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

exchange of messages among all the nodes in the network,
indeed considerably increasing the overhead. [9] proposes an
overlaying framework that determine the tasks assignment to
WSN nodes by means of a centralised optimization algorithm
aimed at maximizing the network lifetime. In [1], the same
problem is faced using a distributed algorithm. However, one
major drawback of these studies is that they do not take into
account the network application deadline.

Completion time reduction is studied in [10], where an
algorithm that improves the network lifetime while reducing
the tasks execution time is proposed for a homogeneous
network. The algorithm designed in this work is a centralised
one, which thus lacks in scalability and dynamism.

In this paper, we propose a framework for a heterogeneous
hierarchical WNS, which aims at maximizing the network
lifetime and minimizing the application completion time in
a decentralized fashion. The nodes of this network negotiate
the best solution following the rules of non-cooperative game
theory [11]. In the following, we will prove that the proposed
algorithm can come to a good solution in a few simple steps.

B. Energy Consumption

There are several mechanisms that contribute in reducing the
amount of residual energy for the nodes in a WSN. Since our
goal in this work is the convenient assignment of tasks to the
nodes, we focus on the mechanisms that are directly related to
the execution (or not) of the tasks, that are processing energy
consumption and communication energy consumption.

Processing energy consumption eproc depends on the com-
plexity of a task, that is, the number of instructions Itask
needed to perform it, and on the average energy consumption
per executed instruction einstr(x), that is determined on the
basis of node x datasheet

eproc(task, x) = Itask × einstr(x) (1)

There are two main components that contribute in communi-
cation energy consumption: transmission and reception energy
consumption [12]. We define the energy per bit necessary
to send and receive data from node x to node y (one-hop
neighbours) at a constant rate R, respectively as

etx(x, y) =
1

R

(
PT0x +

ϕxy × δγxy
ηx

)
erx(y) =

PR0y

R

(2)

where: PT0x and PR0y are the power consumption compo-
nents of the transmitting and receiving circuitry, for node x
and node y respectively; ηx is the drain efficiency of the
Power Amplifier in x; ϕxy is a coefficient proportional to the
minimum reception power and the characteristic parameters
of the antennas; δxy is the distance between transmitter and
receiver; γ denotes the path loss component. These expressions
are described in more detail in [12].

III. PROBLEM FORMULATION

The reference scenario considered in this paper is that
of a hierarchical heterogeneous WSN. This WSN needs to

accomplish a determined application, given by the execution
of a certain number of tasks by some of its nodes. Being
a heterogeneous network, some nodes can perform the same
task faster than others, or spending less energy. The objective
of the algorithm described hereinafter is to get an application
performed by the network, reducing the processing time and
extending the network lifetime at the same time, by assigning
the tasks to the nodes of the network in an adaptive and
distributed way: whenever a node receives some data, along
with the information of which tasks have to be performed
on those data, it initiates a negotiation among its neighbours.
In this negotiation, based on a non-cooperative game theory
approach, each node decides whether it should perform some
tasks or not, depending on the contribution it could give to
the network in terms of faster processing time and lifetime
improvement.

In our modelling, the network can be described as a Directed
Acyclic Graph (DAG) GX = (X,EX), where the vertices
are the nodes X = {1, . . . , i, . . . , N}, while the connections
between each pair of nodes (i, j) is described by the set of
edges EX = (eij), where each edge represents a connection
from node i to node j.

Since the network is hierarchically organised, a level is
associated to each node i in X . At the top of the hierarchy
is the Gateway (GW), which collects data received from the
Cluster Heads (CHs). CHs reach the GW using a Cluster
Based routing protocol [13]. Sensor Nodes (SNs) are at the
lowest level of the hierarchy. They are grouped in clusters
in such a way that each SN is one hop away from all the
other SNs constituting the cluster, and from the CH to which
it is associated. No communication is allowed between SNs
belonging to different clusters. This means that, given two
nodes i and j, eij ∈ EX if and only if i and j are in the same
cluster. Such an architecture allows to reduce the overhead
of the negotiations on the network: when a negotiation is
started, all the nodes involved in this negotiation can directly
communicate with each other without intermediaries, thus
reducing the number of messages exchanged.

Taking into account what has just been said, each node i in
X is characterised by:
• its hierarchical level L(i);
• its CH to which it is associated CH(i), with CH(i) = i

in case it is a CH;
• the completion time per single instruction tinstr(i), that

is the time needed by node i to perform the simplest
instruction that its microprocessor can execute;

• the energy per single instruction eins(i), that is the energy
spent by node i to perform the simplest instruction that its
microprocessor can execute, as defined in Section II-B;

• the vector etx(i) = (etx(i, j)), where each element
etx(i, j) is the energy per bit spent to send data from
node i to an adjacent node j ∈ X : (i, j) ∈ EX , as
described in Section II-B;

• the energy per bit spent to receive data erx(i)
• the residual battery capacity eres(i) of node i.
We suppose that a given application is assigned to the

WSN. Since every application can be decomposed into a set
of tasks, it can be described as a Directed Graph (DG) of



3

tasks GT = (T,ET ), where T = {1, . . . , λ, . . .Λ} is the set
of tasks, while ET = (evw) is the set of edges, with each
edge evw representing a unidirectional data transfer from task
v to task w. We suppose that every node in the network knows
which is the required application and the relations among the
tasks in which it is decomposed. This information could have
been given initially to the nodes by the GW.

As to the tasks, a binary strategy vector s(i) = (s(i, λ))
can be assigned to each node i in the network (the meaning of
strategy will be better explained in Section IV), where s(i, λ)
is the current state of node i with reference to task λ, that
is s(i, λ) is equal to 1 when node i is performing task λ.
Since the nodes are heterogeneous, different configurations
of strategies of all the nodes in the network correspond to
different tasks completion times and energy consumption. We
will return to this concept in the following sections.

We can distinguish two groups of tasks: already performed
and still to be performed. The set of already performed tasks
is defined as Tprev = {1, . . . , h, . . . ,H}, where each task has
already been assigned to a node. This means that, for each
task h, there is a node i for which its state s(i, h) is equal
to 1, and it cannot be changed. We assume that source tasks,
that are the tasks that do not receive any input but return an
output, are already assigned to the nodes. Hence, at the initial
time t = t0, Tprev is only populated with source tasks.

Furthermore, we define the set of tasks to be performed
Tnext = {1, . . . , k, . . . ,K}, each of them characterised by:

• the deadline for successfully completing a task td(k);
• a number of required single instructions I(k).

Not all the nodes have the same abilities to perform some
tasks. For this reason, we define a binary vector d(i) =
(d(i, λ)), where the element d(i, λ) is equal to 1 if and only
if node i is able to perform task λ. This means that if node
i is not able to perform task λ, it cannot be assigned to the
node: ∀i ∈ X and ∀λ ∈ T , d(i, λ) ≥ s(i, λ).

IV. THE TASK ASSIGNMENT MODEL

In this section, our task allocation problem will be defined
as a non-cooperative game [14]. With reference to our model
described in the previous Sections, a non-cooperative game
is defined by the tuple Γ = 〈X, {s(i), ui}i∈X〉: given the
strategy vector s(i) assigned to node i ∈ X , a utility function
ui : s(i)→ < is associated to it. The goal of each node is to
maximize its own utility (payoff) in a selfish and rational way.
Therefore, a strategy s∗(i) will be preferred to a strategy s(i)
if and only if ui(s∗(i)) > ui(s(i)). For simplicity of notation,
we will often use S =

⋃
i∈X s(i) to refer to the strategy of

all the nodes in the network.

A. Task Utility Function

Since the utility of a node is strictly bound to the utility for
completing or not some tasks, before defining the node utility
function, that is the function to be maximized by each node,
we first need to define the utility function for a task k ∈ Tnext

given the overall strategy S

uk(S) = max
i∈X
{[Ωt(i, k) + α× Ωτ (i, k,S)]× s(i, k)},

with s(i, k) ≤
∏

l∈Tin(k)

∑
j∈X

s(j, l) (3)

where: Ωt(i, k) is the component of the utility function
related to the completion time of task k when it is performed
by node i; Ωτ (i, k,S) is the component related to the lifetime
of the network when task k is performed by node i, according
to the nodes’ strategy S; α > 0 is a weighting factor that takes
into account any benefit of improving the network lifetime
with respect to the completion time (we will further explain the
meaning of α in the following); Tin(k) = {λ ∈ ET : ∃eλk}
is the set of tasks which output is needed by task k as input
(i.e., previous tasks for task k). We recall that s(i, k) is the
current state of node i with reference to task k. The constraint
on s(i, k) ensures that if any of task k’s previous tasks is
not performed by any node, that is if any of its inputs is not
available, there is no utility in performing task k, and therefore
s(i, k) cannot be equal to 1. The maximum operation ensures
that the task can only be performed by the node that maximizes
the utility function uk(S): since the goal of the game is to
maximize the utility function, that is maximizing the lifetime
due to the execution of some tasks, only the node that ensures
the best outcome will be chosen to perform task k.

We only define a utility function for the tasks that still need
to be performed: since performed tasks are already assigned
and this assignment cannot be changed, there is no need to
evaluate their utility.

1) Completion Time Component: We express the comple-
tion time component as

Ωt(i, k) =
td(k)− tc(i, k)

td(k)
(4)

where tc(i, k) is the completion time if task k is performed
by node i and td(k) is the deadline for successfully completing
task k. Calling I(k) the number of single instructions for task
k and tinstr(i) the completion time per single instruction for
task i, as defined in Section III, tc(i, k) is defined as

tc(i, k) =

{
I(k)× tinstr(i), if tc(i, k) ≤ td(k)

td(k), if tc(i, k) > td(k)

2) Lifetime Component: The lifetime component is defined
as follows

Ωτ (i, k,S) = Fp(i, k) + Ftx(i, k,S) (5)

where Fp(i, k) is the component related to the changing in
lifetime due to the processing needed to perform task k in
node i, while Ftx(i, k,S) is related to the changing in lifetime
due to transmission (and reception) in case task k is performed
in node i with strategy S.

We define the processing component as

Fp(i, k) = −I(k)× eins(i)

eres(i)
(6)

with I(k) number of single instructions for task k, eins(i)
energy per single instruction for node i, and eres(i) residual



4

battery capacity for node i, as introduced in Section III. Since
processing entails an energy consumption, Fp(i, k) needs to be
negative in order to decrement the payoff due to the execution
of task k.

Let pi→j = {(i, a), (a, b), . . . , (e, f), (f, j)} be the se-
quence of edges in the path that connects node i to node j
according to some static routing. Calling HL the hierarchically
higher-level node for nodes i and j, the transmission compo-
nent is

Ftx(i, k,S) =
∑

l∈Tin(k)

∑
j∈X

{
Ctx(pj→HL, l) ∗ s(j, l) +

− Ctx(pj→i, l) ∗ s(j, l)
}
− Ctx(pi→HL, k)

(7)

with

Ctx(pi→j , k) =
∑

(x,y)∈pi→j

(
erx(y)

eres(y)
+
etx(x, y)

eres(x)

)
× n(k)

where: Tin(k) is the set of previous tasks for task k as
defined in (3); Ctx(pi→j , k) is the cost to transmit (and
receive) data from node i to node j; etx(x, y), erx(y) and
eres(x) are the energy per bit spent to send and receive data
from node x to node y, and the residual energy of node x as
specified in (2); n(k) is the number of output bits for task
k. The difference operation is due to the fact that we are
considering a difference in lifetime between the case where
task k is not performed, that is the case where input data
for task k are sent directly to the hierarchically higher-level
node, and the case where input data for task k are sent to
node i where task k is performed, and then output data for
task k are sent to the hierarchically higher-level node. It may
be noted that, contrary to the processing component that is
always negative, the transmission component may be positive
or negative: if the cost to transmit input data for task k to
the higher-level node is higher than the cost to transmit them
to node i and then transmit task k output to the higher-level
node, the transmission component is positive, thus increasing
the task utility function (3) and making it more convenient to
perform task k rather than not doing it.

3) Considerations about α parameter: Parameter α intro-
duced in (3) is a weight for the lifetime component. Its value is
chosen depending on how much we wish that the optimization
increases the network lifetime rather than decreasing the
execution speed: the lower α is, the more the task utility
function will be influenced by the completion time component
with respect to the lifetime component, and viceversa. For
space reason, this topic cannot be described here further.

B. Global Utility Function

Given the task utility function defined in (3), the global
utility function for the whole network is

ug(S) =
∑

k∈Tnext

uk(S) (8)

This means that the global utility function is maximized
when the sum of all task utility functions for the tasks that still
need to be performed is maximized. Since the negotiation to

choose the strategy that maximizes the global utility function
is performed by the nodes, this maximization could only be
possible if all the nodes in the network could communicate
with each other. The communication overhead resulting from a
negotiation of this type would entail an additional transmission
cost that would counter the benefit of the maximisation itself,
particularly for large networks. For this reason, we choose to
let each node negotiate only with its neighbours, that are its
adjacent nodes.

C. Node Utility Function

Starting from the approximation described above, the node
utility function can be derived so that the global utility in (8)
is increased by any increment in the node utility. The node
utility function ui can then be written as an aggregation of the
marginal contributions of node i to each task, and therefore to
the global utility function. This marginal contribution can be
defined as a Wonderful Life Utility (WLU) [15], which is the
difference between the task utility for a given strategy s(i)
of the node i and the task utility for a null strategy s0(i)
of the node, where all the elements of s0(i) are equal to 0,
which means that the node is not contributing to the task (i.e.,
s0(i) , {0}K)

muk(s(i), s(−i)) = uk(s(i), s(−i))− uk(s0(i), s(−i)) (9)

where s(−i) is the complimentary set of s(i), that is the
strategy of all the nodes in X with the exception of s(i).
Of course, marginal utility is null when the node is not
contributing to the task as its strategy.

The node utility function is then defined as

ui(s(i), s(−i)) =
∑

k∈Tnext

muk(s(i), s(−i)) (10)

From (9) we can infer that the marginal contribution of the
node to a task is not null only if the node is contributing
to the task. This means that, since the global utility function
in (8) is a summation of task utility functions (3), if the
node contributes to the a task, it follows that it contributes
to the global utility. In other words, a change in strategy for
node i that increases its utility, entails the same increment
in the global utility. This property is particularly desirable
because it implies that the game we are focusing on is a
potential game, where the potential function is given by the
global utility function. A consequence of this is that this
game has at least one pure Nash equilibrium [16]: pure Nash
equilibria are characterised by a unique outcome, contrary to
mixed Nash equilibria where the outcome is stochastically
variable. Furthermore, another property of potential games
is the Finite Improvement Property (FIP): every sequence of
changes in strategy that improves the global utility, converges
to a Nash equilibrium in finite time. The FIP ensures that many
simple adaptive processes, such as the Distributed Stochastic
Algorithm (DSA) [17], converge to Nash equilibria.

V. PROPOSED ALGORITHM

Given the network described in Section III, in order to
improve the network lifetime while reducing the completion



5

time for the whole application, the global utility function
defined in (8) should be maximized. As demonstrated in
Section IV-C, a change in the node utility reflects in the same
change in the global utility. This means that maximising the
node utility function for all the nodes in the network, would
reflect in a maximisation of the ug(S). In order to find the best
outcome, a greedy local search algorithm such as the DSA is
proposed. We use DSA because, with respect to other similar
algorithms, it is proved to come to a solution quicker [18].

DSA is a synchronous algorithm; in our case, during the
DSA execution the involved nodes negotiate the best strategy
to maximize the global utility. At each time step, each node
involved in the negotiation, that changed its strategy in the
previous time step sends, to all the other involved nodes, a
strategy update message (SUM) with its new strategy [17]. If a
node receives any SUM, it has some probability p of activation
to compute a new strategy that maximizes its utility (10). If
the utility is already maximized by the current strategy, no
changes occur. The probability of activation p is known as
the degree of parallel executions. A particular attention has
to be taken in choosing p value: the higher it is, the higher
the probability that all the nodes change their strategy at the
same time, thus increasing the overhead due to the algorithm,
and of course its convergence time; on the other hand, low
values of the degree of parallel executions could lead to an
unacceptable increment of DSA’s convergence time as well,
because changes of strategy would be less frequent.

It seems evident that a negotiation of this type, that involves
all the nodes in the network at the same time, would require
exceedingly high communication costs and convergence time.
For this reason, we propose a suboptimal algorithm, called
Task Allocation Negotiation (TAN), where the nodes negotiate
only with their neighbours. The TAN algorithm consists of the
whole procedure to assign the tasks in Tnext to the nodes in
X , in order to maximize the network utility function ug(S).

The algorithm starts as soon as source tasks are performed,
and runs until the set Tnext is empty, i.e. there are no
remaining tasks to be performed. Let Xdata be the set of nodes
that have some output data. Initially, Xdata is the set of nodes
that have just performed the source tasks. If the set Tnext is
not empty, i.e. if there are some remaining processing tasks
that can be performed on the data, then each node i ∈ Xdata

sends an information message (INFO) to its neighbours, n(i).
All the nodes in n(i) reply by sending an INFO message with
their own information to their neighbours.

An INFO message includes: (i) s(i), eins(i), etx(i), eres(i);
(ii) the subset T ′prev ⊆ Tprev of tasks that are already
performed on the data that node i currently holds. Note that
initially the only tasks that are already performed are source
tasks, i.e. T ′prev is made of the source tasks.

After all nodes exchange INFO messages with their neigh-
bours, the DSA algorithm is initiated at each node. Once
DSA converges, each node will have chosen the strategy that
maximizes the network utility function ug(S) (Equation 8).

Once that the strategy is chosen, tasks need to be executed
by nodes according to their strategy, before sending data to
the higher level node. Let Xproc = {x1proc, . . . , xkproc, . . . }
be the sequence of nodes in n(i), for which the strategy of

node xkproc entails the execution of processing task tkproc, and
let Tproc = {t1proc, . . . , tkproc, . . . } be the related sequence of
processing tasks to be performed. Here, the nodes in set Xproc

are ordered according to the order in which the tasks in set
Tproc need to be performed. Since a node can perform more
than one task, it is possible that two consecutive tasks tkproc
and tk+1

proc are executed by the same node, i.e. xkproc = xk+1
proc.

Each node xkproc first performs the task tkproc, and updates the
sets Tnext and Tprev accordingly. Then, if there are no other
tasks assigned to it, node xkproc sends a data message (DATA)
to node xk+1

proc for which tk+1
proc receives as input data the tkproc

output data (tk+1
proc : ek(k+1) ∈ ET . DATA messages contain

the set Tprev , along with the output data resulting from the
processing tasks. When all the tasks in Tproc are performed,
a DATA message is sent to the higher-level node.

The maximization of the node utility function ui(s(i))
defined in Equation 10 is a Mixed Integer Linear Programming
(MILP) problem. It is well known that MILP problems are
optimally solved using branch-and-bound algorithms, which,
in the worst case, have a complexity that grows exponentially
with respect to the number of variables. However, compu-
tational complexity can be considerably reduced using sub-
optimal heuristic algorithms, such as genetic algorithms [19].

VI. PERFORMANCE ANALYSIS

The proposed algorithm has been tested by means of simula-
tions carried out for a realistic heterogeneous WSN application
in a smart city context. The scenario under examination is that
of an urban environment, where nodes have been positioned
along the streets as shown in Figure 1. Solid markers represent
nodes equipped with sensors for speed measurement of vehi-
cles passing through; speed measurements are represented as
double numerical values (64-bit long). Every stretch of street is
a cluster, where the CHs are represented by the empty markers.
They are more capable nodes (with an initial battery charge
three times higher than the others), that do not perform any
sensing task, but they are able to perform all the other tasks
for the appropriate stretches.

Fig. 1. Example of topology for Scenario B. Solid markers represent nodes
equipped with speed sensors, while empty markers are more capable nodes
which do not perform any sensing task, but can perform more complex
processing tasks

Suppose that a driver, placed in the Start point, would like
to know the fastest way to his Destination, based on the
speed information collected by sensor nodes. We identified 89
different speed sensing tasks (λ1÷λ89), one for each sensing
node. Since we need to know the mean travelling time for
each stretch of street in order to confront them to each other,
we defined 78 mean speed computing tasks (λ90 ÷ λ167), and



6

TABLE I
PERCENTAGE VALUES OF ENERGY CONSERVATION AND COMPLETION

TIME GAIN USING TAN, FOR COMPARISONS TAN-C AND TAN-DLMA

TAN-C [%]
α = 0 α = Ωt/Ωτ α = ∞

Energy conservation 73.6 74.9 77.5

Completion time gain 22.1 16.8 11.8

TAN-DLMA [%]
α = 0 α = Ωt/Ωτ α = ∞

Energy conservation 10.7 12.0 14.6

Completion time gain 25.5 20.4 15.6

11 mean travelling time computing tasks (λ168 ÷ λ178), one
for each stretch of street. To find the best path, that is the best
combination of stretches of streets that leads from the Start
point to Destination, we then need to sum the mean travelling
times of all the combination of stretches that can be driven one
after the other, and confront them. Therefore, the remaining
tasks are: 8 different summation of mean travelling times for
differents stretches (λ179 ÷ λ186) and 3 different choice of
the best path (λ187 ÷ λ189). With reference to Figure 1, solid
markers represent nodes that are only allowed to perform the
speed sensing and mean speed computing for the stretch of
the street where they are placed (8 in total).

Nodes communicate using IEEE 802.15.4 radio interfaces
on the 2.4 GHz ISM frequency band. We simulated the
described scenario in a MatLab environment, where TAN was
implemented along with two alternative approaches: all the
data sent to the GW and processed only by the GW, that
is the Start node (that is the centralised mechanism that we
refer to with C); data processed according to DLMA algorithm
described in [1] (DLMA approach).

The obtained results for energy consumption and comple-
tion time have been compared to those obtained using TAN
algorithm. Table I shows the percentage of energy conservation
and completion time gained when using TAN with respect to
the alternative approaches. We refer to these comparisons as
TAN-C and TAN-DLMA.

We ran simulations for: α = 0 (null lifetime component);
α = Ωt/Ωτ (comparable Ωt and Ωτ , where Ωt and Ωτ are
calculated as the mean values of Ωt and Ωτ when every node
is performing every task at the same time); α = ∞ (null
completion time component).

We observe a marked improvement of energy conservation
and a good improvement in completion time gain with respect
to the centralised mechanism. Good results are also observable
both for energy conservation and completion time gain with
respect to TAN-DLMA. It has to be noted that results for
α = 0 and α = Ωt/Ωτ in comparison TAN-DLMA have
been reported just for completeness, but DLMA algorithm
does not take into account completion time, therefore the most
significant results are those obtained for α =∞.

As we expected, when α increases, ug(S) is more over-
balanced in favour of its lifetime component, and thus energy
conservation percentage increases, while the completion time
gain decreases; on the contrary, when α decreases, ug(S) is
over-balanced in favour of its completion time component: the

energy conservation percentage decreases, while the comple-
tion time gain increases.

VII. CONCLUSIONS

The algorithm presented has proven to overcome the results
obtained for both C and DLMA mechanisms, and both energy
conservation and completion time gain. Since results are
slightly different for different values of α, it should be chosen
according to the application deployment requirements.

REFERENCES

[1] V. Pilloni and L. Atzori, “A decentralized lifetime maximization al-
gorithm for distributed applications in wireless sensor networks,” in
Communications (ICC), 2012 IEEE International Conference on, 2012,
pp. 1392–1397.

[2] J. Luo, J. Panchard, M. Piórkowski, M. Grossglauser, and J. Hubaux,
“Mobiroute: Routing towards a mobile sink for improving lifetime in
sensor networks,” Distributed Computing in Sensor Systems, pp. 480–
497, 2006.

[3] D. Wang, B. Xie, and D. Agrawal, “Coverage and lifetime optimization
of wireless sensor networks with gaussian distribution,” Mobile Com-
puting, IEEE Transactions on, vol. 7, no. 12, pp. 1444–1458, 2008.

[4] X. Xu and W. Liang, “Placing optimal number of sinks in sensor
networks for network lifetime maximization,” in Communications (ICC),
2011 IEEE International Conference on, 2011, pp. 1–6.

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[6] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on Wireless Communications, vol. 1, pp.
660–670, October 2002.

[7] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation for collab-
orative processing in wireless sensor networks,” Mobile Networks and
Applications, vol. 10, pp. 115–131, 2005.

[8] N. Edalat, W. Xiao, C. Tham, E. Keikha, and L. Ong, “A price-based
adaptive task allocation for wireless sensor network,” in Mobile Adhoc
and Sensor Systems, 2009. MASS’09. IEEE 6th International Conference
on, 2009, pp. 888–893.

[9] V. Pilloni and L. Atzori, “Deployment of distributed applications in
wireless sensor networks,” Sensors, vol. 11, no. 8, pp. 7395–7419, 2011.

[10] Y. Jin, J. Jin, A. Gluhak, K. Moessner, and M. Palaniswami, “An
intelligent task allocation scheme for multihop wireless networks,”
Parallel and Distributed Systems, IEEE Transactions on, pp. 444–451,
2012.

[11] K. Ritzberger, Foundations of non-cooperative game theory. Oxford
University Press, 2002.

[12] Q. Wang and W. Yang, “Energy consumption model for power manage-
ment in wireless sensor networks,” in IEEE Sensor, Mesh and Ad Hoc
Communications and Networks (SECON) 2007, 2007, pp. 142 –151.

[13] J. N. Al-karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: A survey,” IEEE Wireless Communications, vol. 11, pp. 6–28,
2004.

[14] A. C. Chapman, R. A. Micillo, R. Kota, and N. R. Jennings, “Decen-
tralised dynamic task allocation: A practical game-theoretic approach,”
in Proc. of the 8th International Conference on Autonomous Agents and
Multiagent Systems, vol. 2, 2009, pp. 915–922.

[15] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-
target assignment: A game-theoretical formulation,” Journal of Dynamic
Systems, Measurement, and Control, vol. 129, no. 5, pp. 584–596, 2007.

[16] D. Monderer and L. Shapley, “Potential games,” Games and economic
behavior, vol. 14, pp. 124–143, 1996.

[17] W. Zhang and Z. Xing, “Distributed breakout vs. distributed stochastic:
A comparative evaluation on scan scheduling,” in AAMAS-02 Third
International Workshop on Distributed Constraint Reasoning, 2002, pp.
192–201.

[18] M. Vinyals, J. Rodriguez-Aguilar, and J. Cerquides, “A survey on sensor
networks from a multiagent perspective,” The Computer Journal, vol. 54,
no. 3, pp. 455–470, 2011.

[19] M. Sanna and M. Murroni, “Optimization of non-convex multiband
cooperative sensing with genetic algorithms,” Selected Topics in Signal
Processing, IEEE Journal of, vol. 5, no. 1, pp. 87–96, 2011.


