

Enargite by XPS

Marzia Fantauzzi, Davide Atzei, Stefania Da Pelo, Bernhard Elsener, Franco Frau et al.

Citation: Surf. Sci. Spectra **9**, 266 (2002); doi: 10.1116/11.20030801 View online: http://dx.doi.org/10.1116/11.20030801 View Table of Contents: http://avspublications.org/resource/1/SSSPEN/v9/i1 Published by the AVS: Science & Technology of Materials, Interfaces, and Processing

Related Articles

X-ray photoelectron spectroscopy study on the chemistry involved in tin oxide film growth during chemical vapor deposition processes J. Vac. Sci. Technol. A 31, 01A105 (2013)

Jive the second state of a strength second all densed as

High-temperature stability of postgrowth-annealed Al-doped MgxZn1-xO films without the phase separation effect J. Vac. Sci. Technol. B 30, 061201 (2012)

Cl atom recombination on silicon oxy-chloride layers deposited on chamber walls in chlorine–oxygen plasmas J. Vac. Sci. Technol. A 30, 051307 (2012)

Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching J. Vac. Sci. Technol. A 30, 051306 (2012)

Pt(II) and Pd(II) Pyrrolidine-Dithiocarbamates Investigated by XPS Surf. Sci. Spectra 18, 82 (2011)

Additional information on Surf. Sci. Spectra

Journal Homepage: http://avspublications.org/sss Journal Information: http://avspublications.org/sss/about/about_the_journal Top downloads: http://avspublications.org/sss/top_20_most_downloaded Information for Authors: http://avspublications.org/sss/authors/information_for_contributors

ADVERTISEMENT

Enargite by XPS

Marzia Fantauzzi and Davide Atzei

Department of Inorganic and Analytical Chemistry, University of Cagliari, Cittadella Universitaria Monserrato, Cagliari 09100, Italy

Stefania Da Pelo

Department of Earth Sciences, University of Cagliari, via Trentino 51, Cagliari 09127, Italy

Bernhard Elsener

Deptartment of Inorganic and Analytical Chemistry, University of Cagliari, Cittadella Universitaria Monserrato, Cagliari 09100, Italy

Franco Frau and Piero Franco Lattanzi

Department of Earth Sciences, University of Cagliari, via Trentino 51, Cagliari 09127, Italy

Antonella Rossi

Department of Inorganic and Analytical Chemistry, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Cagliari 09100, Italy

(Received 4 August 2003; accepted 16 January 2004; published 12 March 2004)

X-ray photoelectron spectroscopy was used for characterizing the enargite surface. Freshly cleaved samples were analyzed at liquid nitrogen temperature. Enargite is a copper arsenic sulfide of formula Cu_3AsS_4 ; it is used as a minor ore of copper. Enargite is a potential source of arsenic and may create environmental problems through the release of toxic elements upon oxidation. © 2004 American Vacuum Society. [DOI: 10.1116/11.20030801]

Keywords: x-ray photoelectron spectroscopy; Enargite

PACS: 82.80.Pv, 91.60.-x

SPECIMEN DESCRIPTION (Accession #00782)

Host Material: Natural enargite (Cu₃AsS₄)

- Host Material Characteristics: homogeneous; solid; unknown crystallinity; semiconductor; inorganic compound
- Chemical Name: copper arsenic sulfide
- Host Composition: Cu₃AsS₄

Form: crystal

- **History & Significance:** The sample is a mineral extracted from mines in Furtei (CA, Italy).
- As Received Condition: The sample was received as crystal.
- **Analyzed Region:** flat surface in the "as received" condition (Refs. 1 and 2)
- *Ex Situ* Preparation/Mounting: The sample was mounted as crystal on double sided adhesive tape.

In Situ Preparation: none

Charge Control: Sample charging was constant during analysis. Energy shift was compensated by referencing all the spectra to a C 1*s* signal taken at 285.0 eV.

Temp. During Analysis: 77.4 K

Pressure During Analysis: $<5 \times 10^{-8}$ Pa

SPECIMEN DESCRIPTION (Accession #00783) -

Host Material: Synthetic enargite

Host Material Characteristics: homogeneous; solid; unknown crystallinity; semiconductor; inorganic compound

266 Surface Science Spectra, Vol. 9, 2002

1055-5269/2002/9/266/9/\$18.00

© 2004 American Vacuum Society

Accession #s 00782,00783 Technique: XPS

Host Material: #00782: Natural enargite (Cu₃AsS₄); #00783: Synthetic enargite

Instrument: Vacuum Generators Ltd, East Greenstead, UK Escalab Mark II with upgrade to Escalab 200

Major Elements in Spectrum: Cu, As, S, C, O

Minor Elements in Spectrum: none Printed Spectra: 8

Spectra in Electronic Record: 20

Spectral Category: comparison

Chemical Name: copper arsenic sulfide

Host Composition: Cu₃AsS₄

Form: powder

- **History & Significance:** The sample is synthetic enargite. It was synthesized at high temperature (500 °C) in sealed silica tubes under vacuum.
- As Received Condition: not specified

Analyzed Region: not specified

Ex Situ Preparation/Mounting: The sample was mounted as powder on double sided adhesive tape (Refs. 1 and 2).

In Situ Preparation: not specified

Charge Control: Sample charging was constant during analysis. Energy shift was compensated by referencing all the spectra to a C 1*s* signal taken at 285.0 eV.

Temp. During Analysis: 77.4 K

Pressure During Analysis: $<5 \times 10^{-8}$ Pa

INSTRUMENT DESCRIPTION -

Manufacturer and Model: Vacuum Generators Ltd., East Greenstead, UK Escalab Mark II with upgrade to Escalab 200

Analyzer Type: spherical sector

Detector: Channeltron

Number of Detector Elements: 5

Downloaded 06 Nov 2012 to 192.167.148.22. Redistribution subject to AVS license or copyright; see http://avspublications.org/sss/about/rights_and_permissions

INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA

Spectrometer

Analyzer Mode: constant pass energy Throughput ($T = E^N$): N = -0.5Excitation Source Window: Al window, foil thickness 1.0 µm **Excitation Source:** Al K_{α} Source Energy: 1486.6 eV Source Strength: 300 W Source Beam Size: $12.5 \text{ mm} \times 12.5 \text{ mm}$ Analyzer Width: 2000 μ m \times 5000 μ m Signal Mode: V/F analog Number of Scans: 1 Geometry Incident Angle: 49° Source to Analyzer Angle: 49° Emission Angle: 0° Specimen Azimuthal Angle: 40° Acceptance Angle from Analyzer Axis: 0° Analyzer Angular Acceptance Width: $4^{\circ} \times 8^{\circ}$ at 886 eV Ion Gun Manufacturer and Model: VG scientific AG 21 Energy: 4000 eV Current: 0.180 Current Measurement Method: biased stage Sputtering Species: Ar Incident Angle: 48° Polar Angle: 53° Azimuthal Angle: 85°

Comment: The analyzed area was etched to remove contamination and the oxide layer. Sputtering was performed by backfilling the chamber.

DATA ANALYSIS METHOD -

- **Energy Scale Correction:** Calibration of the energy scale was performed according to Ref. 3. For charging correction, C 1s was taken at 285.00 eV.
- **Recommended Energy-Scale Shift:** For all Accession #00782, -1.4 eV; for all Accession #00783, -3.6 eV
- **Peak Shape and Background Method:** Shirley–Sherwood background subtraction, line shape mixed product Gaussian– Lorentzian functions with exponential tails in some cases
- **Quantitation Method:** Surface analysis was based on the areas of the photoelectron peaks using the following equation: $C_i = (I_i/S_i)[\Sigma_i (I_i/S_i)]^{-1}$, where C_i is the atomic percentage of element *i*, I_i is the intensity of the photoelectron signal (i.e., the peak area) after subtraction of a nonlinear background, and Si is the atomic sensitivity calculated using the photoionization cross section of Scofield (Ref. 4), corrected for the angular asymmetry function and for the asymmetry parameter (Ref. 5).

REFERENCES

- D. Atzei, S. Da Pelo, B. Elsener, M. Fantauzzi, F. Frau, P. Lattanzi, and A. Rossi, An. Chim. 93, 11 (2003).
- A. Rossi, D. Atzei, S. Da Pelo, F. Frau, P. Lattanzi, K. E. R. England, and D. J. Vaughan, Surf. Interface Anal. 31, 465 (2001).
- ISO 15472: Surface Chemical Analysis X-ray Photoelectron Spectrometers — Calibration of Energy Scales, M. P. Seah, Surf. Interface Anal. 31, 721 (2001).
- 4. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).
- R. F. Reilman, A. Msezane, and S. T. Manston, J. Electron Spectrosc. 8, 389 (1976).

SPECTRAL FEATURES TABLE

Spectrum ID #	Element/ Transition	Peak Energy (eV)	Peak Width FWHM (eV)	Peak Area (eV-cts/s)	Sensitivity Factor	Concen- tration (at. %)	Peak Assignment
00782-02 ^a	Cu 2p _{3/2}	932.2	1.44	32183	1.44	28	
00782-03 ^a	As 3 <i>d</i>	43.5	1.63	1590	0.17	12.0	•••
00782-04 ^a	S 2 <i>p</i>	162.1	2.10	7082	0.15	60	
00783-02 ^b	Cu 2p _{3/2}	932.7	1.43	46068	1.44	33	
00783-03 ^b	As 3 <i>d</i>	43.5	1.64	1855	0.17	12	
00783-04 ^b	S 2 <i>p</i>	162.6	2.44	7929	0.15	55	

^a Natural Enargite

^b Synthetic Enargite

Comment to Spectral Features Table: The composition listed in item I-6 does not include carbon and oxygen because the concentration is calculated taking into account the attenuation of the emitted electrons due to the presence of the outermost layer constituted of C and O. C and O do not belong to enargite but only to the surface contamination of the sample. Including C and O in the calculation would imply the wrong assumption of homogeneity of the sample.

Footnote to Spectrum 00783-04: Two s_{2p} signals were revealed in detailed sulfur spectra. The more intense signal at 162.5 eV can be assigned to sulfur in the sulfide chemical state (formal oxidation state -2). The weak signal at 164.3 eV was assigned to a species with a higher oxidation state.

ANALYZER CALIBRATION TABLE							
Spectrum ID #	Element/ Transition	Peak Energy (eV)	Peak Width FWHM (eV)	Peak Area (eV-cts/s)	Sensitivity Factor	Concen- tration (at. %)	Peak Assignment
00786-01	Ag 3 <i>d</i> _{5/2}	368.10	1.10	1341501	•••		
00784-01	Au 4f _{7/2}	83.93	1.28	982980			
00785-01	Cu 2p _{3/2}	932.67	1.41	2426632			
00785-02	Cu LMM	567.96	1.16	380987			

GUIDE TO FIGURES					
Spectrum (Accession) #	Spectral Region	Voltage Shift*	Multiplier	Baseline	Comment #
782-1	Survey	+1.4	1	0	
782-2	Cu 2p	+1.4	1	0	
782-3	As 3d	+1.4	1	0	
782-4	S 2 <i>p</i>	+1.4	1	0	
783-1	Survey	+3.6	1	0	
783-2	Cu 2 <i>p</i>	+3.6	1	0	
783-3	As 3d	+3.6	1	0	
783-4	S 2 <i>p</i>	+3.6	1	0	
782-5 [NP]**	Cu LMM	+1.4	1	0	
782-6 [NP]	As LMM	+1.4	1	0	
782-7 [NP]	C 1 <i>s</i>	+1.4	1	0	
782-8 [NP]	O 1 <i>s</i>	+1.4	1	0	
783-5 [NP]	Cu LMM	+3.6	1	0	
783-6 [NP]	As LMM	+3.6	1	0	
783-7 [NP]	C 1 <i>s</i>	+3.6	1	0	
783-8 [NP]	O 1 <i>s</i>	+3.6	1	0	
784-1 [NP]	Au 4f	0	1	0	1
785-1 [NP]	Cu 2p	0	1	0	1
785-2 [NP]	Cu LMM	0	1	0	1
786-1 [NP]	Ag 3d	0	1	0	1

* Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon. ** [NP] signifies not published; digital spectra are archived in *SSS* database but not reproduced in the printed journal.

1. Calibration spectrum

Accession #	00782-01		
Host Material	Natural enargite (Cu ₃ AsS ₄)		
Technique	XPS		
Spectral Region	survey		
Instrument	Vacuum Generators Ltd,. East Greenstead, UK Escalab Mark II with upgrade to Escalab 200		
Excitation Source	Al K_{α}		
Source Energy	1486.6 eV		
Source Strength	300 W		
Source Size	12.5 mm \times 12.5 mm		
Analyzer Type	spherical sector		
Incident Angle	49°		
Emission Angle	0°		
Analyzer Pass Energy	50 eV		
Analyzer Resolution	1.12 eV		
Total Signal Accumulation Time	140.10 s		
Total Elapsed Time	140.10 s		
Number of Scans	1		
Effective Detector Width	1.0 eV		

Surface Science Spectra, Vol. 9, 2002

Downloaded 06 Nov 2012 to 192.167.148.22. Redistribution subject to AVS license or copyright; see http://avspublications.org/sss/about/rights_and_permissions

■ Accession #: 00782-02

Host Material: Natural enargite

Total Signal Accumulation Time: 90.10 s

Total Elapsed Time: 90.10 s Number of Scans: 1

Effective Detector Width: 0.04 eV

■ Accession #: 00782-03 Host Material: Natural enargite (Cu₃AsS₄) Technique: XPS Spectral Region: As 3d Instrument: Vacuum Generators Ltd., East Greenstead, UK Escalab Mark II with upgrade to Escalab 200 Excitation Source: Al K_{α} Source Energy: 1486.6 eV Source Strength: 300 W Source Size: 12.5 mm \times 12.5 mm Incident Angle: 49° Analyzer Type: spherical sector Analyzer Pass Energy: 20 eV Analyzer Resolution: 1.12 eV Emission Angle: 0° Total Signal Accumulation Time: 150.30 s Total Elapsed Time: 150.30 s Number of Scans: 3 Effective Detector Width: 0.4 eV

Accession #	00783-01
Host Material	Synthetic enargite
Technique	XPS
Spectral Region	survey
Instrument	Vacuum Generators Ltd., East Greenstead, UK Escalab Mark II with upgrade to Escalab 200
Excitation Source	Al K_{α}
Source Energy	1486.6 eV
Source Strength	300 W
Source Size	12.5 mm \times 12.5 mm
Analyzer Type	spherical sector
Incident Angle	49°
Emission Angle	0°
Analyzer Pass Energy	50 eV
Analyzer Resolution	1.12 eV
Total Signal Accumulation Time	140.10 s
Total Elapsed Time	140.10 s
Number of Scans	1
Effective Detector Width	1 eV

272 Surface Science Spectra, Vol. 9, 2002

■ Accession #: 00783-02 Host Material: Synthetic enargite Technique: XPS Spectral Region: Cu 2p Instrument: Vacuum Generators Ltd., East Greenstead, UK Escalab Mark II with upgrade to Escalab 200 Excitation Source: Al K_{α} Source Energy: 1486.6 eV Source Strength: 300 W Source Size: 12.5 mm \times 12.5 mm Incident Angle: 49° Analyzer Type: spherical sector Analyzer Pass Energy: 20 eV Analyzer Resolution: 1.12 eV Emission Angle: 0° Total Signal Accumulation Time: 90.10 s Total Elapsed Time: 90.10 s Number of Scans: 1 Effective Detector Width: 0.4 eV

■ Accession #: 00783-03 Host Material: Synthetic enargite Technique: XPS Spectral Region: As 3d Instrument: Vacuum Generators Ltd., East Greenstead, UK Escalab Mark II with upgrade to Escalab 200 Excitation Source: Al K_{α} Source Energy: 1486.6 eV Source Strength: 300 W Source Size: 12.5 mm × 12.5 mm Incident Angle: 49° Analyzer Type: spherical sector Analyzer Pass Energy: 20 eV Analyzer Resolution: 1.12 eV Emission Angle: 0° Total Signal Accumulation Time: 150.30 s Total Elapsed Time: 150.30 s Number of Scans: 3 Effective Detector Width: 0.4 eV

- enargite
- Technique: XPS
- Spectral Region: S2p

Instrument: Vacuum Generators Ltd., East Greenstead, UK Escalab Mark II with upgrade to Escalab 200

Excitation Source: Al K_{α}

Source Energy: 1486.6 eV

Source Strength: 300 W

Source Size: 12.5 mm \times 12.5 mm

Incident Angle: 49°

Analyzer Type: spherical sector

Analyzer Pass Energy: 20 eV

Analyzer Resolution: 1.12 eV

Emission Angle: 0°

Total Signal Accumulation Time: 150.30 s

Total Elapsed Time: 150.30 s

Number of Scans: 3

Effective Detector Width: 0.4 eV

Comment: See footnote below the Spectral Features Table.