
Firing rate optimization of cyclic timed event graphs

by token allocations

Alessandro Giua, Aldo Piccaluga, Carla Seatzu

Dept. of Electrical and Electronic Engineering, University of Cagliari

Piazza d’Armi, 09123 Cagliari, Italy

Tel: +39 (70) 675-5892. Fax: +39 (70) 675-5900. Email: {giua,aldo,seatzu}@diee.unica.it.

Abstract

In this paper we deal with the problem of allocating a given number of tokens in a cyclic

timed event graph (CTEG) so as to maximize the firing rate of the net. We propose three

different approaches. The first one is a ”greedy” incremental procedure that is computation-

ally very efficient. The only drawback is that the convergence to the optimum is guaranteed

only when the set of places where tokens can be allocated satisfies given constraints. The

other two procedures involve the solution of a mixed integer linear programming problem.

The first one needs the knowledge of the elementary circuits, thus it is convenient only for

those classes of CTEG whose number of elementary circuits is roughly equal to the number of

places, such as some kanban–systems. On the contrary, the second one enables one to over-

come this difficulty, thus providing an efficient tool for the solution of allocation problems in

complex manufacturing systems like job–shop systems.

Published as:

A. Giua, A. Piccaluga, C. Seatzu, ”Firing Rate Optimization of Cyclic Timed Event Graphs,”

Automatica, Vol. 38, No. 1, pp. 91–103, January 2002.

1

1 Introduction

In this paper we shall consider a particular class of Petri nets called cyclic timed event graphs

(CTEG). The main feature of this class of nets is that each place has only one input and

one output transition. Moreover, in deterministic CTEG the steady state performance can be

evaluated in terms of the cycle time of the net. We deal with the problem of allocating a given

number of tokens in a CTEG so as to maximize its firing rate (i.e., the inverse of the cycle

time). Note that both the initial marking and the firing rate are decision variables in this

approach. This problem has a practical relevance: as an example, in the manufacturing domain

it corresponds to determining the optimal allocation of a finite set of resources so as to maximize

the throughput.

We start by reviewing the approach recently proposed by Panayiotou and Cassandras [15] to

allocate a given number of resources step by step to a set of concurrent processes so as to

maximize a given performance index. The first algorithm proposed by these authors is called

Incremental Optimization (IO) and may be applied when at each step the optimal solution is

unique. The second algorithm is called Generalized Incremental Optimization (GIO) and may

be applied even if at each step the optimal solution is not unique but requires to keep track of all

solutions that are optimal. The same authors also provided a necessary and sufficient condition

(the performance index must be smooth [15]) under which the IO algorithm yields an optimal

allocation. The class of processes considered was not formally specified, but it was suggested

that one problem that falls into this class is that of allocating a fixed number of kanbans to the

different stages of a kanban–system so as to maximize its throughput. Building on their result,

we define a generalized smoothness property and show that this is a necessary and sufficient

condition for the convergence of the GIO algorithm to the optimum.

We then focus our attention to CTEG, a class of Petri net that has often been used for modeling

and analyzing manufacturing systems assuming a cyclic manufacturing of the parts, since it has

been shown that choice–free job–shop, kanban–systems, and assembly systems, can be modeled

using event graphs. One of the advantages of framing our results in the setting of CTEG, is

that we are able to formally define the class of models to which our approach can be applied.

We propose three different procedures to solve the allocation problem in the context of CTEG.

We first show that in general the firing rate of a CTEG is not a generalized smooth performance

index. However, when a restriction is posed on the set of places where the tokens can be

allocated — we call this “Assumption (A)” — we show that the firing rate can be guaranteed

to be generalized smooth, so that the incremental procedure of Panayiotou and Cassandras can

be applied. We also provide a new algorithm, denoted as Two–index Incremental Optimization

(TIO) algorithm, that for CTEG reveals to be computationally more efficient with respect to

(wrt) the GIO algorithm. In fact, at each step, we provide a criterion to select only one solution

among all the optimal ones. We firstly presented such a result in [7], but in this paper we extend

the class of CTEG that verify Assumption (A).

In the second part of the paper we study the same allocation problem in a more general setting,

2

posing no restriction on the class of allocations considered [8]. Since we have shown that in

the general case the performance index is not generalized smooth, other procedures than the

incremental one are required. We derive two different approaches to solve the general optimal

allocation problem.

• The first procedure involves the solution of a mixed integer linear programming problem

(ILPP) that requires the enumeration of all elementary circuits. Thus, it is convenient for

those classes of CTEG where the number of elementary circuits is not exponential in the

size of the net, such as some kanban–systems where the number of elementary circuits is

limited by the number of places.

• The second procedure is inspired by a result firstly proposed by Campos et al. [1] to

determine the cycle time of an event graph, given the initial marking. It consists in a

mixed ILPP that does not require the computation of the elementary circuits and whose

constraint set only involves the computation of the incidence matrix, thus resulting to be

efficient for all classes of CTEG.

The paper is structured as follows. In the following section we recall the main contributions on

CTEG optimization reported in the literature. In Section 3 we provide some useful background

on Petri nets and CTEG. In Section 4 we recall the two incremental optimization procedures

formulated by Panayiotou and Cassandras, and we extend their definition of smoothness. In

Section 5 we first show how to apply all these results to CTEG. Then, we formulate a new

incremental optimization algorithm that reveals to be computationally very efficient. Necessary

and sufficient conditions for the convergence to the optimum are also provided. A numerical

example is finally discussed. In Section 6 we consider more general allocation problems and

we present two different approaches, both involving the solution of a mixed ILPP. A numerical

example is widely discussed at the end of the section, together with a comparison between the

two latter procedures. Conclusions are finally drawn in Section 7.

2 Relevant literature

Many different optimization problems in the setting of CTEG have been studied in the literature

starting from the works of Commoner et al. [3], Chretienne [2] and Magott [11] who were among

the first researchers to relate the firing rate of a CTEG to the analysis of the elementary circuits.

Hillion and Proth [9] developed a procedure for the minimization of the work–in–progress cost

in a manufacturing system, while maximizing the system throughput. They first formulated

an integer linear programming problem (ILPP). Then, they developed an efficient heuristic

algorithm to obtain a near–optimal solution.

Di Febbraro et al. [4] developed a two-objective optimization problem aiming at maximizing the

system throughput, and at minimizing a function weighting the work–in–progress along with

the space in the finite buffers. They introduced a further degree of freedom compared to Hillion

3

and Proth [9] by allowing the tokens to represent lots whose sizes have to be determined in order

to optimize some performance objective.

Campos et al. [1] obtained upper and lower bounds on the steady-state performance of timed

and stochastic event graphs. In particular, linear programming problems (LPPs) defined on the

incidence matrix of the event graphs are used to compute attainable bounds for the throughput

of transitions, defined as the average number of firings per unit time. They also demonstrated

that these bounds depend on the initial marking and the mean values of the delays of transitions

but not on the probability distribution functions (thus including both the deterministic and the

stochastic cases).

Nakamura and Silva [14] dealt with the Minimum Initial Marking problem and provided an algo-

rithm that is able to minimize a linear function of the initial markings under the constraint that

the critical time does not exceed a given value. They proposed a heuristic approach structured in

two phases: the first one consists of a greedy algorithm that iteratively uses a linear relaxation,

in order to compute a ”reasonable” initial solution; the second one involves a refinement of the

solution via a tabu–search technique.

Laftit et al. [10] dealt with the problem of reaching a cycle time that is smaller than a given

value, while minimizing an invariant linear criterion that is a linear combination of the number

of tokens in the places at the initial time. In this work the authors provided both a heuristic

algorithm and an exact algorithm for solving their optimization problem.

We finally mention the work of Yamada and Kataoka [18] where the authors made a comparison

between different approaches for performance evaluation of timed event graphs. In particular,

they considered the works of Magott [11], Morioka and Yamada [12], and Campos et al. [1], where

the knowledge of cycle times is not required and three different LPPs have been formulated.

Yamada and Kataoka in [18] demonstrated that the first one is the dual of the second one and

the third is isomorphic to the second one.

3 Background

In this section we recall the formalism used in the paper. For more details on Petri nets and

CTEG we refer to [6, 9, 10, 13].

A Place/Transition net (P/T net) is a structure N = (P, T,Pre,Post), where P is a set of n

places; T is a set of m transitions; Pre : P × T → N and Post : P × T → N are the pre– and

post– incidence functions that specify the arcs; C = Post − Pre is the incidence matrix. A

marking is a vector M : P → N that assigns to each place of a P/T net a non–negative integer

number of tokens, represented by black dots; we denote the marking of place p as M(p). A P/T

system or net system ⟨N,M0⟩ is a net N with an initial marking M0. A transition t is enabled

at M if M ≥ Pre(· , t) and may fire yielding the marking M ′ = M +C(· , t).

A P/T net is called ordinary when all of its arc weights are 1’s. An event graph is an ordinary

4

Petri net such that each place p has exactly one input transition and exactly one output transi-

tion. A net is strongly connected if there exists a directed path from any node in P ∪ T to every

other node. Let us define an elementary circuit (or elementary cycle) of a net as a directed path

that goes from one node back to the same node, while any other node is not repeated. In a

strongly connected net it is easy to show that each node belongs to an elementary circuit, thus

the name cyclic nets also used to denote this class. In a cyclic event graph the total number of

tokens in any elementary circuit is invariant by transition firing and the net system is live if and

only if every elementary circuit contains at least one token.

A deterministic Timed P/T net is a pair (N, τ), where N = (P, T,Pre,Post) is a standard

P/T net, and τ : T → R+
0 , called release delay, assigns a non–negative fixed firing duration

to each transition. A transition with a release delay equal to 0 is said to be immediate. We

consider an infinite–server semantics, i.e., we assume that each enabled transition can fire as

many times as its enabling degree.

For deterministic timed cyclic event graphs we can compute, for any elementary circuit γ, the

following ratio called the cycle time of the circuit: cγ =
µγ

xγ
where µγ denotes the circuit release

delay (it is the sum of the release delays of all transitions belonging to γ), and xγ denotes the

number of tokens circulating in γ. We assume µγ > 0 ∀ γ.

Let Γ represents the set of elementary circuits of a cyclic event graph and ĉ = maxγ∈Γ cγ be the

critical time. Any γ ∈ Γ such that cγ = ĉ is a critical circuit. These circuits are the ones that

actually bind the speed of the system. Under an operational mode where transitions fire as soon

as they have been enabled for a time equal to the release delay, the firing rate of each transition

in steady state is given by ϱ =
1

ĉ
. As a consequence, if we want to increase the speed (i.e., the

firing rate of the system), we have to add tokens to the critical circuits: adding tokens to any

other circuit would be useless.

4 Incremental Optimization Algorithms and Generalized Smooth-

ness Condition

The problem we deal with in this section is that of allocating a given number K of resources to

q processes so as to maximize a given performance index J .

We represent an allocation by the q–dimensional vector

x =
[
x1 · · · xi · · · xq

]T
, (1)

where xi denotes the number of resources allocated to the i–th process.

We will make use of the following definitions. Firstly, ei = [0, · · · , 0, 1, 0, · · · , 0] is a q–dimensional

vector with all its elements zero except the i–th element which is equal to one. Secondly,

∆Ji(x) = J(x+ ei)− J(x) (2)

5

is the change in J(x) due to the allocation of an additional resource to the i–th process wrt

allocation x. Finally, let, for all k = 0, 1, · · · ,

Ak =

{
x ∈ Nq |

q∑
i=1

xi = k, xi ≥ 0

}
(3)

be the set of all possible allocations of k available resources to q processes.

Using the above definitions, the optimization problem is formally stated as:

(P1) max
x∈AK

J(x).

We denote

A∗
k = {x∗ ∈ Ak | J(x∗) = max

x∈Ak

J(x)} (4)

the set of optimal allocations of k resources.

Panayiotou and Cassandras defined the following condition on J(x).

Definition 1 ([15], Smoothness Condition) The performance index J verifies the smooth-

ness condition iff ∀ k ≥ 0, ∀x∗ ∈ A∗
k, ∀x ∈ Ak,

max
i=1,··· ,q

J(x∗ + ei) ≥ max
i=1,··· ,q

J(x+ ei). (5)

�

Corollary 1 The performance index J verifies the smoothness condition iff ∀k ≥ 0, and ∀x(k) ∈
A∗

k, there exists an infinite sequence of optimal allocations x(k+1), · · · ,x(k+l), · · · , where x(k+l) ∈
A∗

k+l, ∀l ≥ 1 and x(k+l) is obtained from x(k+l−1) by allocating one additional resource to just

one process.

The smoothness condition ensures that any allocation that is optimal in Ak will become an

optimal allocation in Ak+1 by allocating one additional resource to some process.

Now, let us recall the Incremental Optimization (IO) Algorithm proposed by Panayiotou and

Cassandras in [15].

Algorithm 1 ([15] IO Algorithm)

Let x0 := [0, · · · , 0];
for k = 0, · · · ,K − 1 do

begin

i∗k := arg maxi=1,··· ,q{∆Ji(xk)};
xk+1 := xk + ei∗k ;

end.

After K steps, xK is the optimal solution of (P1) under the assumptions stated by the following

theorem proved in [15].

6

Theorem 1 ([15]) For any k = 0, 1, · · · , if xk computed in accordance to algorithm 1 is unique,

then it is the optimal solution to problem (P1) iff the performance index J is smooth.

Panayiotou and Cassandras in [15] also provide a straightforward extension of the IO algorith-

m in the case of multiple solutions, denoted as Generalized Incremental Optimization (GIO)

Algorithm.

Algorithm 2 ([15] GIO Algorithm)

Let x0 := [0, · · · , 0];
let U0 = {x0};
for k = 0, · · · ,K − 1 do

begin

∆ := maxi=1,··· ,q, xk∈Uk
{∆Ji(xk)};

Uk+1 := {xk + ei | ∆Ji(xk) = ∆, xk ∈ Uk };
end.

The extra cost incurred by this extension involves storing additional information.

Now, to state under which assumptions any allocation in the set Uk computed by the GIO

algorithm is an optimal solution to (P1), we introduce a variation in the definition of smoothness

based on the characterization of corollary 1.

Definition 2 (Generalized Smoothness Cond.) The performance index J verifies the gen-

eralized smoothness condition iff ∀k ≥ 0, there exists an allocation x(k) ∈ A∗
k and an infinite

sequence of optimal allocations x(k+1), · · · ,x(k+l), · · · , where x(k+l) ∈ A∗
k+l, ∀l ≥ 1 and x(k+l)

is obtained from x(k+l−1) by allocating one additional resource to just one process. �

The generalized smoothness condition ensures that among all allocations that are optimal at a

given step, there exists at least one that originates an infinite sequence of optimal allocations.

Note that if a performance index J verifies the smoothness condition, then it also verifies the

generalized smoothness condition.

We now prove that the GIO algorithm provides optimal solutions at each step if and only if J

verifies the generalized smoothness condition. This was implied in [15] but not formally proved.

Theorem 2 For any k = 0, 1, · · · , each xk ∈ Uk computed in accordance to the GIO algorithm,

is an optimal solution wrt J iff J verifies the generalized smoothness condition.

Proof. (if) We observe that x0 is the only optimal allocation in A∗
0. If J is generalized smooth,

then x0 originates an infinite sequence of optimal allocations x(l) ∈ A∗
l , ∀l ≥ 1. Since x(l) ∈ Ul,

we have that Ul ⊆ A∗
l .

(only if) If the generalized smoothness condition is violated, then x0 cannot originate an infinite

sequence of optimal allocations. This means that there exists a k such that Uk is not contained

in A∗
k. �

Note that both the smoothness and the generalized smoothness conditions could also be restated

7

for k only varying in a finite set, i.e., k = 0, · · · ,K. In fact, in all real applications the number of

resources to be allocated is finite. Our choice originates from the consideration that in the rest of

the paper we shall deal with performance indices whose smoothness and generalized smoothness

is guaranteed ∀ k ≥ 0.

5 Firing rate optimization for CTEG: an incremental procedure

In this section, we want to apply to CTEG the results presented in the previous section.

5.1 Problem statement

Let us consider a timed cyclic event graph with n places, m transitions and ℓ elementary circuits.

We associate to each elementary circuit γ an n dimensional vector aγ of zeros and ones. In

particular,

aγ(i) =

{
1 if pi ∈ γ,

0 otherwise,
(6)

thus aT
γM is the number of tokens in γ and µγ/(a

T
γM) is the cycle time of circuit γ.

We assume that tokens may only be allocated within a given subset of places Pa ⊆ P , while

no token can be allocated in the places in Pr = P r Pa. We denote as na the cardinality of

Pa, and nr = n − na the cardinality of Pr. For simplicity of presentation, we assume that the

place labeling is such that a marking can be written as M = [MT
aM

T
r]

T , where Ma ∈ Nna and

M r ∈ Nnr .

In this section we shall deal with the problem of allocating a given number K of tokens to Pa

so as to maximize the firing rate of the net:
max J = min

γ∈Γ

aγM

µγ

s.t. (a) M r = 0nr

(b) 1Tna
Ma = K

(7)

where 0nr is the nr–dimensional null vector and 1na is the na–dimensional vector of ones.

Note that in the most general cases the above performance index J , i.e., the firing rate of the

net, does not verify the generalized smoothness condition. More precisely, this depends on the

choice of the set of places where tokens can be allocated.

5.2 Main assumption

We now provide a condition on Pa under which the performance index J of (7), i.e., the firing

rate of the net, is generalized smooth, as we shall prove in the next subsection.

8

t1

t2

t3

t4

t5

t6

t7

 1

p4

p1

p5

p6

p7 p9

p8

p2 p3

 p10

 p11

1

1

1

1

1

1

1

 t8

γ1

γ2 γ3

γ4

Figure 1: Timed event graph of example 2.

Assumption (A). If γ and γ′ are two elementary circuits sharing a place in Pa, then they

must have the same set of places in Pa, i.e.,

(∃ p ∈ Pa) p ∈ γ ∩ γ′ =⇒ γ ∩ Pa = γ′ ∩ Pa.

Such an assumption implies that tokens can be allocated to places belonging to more than one

elementary circuit but with the restriction that if two elementary circuits share a place in Pa,

then they must have the same set of places in Pa.

In the rest of Section 5 we will consider allocation problems for which Assumption (A) hold,

but let us first show, with a counterexample, that when this assumption is not verified the firing

rate may fail to be a generalized smooth performance index.

Example 1 Let us consider the CTEG in figure 1 where the release delay of each transition is

equal to one. There exist four elementary circuits:

γ1 = {p1, t3, p5, t1, p4, t2},
γ2 = {p1, t3, p7, t5, p2, t4, p6, t2},
γ3 = {p2, t4, p8, t6, p3, t7, p9, t5},
γ4 = {p3, t7, p11, t8, p10, t6},
and the circuit release delays are: µ1 = µ4 = 3, µ2 = µ3 = 4.

Let us assume that Pa = {p1, p2, p3}. We denote as Γa the set of elementary circuits that

contains at least one place in Pa. Thus, in this example Γa = {γ1, γ2, γ3, γ4}. It is immediate

to show that Assumption (A) is not verified. In fact, place p2 both belongs to γ2 and γ3, but

γ2 ∩ Pa = {p1, p2} ̸= {p2, p3} = γ3 ∩ Pa.

Now, let K = 4 be the maximum number of tokens available to be allocated. In Tab. 1 all

optimal allocations for k = 1 · · · , 4 are reported, together with the corresponding total number

of tokens and the value of the firing rate J . From the table it can be noted that the optimal

allocation for k = 4 cannot be obtained by simply adding one token to the allocation that is

optimal at the previous step. Thus, we can conclude that J is not generalized smooth for the

chosen set Pa.

On the contrary, if we choose Pa = {p4, p6, p8, p10}, the set Γa is the same as above, but there

exists no place in Pa that belongs to more than one circuit in Γa and Assumption (A) is verified.

In this case, as formally proved later, we can be sure that at least one of the solutions that are

9

k Mk
T J(Mk)

1




 00000000001





 00000000010





 00000000100

0

2 



 00000000101 1/4

3 



 00000000111 1/3

4 



 00000000202 1/2

Table 1: Optimal allocations in the case of Pa = {p1, p2, p3}.

optimal when allocating k tokens (k > 1), can be obtained by at least one of the solutions that

are optimal when the total number of tokens is k − 1. �

When Assumption (A) holds, we can use a simplified notation to describe an allocation problem.

We partition the set of places Pa into N subsets Pa = P1 ∪ · · ·PN and the set of ℓ elementary

circuits Γ into Γ = Γ1∪· · ·ΓN . All places in the subset Pi belong to the same elementary circuits

in Γi and there exists no place p ∈ Pj ̸= Pi belonging to a circuit in Γi. Note that to ensure

that the net system is live we are assuming that each elementary circuit contains at least one

place where tokens can be allocated.

Moreover, if we let

xi =
∑
p∈Pi

M(p), and x = [x1 · · · xN]T ,

we can define c̄i = max
γ∈Γi

{
µγ

xi

}
as the maximum cycle time over all circuits in Γi, and µ̄i = max

γ∈Γi

µγ

as the maximum circuit release delay over all circuits in Γi.

In the following we will say that a subset of circuits Γi is critical for an allocation x if it contains

at least one elementary circuit γ that is critical for x.

By taking into account the above notation, the allocation problem (7) can be rewritten in the

form of (P1), where J(x) is the firing rate of the net, i.e., J(x) = 1/ĉ(x) and ĉ(x) is the critical

time for the allocation x.

Note that in this case we assume that one token is initially allocated to each subset of places Pi

so as to guarantee the net liveness, i.e., we assume that x0 = [1, · · · , 1]T in the first step of the

GIO algorithm.

5.3 Performance index smoothness

In this subsection we show that J is generalized smooth (but not necessarily smooth) if Assump-

tion (A) holds. To prove this we first give an example showing that J is not smooth. Secondly,

we define a new index J that will be proven smooth. Finally, we will show that the smoothness

of J implies the generalized smoothness of J .

10

µµ 3 4 4 J(x)

Γ1 Γ2 Γ3

x1
(1) 2 1 1

x1
(2) 1 2 1

x1
(3) 1 1 2

1/4

1/4

1/4

Table 2: The results of the first step of the GIO algorithm.

The following example shows that J is not smooth.

Example 2 Let us consider the CTEG in figure 1 and let Pa = {p3, p4, p5, p6}. It is immediate

to observe that Assumption (A) is verified if we let P1 = {p4, p5}, P2 = {p6}, P3 = {p3},
Γ1 = {γ1}, Γ2 = {γ2}, Γ3 = {γ3, γ4}.

Now, to apply the GIO algorithm, we assume that one token is initially allocated to each set Pi,

i.e., x0 = [1 1 1]T . Then, we have to select the set of places Pi where to allocate an additional

token, so as to maximize the performance index J . We compare the values obtained by allocating

the additional token in the three sets. The result of such a comparison can be summarized in

Tab. 2. As it can be noted, all allocations are characterized by the same critical time, thus

the same J . Therefore, we can conclude that all solutions x
(1)
1 = x0 + e1, x

(2)
1 = x0 + e2 and

x
(3)
1 = x0 + e3 are optimal wrt J . Nevertheless, we can observe that maxi{J(x(1)

1 + ei)} = 1/4,

and maxi{J(x(2)
1 + ei)} = maxi{J(x(3)

1 + ei)} = 1/2. Thus we can conclude that x
(2)
1 and x

(3)
1

only generate optimal allocations at step 2.

Note that this follows from the fact that the first allocation x
(1)
1 is characterized by two critical

subsets of circuits (Γ2 and Γ3), i.e., both Γ2 and Γ3 contain critical circuits, so the addition of

a single token cannot modify the critical time. �

This example shows that if a given allocation is characterized by n̄ critical subsets of circuits, it

is necessary to add at least n̄ tokens (one to each critical set) to improve the firing rate of the net.

This conclusion reveals the requirement to distinguish among different allocations with the same

firing rate but different number of critical sets. Thus, we introduce a new performance index

J = [J ′ J ′′]T consisting of two terms. The first one, J ′, is the firing rate, i.e., the performance

index previously considered, while the second one is a measure of the number of Γi’s containing

critical circuits, i.e., J ′′ = 1/n̄(x), where n̄(x) denotes the number of critical subsets of circuits

in the allocation x. Note that we impose a lexicographic ordering on the performance index,

i.e., J = J if J ′ = J
′
and J ′′ = J

′′
, J < J if J ′ < J

′
or J ′ = J

′
and J ′′ < J

′′
.

Example 3 Let us consider again the cyclic event graph in Fig. 1 and the allocations in Tab. 2

relative to the first step of the algorithm. The introduction of the new performance index

enables us to immediately reject the allocation x
(1)
1 , being J ′(x

(1)
1) = J ′(x

(2)
1) = J ′(x

(3)
1) = 1/4

and J ′′(x
(1)
1) = 1/2 < J ′′(x

(2)
1) = J ′′(x

(3)
1) = 1, thus J(x

(1)
1) < J(x

(2)
1) = J(x

(3)
1). Therefore,

the only optimal solutions wrt J are x
(2)
1 and x

(3)
1 . �

11

Now, we characterize the set of optimal allocations wrt J , showing that the removal of one token

from any subset of circuits Γi makes Γi become a critical set. This result will be useful when

proving the smoothness of J .

Lemma 1 Under Assumption (A), an allocation x∗ is optimal wrt J iff:

µ̄i

x∗i − 1
≥ ĉ(x∗) =

1

J ′(x∗)
∀ i = 1, · · · , N. (8)

Proof. (if) Let us assume that the inequality (8) is verified for an allocation x∗ ∈ Ak and let

x ∈ Ak be a different allocation.

We first prove that J ′(x) cannot be greater than J ′(x∗). Since x, x∗ ∈ Ak and x ̸= x∗, there

exists a subset of circuits Γi such that xi < x∗i . This implies that

1

J ′(x)
≥ c̄i(x) ≥

µ̄i

x∗i − 1
≥ ĉ(x∗) =

1

J ′(x∗)

thus J ′(x∗) ≥ J ′(x).

Now, let us prove that if J ′(x∗) = J ′(x), it holds that J ′′(x∗) ≥ J ′′(x). We first show that (8)

implies that the number of tokens in each circuit for allocation x cannot be less than one wrt

the corresponding number of tokens for allocation x∗, i.e.,

xi ≥ x∗i − 1 for all i = 1, · · · , N. (9)

This can be proved by contradiction. In fact, if we assume that ∃Γi such that xi ≤ x∗i − 2, then

1

J ′(x)
≥ c̄i(x) ≥

µ̄i

x∗i − 2
>

µ̄i

x∗i − 1
≥ 1

J ′(x∗)

and this contradicts the assumption that J ′(x) = J ′(x∗).

Now, let I0 = {Γi |xi = x∗i }, I− = {Γi |xi = x∗i − 1}, I+ = {Γi |xi > x∗i }. By (8), in all subsets

of circuits in I− there is at least one critical circuit for the allocation x but not for x∗, while all

subsets of circuits in I0 that are critical for x∗ are also critical for x. Thus we can state that

n̄(x) = card(Ic
0) + card(I−), and n̄(x∗) ≤ card(Ic

0) + card(I+), where Ic
0 = {Γi ∈ I0 | c̄i(x∗) =

ĉ(x∗)}. By virtue of equation (9) and by the assumption that
∑

i xi =
∑

i x
∗
i , it is easy to

observe that card(I+) ≤ card(I−). We can conclude that n̄(x) ≥ n̄(x∗), thus J ′′(x∗) ≥ J ′′(x),

as we want to prove.

(only if) We prove this by contradiction. Let us assume that x∗ is an optimal solution, but

condition (8) is violated, i.e., there exists a subset of circuits Γl such that µ̄l/(x
∗
l − 1) < ĉ(x∗).

Let Γm be a critical set for x∗ and consider a new vector x obtained from x∗ by moving one

token from Γl to Γm. If Γm is the only critical set in x∗, then J ′(x) > J ′(x∗). If x∗ has more

than one critical set, the value of J ′ does not vary, i.e., J ′(x) = J ′(x∗), but J ′′(x) > J ′′(x∗).

Thus, in both cases, x∗ cannot be optimal. �

12

Theorem 3 Under Assumption (A), the performance index J verifies the smoothness condition.

Proof. Let x∗ be an optimal solution for Ak and let x′ ∈ Ak+1 be an allocation obtained from

x∗ adding a token to a subset of circuits Γl that is critical for x
∗.

We prove that x′ is an optimal allocation for Ak+1. Clearly, J
′(x′) ≥ J ′(x∗) (the equality holds

if x∗ has more than one critical set). For all Γi ∈ Γ \ Γl we have that

µ̄i

x′i − 1
≡ µ̄i

x∗i − 1
≥ 1

J ′(x∗)
≥ 1

J ′(x′)
. (10)

The first inequality follows from the characterization given by (8) [Lemma 1] and the fact that

x∗ is optimal.

For the subset of circuits Γl we have that

µ̄l

x′l − 1
≡ µ̄l

x∗l
=

1

J ′(x∗)
≥ 1

J ′(x′)
(11)

where the equality derives from the fact that Γl is a critical set for x∗. Since x′ verifies (10)

and (11), by lemma 1 it follows that x′ is optimal for Ak+1. This shows that J verifies the

smoothness condition. �

Note that even if J verifies the smoothness condition, the solution is not guaranteed to be

unique, thus theorem 1 cannot be applied.

Corollary 2 Under Assumption (A), the performance index J ′, i.e., the firing rate, verifies the

generalized smoothness condition.

Proof. Let A∗
k and Ā∗

k be the sets of allocations in Ak that are optimal wrt J ′ and J , respectively.

Clearly, Ā∗
k ⊆ A∗

k ∀ k ≥ 0. By virtue of corollary 1 all solutions in Ā∗
k will produce an infinite

sequence of optimal solutions wrt J . This implies that there exist some x∗ ∈ A∗
k which originates

an infinite sequence of optimal allocations wrt to J ′. It follows that J ′ verifies the generalized

smoothness condition. �

Note that from theorem 2 and corollary 2 it immediately follows that all solutions computed in

accordance to the GIO algorithm are optimal wrt J ′.

5.4 Two–index Optimization algorithm

In this subsection we propose a new IO algorithm, denoted Two–index Incremental Optimization

(TIO) algorithm, which reveals to be computationally more convenient than the GIO algorithm.

We will use the fact that J is smooth (as proved in the previous subsection) to show that the

TIO algorithm is optimal.

The main improvement consists in the fact that while at each step the GIO algorithm must

keep track of all allocations within the set Uk, whose cardinality may greatly increase, the use

13

of the new performance index J allows us to neglect all those allocations that will be found

non optimal at the following step(s). Moreover, as stated below, all the allocations that are

optimal at a given step will converge to a common optimal one after a given number of steps:

this property is exploited by the new algorithm to compute the final common allocation.

Property 1 Let us consider a CTEG and let N be the number of subsets of places where tokens

may be allocated. All the allocations that are optimal wrt to J at a given step k of the optimization

algorithm, will converge to the same optimal one at the (k + n̄k)–th step, where n̄k denotes the

number of critical subsets of circuits in each optimal allocation at step k.

Proof. Using condition 8 it is easy to show that:

• all subsets of circuits that are non critical for all optimal allocations in A∗
k contain the

same number of tokens;

• the difference among the number of tokens in all other subsets can at most be equal to

one.

Moreover, the firing rate of all allocations in A∗
k may only increase for the addition of n̄k more

tokens, one in each critical set. Thus, at the (k + n̄k)–th step all optimal allocations in A∗
k

converge to the same optimal one. �

Now, let us provide the formulation of the Two–index IO algorithm.

Algorithm 3 (TIO Algorithm)

Let x0 := [1, · · · , 1];
let k := 0;

while k < K do

begin

Ic := {i | Γi is critical for xk};
n̄k := card (Ic);
if k + n̄k > K then k := K

else

begin

xk+n̄k
:= xk +

∑
i∈Ic

ei;

k := k + n̄k;

end

end.

Note that if at a given step k we have n̄k critical subsets and we still have to allocate a number

k̄ < n̄k tokens, we can be sure that no further improvement will occur in terms of firing rate

and we exit without allocating the remaining tokens.

Property 2 For any k, each xk computed in accordance to the TIO algorithm, is an optimal

solution wrt J .

14

 p10

 p3 p4

 p5 p6

 p1

 p7

 p8 p9

 p2

 t6

 t7

 t1

 t4

 t2
 t3

 t5 1

 1

 2

 3

 3

 4

 4

Figure 2: Event graph model of the assembly system.

Proof. We showed that the index J is smooth, thus (see the if part of the proof of Theorem 2)

the GIO algorithm determines an infinite series of optimal allocations starting from x0. The

modifications introduced in the new TIO Algorithm do not affect this property. In fact, when

the solution is unique at each step the two algorithms provide the same allocation; in the case

of multiple (say, n̄) solutions, Property 1 ensures that arbitrarily choosing one is sufficient to

recover the set of optimal solutions after n̄ steps. �

Remark 4 We have observed that the TIO algorithm only keeps one optimal solution at each

step, while the GIO algorithm keeps at each step a set of solutions Uk. If the GIO algorithm

starts from a single optimal allocation that has a number n̄ of critical subsets of circuits, after

l < n̄ steps J will be maximized by all those allocations where a single token is assigned to l

different critical subsets, and correspondingly the cardinality of U takes the value

(
n̄

l

)
. This

value is maximal for l = ⌊n̄/2⌋, that using Stirling approximation for large n̄ is roughly equal to
2n̄+1

√
2πn̄

.

We conclude that the computational complexity of the GIO algorithm has an upper–bound

given by O(K 2N N1/2), while the worst case computational complexity of the TIO algorithm

is O(K N) because the while loop is repeated at most K times and in each step we have to

consider at most N subsets of circuits. �

5.5 A numerical example: an assembly system

Let us consider an assembly system taken from the literature [6] whose Petri net model is

sketched in figure 2.

It consists of five machines, M1, M2, M3, M4 and M5 whose operational process is modeled

by the firing of discrete timed transitions t1, t2, t3, t4 and t5, respectively. Two principal types

of operations are involved in this manufacturing system: regular operations and assembly oper-

ations. Regular operations (modeled by transitions t1, t2 and t5) just transform a component

of the intermediate product. Assembly operations (modeled by transitions t3 and t4) put com-

15

ponents together to obtain a more complex component of a final product or the final product

itself. Note that this model uses transitions (t6 and t7) which do not represent operations but

the beginning of the manufacturing of components which are required to assemble a more com-

plex component or the final product. In this example there are two manufacturing levels, the

primary one, performed by M3, leads to finite product, the secondary one, performed by M4,

leads to semi–finished (in–working) product.

The markings of places p1 and p2 represent the number of assembly servers for t4 and t3 respec-

tively. The marking of places p3, p5, and p9 represent the availability of parts to be processed

(raw materials), while the marking of places p4, p6, p7 and p8 represent the availability of

semi–finished products.

The Petri net model in figure 2 is a strongly connected event graph with n = |P| = 10 and

m = |T| = 7. There exist five elementary circuits:

γ1 = {p3, t1, p4, t4, p1, t7},
γ2 = {p5, t2, p6, t4, p1, t7},
γ3 = {p3, t1, p4, t4, p7, t3, p2, t6, p10, t7},
γ4 = {p5, t2, p6, t4, p7, t3, p2, t6, p10, t7},
γ5 = {p9, t5, p8, t3, p2, t6},
and the circuit release delays are: µγ1 = 6, µγ2 = 7, µγ3 = 13, µγ4 = 14 and µγ5 = 10.

Let us assume that Pa = {p1, p2}. It is immediate to observe that Assumption (A) is verified if

we let: P1 = {p1}, Γ1 = {γ1, γ2}, µ̄1 = 7, and P2 = {p2}, Γ2 = {γ3, γ4, γ5}, µ̄2 = 14.

Now, to apply the GIO algorithm, we assume that one token is initially allocated to each set

Pi, i = 1, 2, i.e., x0 = [1 1]T . The problem we are dealing with is that of allocating K = 9

tokens in Pa so as to maximize the firing rate of the net. The optimal solution of this problem

is x7 = [3 6]T and J ′∗ = 3/7. All the intermediate steps of the GIO algorithm are summarized

in Tab. 3, where ∆J ′
i denotes the increment of J ′ obtained adding a token to Pi.

On the contrary, the TIO algorithm allows us to keep only one solution at each step and to

reduce the number of steps. Thus, in this example, only one allocation for k = 2, 5 needs to be

taken into account and the allocations relative to k = 1, 4, 7 need not to be computed.

6 More general allocation problems

Now, let us consider more general allocation problems. More precisely, we remove Assumption

(A) and we also assume that the allocation must satisfy a given set of s′ linear inequalities each

one of the form gTMa ≤ k. Finally, we also assume that the initial marking of places where

tokens cannot be allocated may be different from zero.

16

k xk
T J’ (xk) J’ ’ (xk) ∆J’1(xk) ∆J’2(xk)

0 [1 1] 1/14 1 0 5/14

1 [1 2] 1/7 1/2 0 0

2

[2 2]

[1 3]
1/7 1

0

1/14

1/14

0

3 [2 3] 3/14 1 1/14 0

4 [2 4] 2/7 1 0 0

5

[3 4]

[2 5]
2/7 1/2

0

1/14

1/14

0

6 [3 5] 5/14 1 0 1/14

7 [3 6] 3/7 1 0 0

Table 3: The results of the GIO algorithm.

Thus, in this section we shall deal with the following optimization problem:
max J = min

γ∈Γ

aγM

µγ

s.t. (a′) M r = M r,0

(b′) GMa ≤ k

(12)

where M r,0 ∈ Nnr , G ∈ Zs′×na , and k ∈ Zs′ are given, and aγ is defined as in equation (6).

Constraints (a’) express the fact that the marking of all places in Pr is assigned. Each equation

in (b’) may either express an upper/lower bound on the number of tokens in a place p ∈ Pa,

or an upper/lower bound on the number of tokens in a circuit γ ∈ Γa or in a generic subset of

places in Pa.

In the following we denote as Γa the set of elementary circuits that contain at least a place in

Pa, i.e., Γa = {γ ∈ Γ | γ ∩ Pa ̸= ∅}.

Generalizing, our optimization problem can be formally written as a nonlinear integer program-

ming problem of the form: 
max J = min

γ∈Γ

aγM

µγ

s.t. AM ≤ b

(13)

where M ∈ Nn is the unknown variable, A ∈ Zs×n, and b ∈ Zs are given.

Note that the allocation problem considered in the previous section is a special case of problem

(13).

In the following we present two different solutions to the allocation problem (13) whose validity

does not require Assumption (A).

17

6.1 First procedure

The first procedure we propose, involves the solution of a mixed ILPP and is based on the

knowledge of the elementary circuits. As it is well known, such an assumption is often unrealistic,

thus making it convenient only for those classes of CTEG where the number of elementary

circuits does not increase exponentially with the size of the net, such as kanban–systems where

the number of elementary circuits is limited by the number of places.

The mixed ILPP formulation origins from the following remark.

Remark 5 Consider the two programming problems: max JI = min
i=1,··· ,p

{cTi x}

s.t. Ax ≤ b
(14)

with integer variables x ∈ NN and
max JII = β

s.t. cTi y − β ≥ 0, i = 1, · · · , p,
Ay ≤ b

(15)

with integer variables y ∈ NN and real variable β ∈ R+. Here ci ∈ RN
0 , i = 1, · · · , p, A ∈ Rs×N ,

and b ∈ Rs are given.

Then x∗ is an optimal solution of (14) with performance index J∗
I iff (x∗, J∗

I) is an optimal

solution of (15).

Note that the above result also holds when x and y are real valued variables.

Proposition 1 The optimal solution (M∗, β∗) of the mixed ILPP:
maxβ

s.t. aT
γM/µγ − β ≥ 0, γ ∈ Γ,

AM ≤ b

(16)

with variables M ∈ Nn, β ∈ R+, provides the optimal solution M∗ and the corresponding

optimal performance index value J∗ = β∗ of the nonlinear integer programming problem (13).

Proof. It immediately follows from remark 5. �

Using this new formulation, we have to solve a simpler mixed ILPP with n+1 variables and ℓ+s

constraints, where ℓ denotes the number of elementary circuits. Obviously, the main drawback

of the above procedure lies in the requirement of computing all elementary circuits.

6.2 Second procedure

In this subsection we propose another solution to our allocation problem (13) that still involves

the solution of a mixed ILPP, but presents a significant advantage with respect to the previous

18

one: it does not require the computation of the elementary circuits.

It is inspired by a result firstly proposed by Campos et al. [1], where the authors dealt with the

problem of determining the cycle time of an event graph, given the initial marking M0:
max

aT
γPreθ

aT
γM0

s.t. aT
γC = 0

aγ ≥ 0

(17)

where PreTaγ is the characteristic vector of the set of transitions that belong to circuit γ, and

θ ∈ Nm is the vector containing all release delays of timed transitions (recall that m = |T|). The
two constraints in problem (17) force the vector of decision variables aγ to be a P–invariant,

i.e., aγ represents (but for a scalar factor) the characteristic vector of the places along a circuit.

In [1] it was also shown that the same optimal solution of (17) can also be obtained by means

of the following LPP: 
maxaT

γPreθ

s.t. aT
γC = 0

aT
γM0 = 1

aγ ≥ 0.

(18)

whose dual problem is: {
min v

s.t. Cz + vM0 ≥ Preθ
(19)

where the decision variables are v ∈ R+ and z ∈ Rm: the optimal value of v is the cycle time

and the unconstrained vector z has no physical meaning.

Now, let us consider problem (19). This problem can be easily converted into the problem of

determining the optimal firing rate of the net, given the initial marking. For this purpose we

only need to replace v with its inverse β = 1/v, thus obtaining:{
maxβ

s.t. C(βz) +M0 ≥ Preθ β
(20)

where β ∈ R+, and βz ∈ Rm, i.e.,{
maxβ

s.t. Cy − Preθ β ≥ −M0

(21)

where y ∈ Rm and β ∈ R+ are the new decision variables.

Finally, if we assume, as in problem (13), that M0 is not known but must satisfy a set of given

inequalities, we have the following result.

19

p9 p10 p11

p1

p12
p13

p2

p14 p15

p3

p16 p17

p4

t1 t2 t3 t4

t5 t6 t7

t8 t9 t10

t11 t12 t13

p18

p19

p20

p21

p22

 p5

p23 p6

p7

p24

p25

p26

 p8

1 1 3 3

1
1

2

1 2 1

1 2 1

 5

Figure 3: Event graph model of the job–shop system.

Proposition 2 The optimal solution (M∗, β∗,y∗) of the mixed ILPP:
maxβ

s.t. Cy − Preθ β +M ≥ 0

AM ≤ b

(22)

with variables M ∈ Nn, β ∈ R+, and y ∈ Rm, provides the optimal solution M∗ and the

corresponding optimal performance index value J∗ = β∗ of the nonlinear integer programming

problem (13).

Proof. We prove this by contradition. Let us assume that the optimal solution of problem (22)

is (M̃ , β̃, ỹ) and let (M∗, β∗) be the optimal solution of (13) with β∗ > β̃. Now the results of

[1] ensure that if we solve problem (21) with M0 = M∗ we get an optimal value of the firing

rate that is equal to β∗, and let y∗ be the corresponding optimal value of y. This implies that

(M∗, β∗,y∗) satisfy all constraints in (22) and by assumption β∗ > β̃. But this contradicts the

hypothesis that (M̃ , β̃, ỹ) is an optimal solution of (22). �

In this way our optimization problem has been reduced to the solution of a mixed ILPP with

n+m+ 1 variables and n+ s constraints.

6.3 A numerical example: a job–shop system

In this subsection we deal with an example taken from the literature [16]. We consider a

job–shop composed of four machines M1, M2, M3 and M4, which can manufacture three

products denoted by R1, R2 and R3. The production mix is 25%, 25%, 50% for R1, R2 and

R3, respectively. The production processes of the products and the corresponding circuits (the

20

circuit for R3 is repeated) are:

R1 : (M1,M2,M3,M4) {p1, t1, p9, t2, p10, t3, p11, t4}
R2 : (M1,M4,M3) {p2, t5, p12, t6, p13, t7}
R3 : (M1,M2,M4) {p3, t8, p14, t9, p15, t10}

{p4, t11, p16, t12, p17, t13}.

Here the number of tokens in each product circuit represents the number of available pallets for

that product.

The fixed sequencing of the part types on the machines and the corresponding circuits are:

M1 : (R1,R2,R3,R3) {p8, t1, p18, t5, p19, t8, p20, t11}
M2 : (R1,R3,R3) {p5, t2, p21, t9, p22, t12}
M3 : (R1,R2) {p6, t3, p23, t7}
M4 : (R1,R2,R3,R3) {p7, t4, p24, t6, p25, t10, p26, t13}.

Here the number of tokens in each machine circuit represents the number of available servers

for that machine.

The event graph modeling this system, sketched in figure 3, has n = 26 places, m = 13 tran-

sitions, and ℓ = 76 elementary circuits. We assume that Pa = {p1, p2, p3, p4, p5, p6, p7} where

the tokens in p1, p2, p3 and p4 represent the free pallets that must be optimally allocated, while

the tokens in p5, p6 and p7 represent the servers that need to be optimally distributed between

machines M2, M3 and M4. Pr = P rPa = {p8, · · · , p26} and we assume that: (a) the marking

of place p8 is 5 (i.e., M1 is the only machine that has a fixed number of servers, that is equal

to 5); (b) the marking of all other places in Pr is zero (i.e., no part is initially in the job-shop).

Release delays of transitions are shown in figure 3, as well as the marking of all places in Pr.

Now, let us consider the following optimization problem:

max J = min
γ∈Γ

aγM

µγ

s.t. M(p1) +M(p2) +M(p3) +M(p4) ≤ k1

M(p5) +M(p6) +M(p7) ≤ k2

M(p8) = 5

M(pi) = 0, i = 9, · · · , 26,

and let k1 = 100 and k2 = 20, i.e., we want to determine the optimal token allocation when the

number of pallets is equal to 100, machine M1 has 5 servers and the global number of servers

available to machines M2, M3 and M4 is equal to 20.

Now, problems of the form (16) and (22) can be immediately formulated. In accordance with

the previous notation we have nr = 19 and s′ = 2. Thus, in the first case the number of

variables is equal to 27 and the number of constraints is equal to 76 + 19 + 2 = 97. In the

second case, there are 13+26+1 = 40 variables and 26+19+2 = 47 constraints. As expected,

both procedures determine the same optimal firing rate J∗ = 1, while the optimal allocations

21

are different. The optimal token allocation computed using the first procedure is M(p1) = 6,

M(p2) = M(p3) = M(p4) = 10, M(p5) = 5, M(p6) = 9, M(p7) = 6, while the optimal token

allocation computed using the second procedure is has the same values except for M(p3) = 74.

In this case, the second procedure provides a solution that allocates to machine M3 a number of

pallets significantly greater than that computed with the first procedure. This is not a drawback

of the second approach but it is due to the fact that when more than one optimal solution exists,

the ILPP solver just stops when the first one is found.

It may be useful to have a multicriterion to select just one among all the allocations that provide

the same value of the firing rate. A possibility is that of introducing an additional term to the

performance index in both problems (16) and (22) so as to select, among all the solutions

characterized by the same optimal value of β, those that also minimize the total number of

tokens in the net. As an example, the performance index β can be replaced by β − w · cTM ,

where w is a positive number much smaller than one, so as to maintain the maximization of β

as the prior requirement and c : P → R+
0 is the cost vector of tokens. If we introduce this new

performance index, choosing w = 10−3 and c(p) = 1 for all p ∈ P , the two procedures find the

same optimal allocation, that is the allocation previously determined by the first procedure.

Furthermore, let us observe that in the particular case examined, the bottleneck is due to the

total number of servers in the machines, and cannot be eliminated by increasing the number

of pallets, i.e., k1. The only way to increase the firing rate is that of increasing the number of

machine servers, i.e., k2.

Finally, we observe that in the elementary circuit {p8, t1, p18, t5, p19, t8, p20, t11} that corresponds

to machine M1, all places belong to Pr. Therefore its cycle time (equal to 1.25) cannot be

changed by the addition of more tokens, thus introducing an upper bound on the maximum

firing rate obtainable by increasing both k1 and k2.

7 Conclusions

In this paper we have dealt with deterministic timed cyclic event graphs. We have discussed the

problem of allocating a given number of tokens in a CTEG so as to maximize the firing rate of

the net.

In the first part of the paper we have proposed an incremental algorithm that reveals to be very

efficient both in terms of computational time and memory requirements (only one solution needs

to be kept at each step). The only drawback of this procedure is that the set of places where

tokens can be allocated, has to verify particular conditions so as to guarantee the convergence

to the optimum.

More general allocation problems have been studied in the second part of the paper: the as-

sumptions on the set of places where tokens can be allocated have been removed, and linear

constraints on the marking of the net may also be taken into account. The novel contribution

consists in the formulation of two mixed integer linear programming problems. The first one

22

needs the knowledge of the elementary circuits, thus making it unpractical for some classes of

CTEG. The second one bypasses this difficulty and reveals to be efficient for analyzing complex

manufacturing systems such as job–shops.

References

[1] Campos, J., G. Chiola, J.M. Colom, and M. Silva, “Properties and Performance Bounds for Timed

Marked Graphs,” IEEE Trans. on Circuits and Systems, Vol. 39, N. 5, pp. 386–401, 1992.

[2] Chretienne, P., “Timed Petri nets,” Ph.D. Thesis, University of Paris VI, Paris, France, 1983 (in

French).

[3] Commoner, F., A. Holt, S. Even and A. Pnueli, “Marked directed graphs,” J. of Computer and

System Science, Vol. 5, N. 5, 1971.

[4] Di Febbraro, A., R. Minciardi and S. Sacone, “Deterministic Timed Event Graphs for Performance

Optimization of Cyclic Manufacturing Processes,” IEEE Trans. on Robotics and Automation, Vol.

13, N. 2, pp. 169–181, 1997.

[5] Di Mascolo, M., Y. Frein, Y. Dallery and R. David, “A unified modeling of Kanban systems using

Petri nets,” Int. J. of Flexible Manufacturing Systems, Vol. 3, pp. 275–307, 1991.

[6] Di Cesare, F., G. Harhalakis, J.M. Proth, M. Silva and F.B. Vernadat, Practice of Petri nets in

manufacturing, Chapman and Hall, 1993.

[7] Giua, A., A. Piccaluga, C. Seatzu, “Incremental optimization of timed cyclic event graphs,” Proc.

2000 IEEE Int. Conf. on Robotics and Automation (San Francisco, California), pp. 2211-2216, April

2000.

[8] Giua, A., A. Piccaluga, C. Seatzu, “Optimal token allocation in timed cyclic event graphs,” Proc.

5th Int. Work. on Discrete Event Systems (Ghent, Belgium), pp. 209-218, August 2000.

[9] Hillion, H.P. and J.M. Proth, “Performance evaluation of job–shop systems using timed event–

graphs,” IEEE Trans. on Automatic Control, Vol. 34, N. 1, pp. 3–9, 1989.

[10] Laftit, S., J.M. Proth and X. Xie, “Optimization of invariant criteria for event graph,” IEEE Trans.

on Automatic Control, Vol. 37, N. 5, pp. 547–555, 1992.

[11] Magott, J., “Performance evaluation of concurrent systems using Petri nets,” Inform. Proc. Lett.,

Vol. 18, pp. 7–13, 1984.

[12] Morioka, S. and T. Yamada, “Performance evaluation of marked graphs by linear programming,”

Int. J. of Systems Science, Vol. 22, pp. 1541–1552, 1991.

[13] Murata, T., “Petri nets: properties, analysis and applications,” Proc. IEEE, Vol. Proc. 77, N. 4, pp.

541–580, April 1989.

[14] Nakamura, M. and M. Silva, “An iterative linear relaxation and tabu search approach to mini-

mum initial marking problems of timed marked graphs,” Proc. 1999 European Control Conference,

(Karlsruhe, Germany), August–September 1999.

23

[15] Panayiotou, C.G. and C.G. Cassandras, “Optimization of kanban–based manufacturing systems,”

Automatica, Vol. 35, N. 9, pp. 1521–1533, September 1999.

[16] Proth J.M., N. Sauer and X. Xie, “Optimization of the number of trasportation devices in flexible

manufacturing systems using event graphs,” IEEE Trans. Ind. Elect., Vol. 44, N. 3, pp. 298–306,

1997.

[17] Sugimori, Y., K. Kusunoki, F. Cho and S. Uchikawa, “Toyota production systems materialization

of Just–in–Time and research–for–human systems,” Int. J. of Production Research, Vol. 15, N. 6,

pp. 553–564, 1977.

[18] Yamada, T. and S. Kataoka, “On Some LP Problems for Performance Evaluation of Timed Marked

Graphs ,” IEEE Trans. on Automatic Control, Vol. 39, N. 3, pp. 696–698, 1994.

24

