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Abstract. Quantum computation and quantum computational logics are intrinsically connected
with some puzzling epistemic problems. In the framework of a quantum computational approach
to epistemic logic we investigate the following question: is it possible to interpret the basic epis-
temic operations (having information, knowing) as special kinds of Hilbert-space operations? We
show that non-trivial knowledge operations cannot be represented by unitary operators. We introduce
the notions of strong epistemic quantum computational structure and of epistemic quantum compu-
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mantics, where epistemic sentences (like “Alice knows that the spin-value in the x-direction is up”)
are interpreted as quantum pieces of information that may be stored by quantum objects.

Keywords: quantum computational logics, epistemic structures.

1. Introduction

Quantum computation and quantum computational logics are intrinsically connected with some puzzling
epistemic problems. In [3] we have proposed a simplified semantics for a language that consists of two
parts: 1) the quantum computational sub-language, whose sentences α represent pieces of quantum
information (which are supposed to be stored by some quantum systems); 2) the classical epistemic
sub-language, whose atomic sentences have the following forms:

• agent a has a probabilistic information about the sentence α (Iaα);

• agent a knows the sentence α (Kaα).

Interestingly enough, some conceptual difficulties of the standard approaches to epistemic logics can
be overcome in this framework. For instance, the unrealistic logical omniscience of epistemic agents,
according to which knowing a given sentence should imply knowing all its logical consequences, is here
avoided.

Generally, we have:

1. If Kaα is true at a given time, then ¬CKa¬α is true at the same time (where ¬C and ¬ represent
the classical and the quantum computational negation, respectively). But not the other way around!
Hence, knowledge is consistent at any particular time.

2. If Ka(α ∧ β) is true at a given time, then Kaα and Kaβ are true at the same time. But not the
other way around!
Hence, knowledge is not generally closed under conjunction.

3. IfKaα is true at a given time and β is a logical consequence of α (in the framework of a convenient
form of quantum computational logic), then Kaβ is not necessarily true at the same time.
This permits us to avoid the unpleasant logical omniscience of epistemic agents.

The semantics presented in [3] is, in a sense, semiclassical; for, the epistemic operators having in-
formation, knowing are expressed in a classical epistemic language. We have seen how such semantics
can find natural applications in the discussion of some puzzling quantum phenomena, where informa-
tion and actions of epistemic agents play a fundamental role (as happens, for instance, in teleportation-
experiments).

In this paper we will investigate the following problem: is it possible to interpret the basic epistemic
operators (having information, knowing) as special kinds of Hilbert-space operations? A positive answer
to this question would permit us to develop a “genuine” epistemic quantum computational semantics,
where also epistemic sentences like Iaα and Kaα can be represented as pieces of quantum information.
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2. Truth-perspectives
We will first sum up some basic concepts that play an essential role in the construction of our epis-
temic structures. Reference to the canonical orthonormal basis B(1) of the two dimensional Hilbert
space C2 will be made, as usual in quantum computation and quantum computational logics. We have:
B(1) = {|0⟩, |1⟩}, where |0⟩ = (1, 0) and |1⟩ = (0, 1) represent the two classical bits in this con-
text. A qubit is defined as a unit vector of C2 whose canonical form is |ψ⟩ = a|0⟩ + b|1⟩. Let
H(n) =

⊗n
C2 be the n-fold tensor product of C2. The canonical basis of H(n) is the set B(n) ={

|x1⟩ ⊗ . . .⊗ |xn⟩ : |x1⟩, . . . , |xn⟩ ∈ B(1)
}
. As usual, we will briefly write |x1, . . . , xn⟩ instead of

|x1⟩ ⊗ . . . ⊗ |xn⟩. By definition, a quregister is a unit vector of H(n). Quregisters thus correspond
to pure states, namely to maximal pieces of information about the quantum systems that are supposed to
store a given amount of quantum information. We shall also make reference to mixtures of quregisters,
to be called qumixes, associated to density operators ρ ofH(n). We will denote byD(H(n)) the set of all
qumixes of H(n), and also reference to the set D =

⋃
n

{
D(H(n))

}
will be made.

Since the choice of an orthonormal basis for the Hilbert space H(n) is obviously a matter of conven-
tion, we may ask what happens if the whole semantic construction is developed by adopting a different
basis for C2. [3]

Any basis-change can be regarded as determined by a unitary operator U of C2. As an example, let
U be the Hadamard operator

√
I. Then, U determines the following new orthonormal basis:

B(1)
U =

{√
I|0⟩,

√
I|1⟩

}
=

{(
1√
2
,
1√
2

)
,

(
1√
2
,−

1√
2

)}
.

Any basis-change can be viewed as a change of our truth-perspective. While in the canonical case,
the truth-values truth and falsity are identified with the two classical bits |1⟩ and |0⟩, assuming a different
basis corresponds to a different idea of truth and falsity. Thus, we can guess that epistemic agents having
different semantic ideas might be associated to different bases of the space C2.

Any unitary operator U of H(1) can be canonically extended to a unitary operator U (n) of H(n) (for
any n ≥ 1), which is defined as follows:

U (n)|x1, . . . , xn⟩ = U |x1⟩ ⊗ . . .⊗ U |xn⟩.

Any choice of a unitary operator U ofH(1) determines an orthonormal basis B(n)
U forH(n) such that:

B(n)
U =

{
U (n)|x1, . . . , xn⟩ : |x1, . . . , xn⟩ ∈ B(n)

}
.

Instead of U (n)|x1, . . . , xn⟩ we will also write |x1, . . . , xn⟩U . Of course, we will have:

U (n)−1

|x1, . . . , xn⟩U = |x1, . . . , xn⟩.

The elements of B(1)
U are called the U -bits of H(1), while the elements of B(n)

U are called the U -
registers ofH(n).

Let BU represent the infinite sequence B(1)
U , B(2)

U , . . . that is determined by the unitary operator U .
We will call BU a general basis, while B will represent the canonical general basis. Of course, BU = B
iff U is the identity operator I.

We come now to the notions of truth, falsity and probability with respect to the general basis BU .
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Definition 2.1. (True and false registers)

• |x1, . . . , xn⟩U is a true register of B
(n)
U iff |xn⟩U = |1⟩U .

• |x1, . . . , xn⟩U is a false register of B
(n)
U iff |xn⟩U = |0⟩U .

In other words, the truth-value of an U -register (which corresponds to a sequence of U -bits) is
determined by its last element.1

Let RU
T (RU

F ) represent the set of the true registers (the false registers) of B
(n)
U .

Definition 2.2. (Truth and falsity)

• The U -truth of H(n) is the projection operator PU
1

(n) that projects over the closed subspace
spanned by RU

T .

• The U -falsity of H(n) is the projection operator PU
0

(n) that projects over the closed subspace
spanned by RU

F .

In this way, truth and falsity are dealt with as mathematical representatives of possible physical
properties. Accordingly, by applying the Born-rule, one can naturally define the probability-value of any
qumix with respect to the general basis BU .

Definition 2.3. (U -Probability)
For any ρ ∈ D(H(n)),

pU (ρ) := Tr(PU
1

(n)
ρ),

where Tr is the trace-functional.

We interpret pU (ρ) as the probability that the information ρ satisfies the truth-property (with respect to
the basis BU ). In the case of the canonical general basis we will write p(ρ) instead of pI(ρ).

In the particular cases of quregisters living in H(1), we will obtain:

pU (a0|0⟩U + a1|1⟩U ) = |a1|2.

As is well known, quantum information is processed by quantum logical gates (briefly, gates): uni-
tary operators that transform quregisters into quregisters in a reversible way. Let us recall the definition
of some gates that play a special role both from the computational and from the logical point of view.

Definition 2.4. (The negation)
For any n ≥ 1, the negation onH(n) is the linear operator NOT(n) such that, for every element |x1, . . . , xn⟩
of the basis B(n),

NOT(n)(|x1, . . . , xn⟩) = |x1, . . . , xn−1⟩ ⊗ |1− xn⟩.

In particular, we obtain:
NOT(1)|0⟩ = |1⟩; NOT(1)|1⟩ = |0⟩,

(according to the classical truth-table of negation).
1As we will see, the application of a classical reversible gate to a register |x1, . . . , xn⟩ transforms the bit |xn⟩ into the target-bit
|x′

n⟩, which behaves as the final truth-value. This justifies our choice in Definition 2.1.
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Definition 2.5. (The Toffoli gate)
For any n,m, p ≥ 1, the Toffoli gate is the linear operator T(n,m,p) defined on H(n+m+p) such that, for
every element |x1, . . . , xn⟩ ⊗ |y1, . . . , ym⟩ ⊗ |z1, . . . , zp⟩ of the basis B(n+m+p),

T(n,m,p)(|x1, . . . , xn⟩ ⊗ |y1, . . . , ym⟩ ⊗ |z1, . . . , zp⟩)
= |x1, . . . , xn⟩ ⊗ |y1, . . . , ym⟩ ⊗ |z1, . . . , zp−1, xnym+̂zp⟩,

where +̂ represents the addition modulo 2.

Definition 2.6. (The Hadamard-gate)
For any n ≥ 1, the Hadamard-gate on H(n) is the linear operator

√
I
(n) such that for every element

|x1, . . . , xn⟩ of the basis B(n):

√
I
(n)

(|x1, . . . , xn⟩) = |x1, . . . , xn−1⟩ ⊗
1√
2
((−1)xn |xn⟩+ |1− xn⟩) .

In particular we obtain:

√
I
(1)

(|0⟩) =
1√
2
(|0⟩+ |1⟩);

√
I
(1)

(|1⟩) =
1√
2
(|0⟩ − |1⟩).

Hence,
√
I
(1) transforms bits into genuine qubits.

The system consisting of the gates Negation, Toffoli and Hadamard is, to a certain extent, redundant.
As proved by Shi and Aharanov ([15], [1]), Toffoli and Hadamard give rise to an approximately universal
system of gates, in the sense that any gate G (defined on H(n)) can be approximately simulated by a
convenient combination of Toffoli and Hadamard up to an arbitrary accuracy. In this system Toffoli plays
the role of a classical universal gate, which permits us to define exactly all classical reversible gates. For
instance, the reversible conjunction AND and the reversible negative conjunction NAND can be defined as
follows, for any |ψ⟩ ∈ H(n) and any |ϕ⟩ ∈ H(m):

AND(|ψ⟩, |ϕ⟩) = T(n,m,1)(|ψ⟩ ⊗ |ϕ⟩ ⊗ |0⟩);

NAND(|ψ⟩, |ϕ⟩) = T(n,m,1)(|ψ⟩ ⊗ |ϕ⟩ ⊗ |1⟩).

The gate Hadamard, instead, represents a genuine quantum gate, that creates uncertain outputs (qureg-
isters), starting from certain inputs (classical registers). Using an independent definition of NOT is, how-
ever, more useful for computational aims, since such definition permits us to avoid a non-economical
increasing of the dimension of the Hilbert spaces in play.

All gates can be naturally transposed from the canonical (general) basis B to the (general) basis BU

that is determined by the unitary operator U . Let G(n) be any gate defined with respect to the canonical
basis B(n). The twin-gate G(n)

U , defined with respect to the basis B(n)
U , is determined as follows:

∀|x1, . . . , xn⟩U ∈ B(n)
U : G(n)

U (|x1, . . . , xn⟩U ) := U (n)(G(n)(|x1, . . . , xn⟩)).

Of course, G(n)
U = G(n) iff U is the identity operator I.
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All U -gates can be canonically extended to the set D of all qumixes. Let G(n)
U be any gate defined

on H(n). The corresponding qumix gate (also called unitary quantum operation) DG(n)
U is defined as

follows for any ρ ∈ D(H(n)):
DG(n)

U (ρ) = G(n)
U ρG(n)∗

U ,

where G(n)∗

U is the adjoint of G(n)
U .

On this basis, one can uniformly define on the set D a system of operations that correspond to the
U -gates considered above.

Definition 2.7. (The operations Negation, Hadamard and Toffoli)

1. For any ρ ∈ D(H(n)),NU (ρ) = DNOT
(n)
U (ρ).

2. For any ρ ∈ D(H(n)),
√
IU (ρ) = D

√
I
(n)
U (ρ).

3. For any ρ ∈ D(H(n)), for any σ ∈ D(H(m)) and for any τ ∈ D(H(p)),TU (ρ,σ, τ) =
DT

(m,n,p)
U (ρ⊗ σ ⊗ τ).

3. Epistemic structures

We will now discuss our basic question: is it possible to interpret the epistemic operators as special kinds
of Hilbert space operations? To this aim, let us first introduce the notion of strong epistemic quantum
computational structure S . From an intuitive point of view S can be described as a system consisting
of a time-sequence and of a set of epistemic agents evolving in time. Any agent has a truth-perspective
that determines his/her idea of truth and probability. We assume that the truth-perspective of each agent
is constant in time. Furthermore, we have a map I that assigns to any agent at any time an information-
operation that determines the pieces of information available for our agent with respect to any space
H(n). Another mapK assigns to any agent at any time a strong knowledge operation that determines the
pieces of information known by our agent with respect to any space H(n). The precise definition of S is
the following.

Definition 3.1. (Strong epistemic quantum computational structure)
A strong epistemic quantum computational structure is a system

S = (T, Ag, T rPersp, I, K)

where:

1. T is a time-sequence.

2. Ag is a set of epistemic agents a represented as functions of t in T . We will write at instead of
a(t).

3. TrPersp is a map that assigns to any agent a a general basis Ba: the truth-perspective of a.
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4. I is a map that assigns to any agent at and to any n ≥ 1 a map (called information-operation)

I
(n)
at : B(H(n)) )→ B(H(n)),

where B(H(n)) is the set of all bounded operators of H(n). For any ρ ∈ D(H(n)) the condition
I
(n)
at ρ ∈ D(H(n)) is required.

5. K is a map that assigns to any agent at and to any n ≥ 1 a map (called strong knowledge operation)

K
(n)
at : B(H(n)) )→ B(H(n)).

The following conditions are required:

a) For any agent at and for any n ≥ 1,K(n)
at is an information-operation.

b) pBa
(K(n)

at ρ) ≤ pBa
(ρ), for any ρ ∈ D(H(n)).

Let us outline the intuitive interpretation of I(n)at ρ and K
(n)
at ρ by the following remarks. For any

qumix ρ (which lives in the space H(n)), I(n)at ρ is a qumix (living in the same space) that represents the
following piece of quantum information: at time t agent a has information about ρ. It appears natural
not to assume any relationship about the probability-values of ρ and I(n)at ρ. The qumixK

(n)
at ρ represents

instead the following piece of quantum information: at time t agent a knows ρ. Unlike the case of I(n)at ρ,
it seems reasonable to assume that the probability-values of ρ and K(n)

at ρ are correlated: the probability
of the quantum information expressed by the sentence “at time t agent a knows ρ” should always be less
than or equal to the probability of ρ. Hence, in particular, we obtain that:

pBa
(K(n)

at ρ) = 1 ⇒ pBa(ρ) = 1.

But generally, not the other way around! In other words, pieces of quantum information that are known
by our agents are true!

As an example, suppose that the qumix ρ in H(1) represents the proposition “the spin-value in the
x-direction is up”. Clearly, the probability-value of the sentence I(1)at ρ (say, “Alice has information about
the proposition asserting that that the spin-value in the x-direction is up”) does not have any correlation
with the probability of the proposition in question. At the same time, the probability of K(1)

at ρ (“Alice
knows that the spin-value in the x-direction is up”) should always be less than or equal to the probability
of ρ.

A strong knowledge operation K
(n)
at will be called non-trivial iff for at least one qumix ρ,

pBa
(K(n)

at ρ) < pBa
(ρ).

Notice that strong knowledge operations do not generally preserve pure states. As a counterexample
consider the map

1

2K
(1)
I

: B(H(1)) )→ B(H(1)),

that is defined as follows for any operator

(
a b

c d

)

in B(H(1)):

1

2K
(1)
I

(
a b

c d

)

:=

(
a+ d

2
b√
2

c√
2

d√
2

)
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One can easily show that
1

2K
(1)
I
is a strong knowledge operation with respect to the canonical general

basis BI. Denoting P (1)
1 =

(
0 0

0 1

)

we have:

1

2K
(1)
I

P (1)
1 =

(
1
2 0

0 1
2

)

=
1

2
I(1).

Hence,
1

2K
(1)
I
transforms the bit P (1)

1 into the proper mixture 1
2I

(1).
By strong knowledge operator we will mean the restriction to quregisters of a strong knowledge

operation that satisfies the property of preserving pure states.

Definition 3.2. (Strong knowledge operator)
A linear operator

K : H(n) )→ H(n)

is called a strong knowledge operator with respect to the general basis BU iff

1. for any quregister |ψ⟩ of H(n), K|ψ⟩ is a quregister.

2. pU (K|ψ⟩) ≤ pU(|ψ⟩), for any quregister |ψ⟩ of H(n).

By non-trivial strong knowledge operator (on the space H(n) with respect to general basis BU ) we will
mean a strong knowledge operator K such that for at least one quregister |ψ⟩: pU(K|ψ⟩) < pU (|ψ⟩).

We will now prove that non-trivial strong knowledge operators cannot be represented by unitary
operators. To this aim, let us first define the notion of probabilistic identity operator.

Definition 3.3. (Probabilistic identity operator)
A probabilistic identity operator with respect to the general basis BU is a linear operator

A : H(n) )→ H(n),

such that for any quregister |ψ⟩ ofH(n):

pU(|ψ⟩) = pU (A(|ψ⟩)).

In other words, A may change |ψ⟩, but not its probability!

Theorem 3.4. A linear operator A ofH(1) is a probabilistic identity operator with respect to the general
basis BU iff

A =

(
eiθ 0

0 eiη

)

with θ, η ∈ R.

Proof:
Suppose that

A =

(
a b

c d

)
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is a probabilistic identity operator with respect to the general basis BU . Then,

pU(|1⟩U ) = 1; pU(|0⟩U ) = 0.

Hence:
b = 0, d = eiη, for some η ∈ R; c = 0, a = eiθ, for some θ ∈ R.

Conversely, let

A =

(
eiθ 0

0 eiη

)

We obtain, for |ψ⟩ = a0|0⟩U + a1|1⟩U ,

A|ψ⟩ = a0e
iθ|0⟩U + a1e

iη|1⟩U .

Furthermore, we have:
pU (|ψ⟩) = |a1|2;

pU (A|ψ⟩) = pU(a0e
iθ|0⟩U + a1e

iη |1⟩U ) = |a1|2.

Hence A is a probabilistic identity operator (with respect to the general basis BU ). ⊓.

Theorem 3.5. LetA be a unitary operator ofH(1) such that for all quregisters |ψ⟩, pU (A|ψ⟩) ≤ pU (|ψ⟩).
Then A is a probabilistic identity operator with respect to the general basis BU .

Proof:

Let A =

(
a b

c d

)

. We have: pU(|0⟩U ) = 0. Thus, pU(A|0⟩U ) = 0. Hence, c = 0 and a = eiθ, fore some

θ ∈ R. Consequently, A =

(
eiθ b

0 d

)

. Since A is unitary, we have: AA∗ = I(1). Thus:

(
eiθ b

0 d

)(
(eiθ)∗ 0

b∗ d∗

)

=

(
1 0

0 1

)

Hence, dd∗ = 1, i.e. d = eiη for some η ∈ R. Moreover b = 0, because eiθ(eiθ)∗ + b b∗ = 1.
Consequently, A is a probabilistic identity operator with respect to the general basis BU . ⊓.

Corollary 3.6.

• Non-trivial strong knowledge operators cannot be represented by unitary operators.

• Non-trivial strong knowledge operations cannot be represented by qumix gates.

We will now prove that strong knowledge operations can be represented by the notion of quantum
operation defined below. Interestingly enough, the concept of quantum operation is a quite general notion
that permits us to represent at the same time quantum states, effects and measurements. In particular, it
has been shown that for open systems, interacting with an environment, the Schrödinger-equation should
be generalized to a superoperator-equation, describing how an initial pure state evolves into a mixed
state, that has the form of a quantum operation.2

2See, for instance, [13], [14], [4], [11].
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Definition 3.7. (Quantum operation)
A quantum operation on H(n) is a linear map E from B(H(n)) to B(H(n)) that satisfies the following
properties:

• for any A ∈ B(H(n)), Tr(E(A)) ≤ Tr(A);

• E is completely positive.

In our applications we will use a stricter notion of quantum operation that is usually called quantum
channel.

Definition 3.8. (Quantum channel)
A quantum channel on H(n) is a quantum operation E on H(n) that satisfies the following property: for
any A ∈ B(H(n)), Tr(E(A)) = Tr(A).

From the definition one immediately obtains that any quantum channel maps density operators into
density operators.

A neat characterization of quantum channels is stated by Kraus first representation theorem [12].

Theorem 3.9. A map
E : B(H(n)) )→ B(H(n))

is a quantum channel on H(n) iff for some set I of indices there exists a set {Ei}i∈I of elements of
B(H(n)) satisfying the following conditions:

1.
∑

i E
∗
i Ei = I(n)

2. ∀A ∈ B(H(n)) : E(A) =
∑

iEiAE∗
i .

Of course, qumix gates DG are special cases of quantum channels, for which {Ei}i∈I =
{
DG
}
.

Theorem 3.10. There exist uncountably many quantum channels that are non-trivial strong knowledge
operations of the space H(1) with respect to the canonical general basis.

Proof:

Let rE1 =

(
1 0

0
√
r

)

, and rE2 =

(
0

√
1− r

0 0

)

with r ∈ [0, 1].

Define rK(1) : B(H(n)) )→ B(H(n)) as follows:

∀A ∈ B(H(n)) : r
K

(1)(A) = rE1A (rE1)
∗ + rE2A(

rE2)
∗.

It is easy to see that (rE1)∗(rE1) + (rE2)∗(rE2) = I(1). Hence rK(1) is a quantum channel. An easy
computation shows that for all ρ ∈ D(H(1):

p(rK(1)ρ) = rp(ρ) ≤ p(ρ).

If r ̸= 1, rK(1) turns out to be a non-trivial strong knowledge operation with respect to the canonical
general basis. Consequently there are uncountably many quantum channels that are non-trivial strong
knowledge operations. ⊓.
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Notice that:
p(
√
I(rK(1)(ρ))) ≥ p(

√
I(ρ)).

As expected, strong knowledge operations rK
(n)
U that behave like rK(1) can be defined for any space

H(n) and for any general basis BU . Such operations are similar to the amplitude damping channels
(described, for instance, in [14]), which have some interesting physical interpretations.

Definition 3.11. (Introspection and consistency)
A strong knowledge operator K(n)

U (with respect to the general basis BU ) is called

1. positively introspective iff for any ρ ∈ D(H(n)) :

pU(K
(n)
U (ρ)) ≤ pU(K

(n)
U (K(n)

U (ρ)));

2. negatively introspective iff for any ρ ∈ D(H(n)) :

pU (NU (K
(n)
U (ρ))) ≤ pU(K

(n)
U (NU (K

(n)
U (ρ))));

3. probabilistically consistent iff for any ρ ∈ D(H(n)) :

pU(K
(n)
U (ρ)) ≤ pU(NU (K

(n)
U (NU (ρ)))).

Theorem 3.12.

1. All strong knowledge operations rK
(1)
U are probabilistically consistent;

2. for any rK
(1)
U the following conditions are equivalent:

• rK
(1)
U is both positively and negatively introspective;

• rK
(1)
U = I(1), i.e. r = 1.

Proof:

1. For all strong knowledge operations rK
(1)
U we have: pU (rK

(1)
U ρ) = rpU(ρ). By a straightforward

calculation, one can prove that:

pU (NU (
r
K

(1)
U (NU (ρ)))) = 1− r + rpU(ρ).

Since r ∈ [0, 1], our claim follows from the definition of probabilistically consistent strong knowl-
edge operation.

2. One can prove that:

• pU (rK
(1)
U (rK(1)

U (ρ))) = r2pU (ρ);

• pU (rK
(1)
U (NU (rK

(1)
U (ρ)))) = 1

2r(2− r + rr3);

• pU (NU (rK
(1)
U (ρ))) = 1

2(2− r + rr3).
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Since pU (rK
(1)
U ρ) = rpU (ρ), our claim follows from the definitions of positively and negatively

introspective strong knowledge operation.
⊓.

Theorem 3.12 can be easily extended to all strong knowledge operations living in a space H(n).

Theorem 3.13. All strong knowledge operations rK
(n)
U are monotonic:

pU (ρ) ≤ pU (σ) ⇒ pU (
r
K

(n)
U ρ) ≤ pU(

r
K

(n)
U σ).

Proof:
Straightforward ⊓.

Now, monotonicity gives rise to a weak form of logical omniscience for our epistemic agents. Let ρ
and σ be two qumixes ofH(n), linguistically expressed by two sentences α and β, such that β is a logical
consequence of α (in a convenient quantum computational semantics3). We will have, for any general
basis BU :

pU (ρ) ≤ pU(σ).

Hence,
pU (K

(n)
Ba

ρ) ≤ pU(K
(n)
Ba

σ).

And in particular:
pU (K

(n)
Ba

ρ) = 1 ⇒ pU (K
(n)
Ba

σ) = 1.

In other words, knowing a sentence implies knowing all its logical consequences whose meanings
belong to the same space H(n).

We will now introduce a weaker notion of epistemic quantum computational structure, which more
realistically describes the characteristic epistemic limitations of our agents.

Definition 3.14. (Epistemic quantum computational structure)
An epistemic quantum computational structure is a system

S = (T, Ag, T rPersp, Inf, I, K)

where:

1. T is a time-sequence;

2. Ag is a set of epistemic agents a represented as functions of t in T . We will write at instead of
a(t);

3. TrPersp is a map that assigns to any agent a a general basis Ba: the truth-perspective of a.

4. Inf is a map that assigns to any at a finite subset of
⋃

n D(H(n)). From an intuitive point of view,
Inf(at) represents the epistemic universe of at: the set of qumixes that at is able to understand
and to valuate probabilistically.

3See [8].
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5. I is a map that assigns to any agent at and to any n ≥ 1 a map (called information-operation)

I
(n)
at : B(H(n)) )→ B(H(n)).

The following conditions are required:

a) For any ρ ∈ D(H(n)), I(n)at ρ ∈ D(H(n)).

b) ∀ρ ∈ D(H(n)) : ρ /∈ Inf(at) ⇒ I
(n)
at ρ = 1

2I
(n).

6. K is a map that assigns to any agent at and to any n ≥ 1 a map (called knowledge operation)

K
(n)
at : B(H(n)) )→ B(H(n)).

The following conditions are required, for any at and any n ≥ 1 :

a) K
(n)
at is an information-operation.

b) K
(n)
at restricted to the set D(H(n)) ∩ Inf(at) is a strong knowledge operation.

The intuitive interpretation of I(n)at ρ and ofK
(n)
at ρ is the following:

• whenever ρ belongs to the epistemic universe of at, I
(n)
at ρ means “at has information about ρ”.

Otherwise, I(n)at ρ represents the indeterminate qumix 1
2I

(n).

• whenever ρ belongs to the epistemic universe of at, K
(n)
at ρ means “at knows the quantum infor-

mation ρ”. Otherwise, K(n)
at ρ) represents the indeterminate qumix 1

2I
(n).

The notion of epistemic quantum computational structure represents the basic tool that permits us
to develop a genuine epistemic quantum computational semantics, where also epistemic sentences (like
“Alice knows α”) are interpreted as quantum pieces of information that may be stored by quantum
objects. In this framework one can study the behavior of nested epistemic operators (say, “Alice knows
that Bob does not know α”). We will investigate these logical problems in a future paper.
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