
Noname manuscript No.
(will be inserted by the editor)

Minimality of invariant submanifolds in Metric Contact Pair Geometry

Gianluca Bande · Amine Hadjar

the date of receipt and acceptance should be inserted later

Abstract We study invariant submanifolds of manifolds endowed with a normal or complex metric contact pair with
decomposable structure tensor φ. For the normal case, we prove that a φ-invariant submanifold tangent to a Reeb vector
field and orthogonal to the other one is minimal. For a φ-invariant submanifold N everywhere transverse to both the
Reeb vector fields but not orthogonal to them, we prove that it is minimal if and only if the angle between the tangential
component ξ (with respect to N ) of a Reeb vector field and the Reeb vector field itself is constant along the integral
curves of ξ. For the complex case (when just one of the two natural almost complex structures is supposed to be
integrable), we prove that a complex submanifold is minimal if and only if it is tangent to both the Reeb vector fields.
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1 Introduction

It is well known that on a Kähler manifold the J-invariant submanifolds (J being the complex structure of the Kähler
manifold) are minimal. On the other hand for a Sasakian manifold, and more generally for a contact metric manifold, a
φ-invariant submanifold is also minimal, where φ is the structure tensor of the contact metric structure. Similar results
are known for a special class of Hermitian manifolds, that is the class of locally conformally Kähler (lcK) manifolds
and in particular for the subclass of Vaisman manifolds. Dragomir and Ornea [12, Theorem 12.1] have shown that a
J-invariant submanifold of an lcK manifold is minimal if and only if the submanifold is tangent to the Lee vector field
(and therefore tangent to the anti-Lee vector field). In fact this result is a slight generalization of the following result of
Vaisman [15]: a J-invariant submanifold of a generalized Hopf manifold (nowadays called Vaisman manifold) inherits
a generalized Hopf manifold structure if and only if it is minimal (or, equivalently, if and only if the submanifold is
tangent to the Lee vector field). In [9] it was shown that the notion of non-Kähler Vaisman manifold, after constant
rescaling of the metric, is equivalent to the notion of normal metric contact pair [7] of type (h, 0) and the Lee and
anti-Lee vector fields correspond to the Reeb vectors fields of the pair. Moreover this equivalence enlightened the fact
that on a Vaisman manifold there is another complex structure T with opposite orientation with respect to J . In terms of
normal metric contact pairs the generalization of Vaisman’s result can be stated as follows: a J-invariant submanifold
of a normal metric contact pair manifold of type (h, 0) is minimal if and only if the submanifold is tangent to the Reeb
vector fields or, equivalently, if it is also T -invariant. These observations lead to the study of the invariant submanifolds
of normal metric contact pairs of type (h, k) [7] also called Hermitian bicontact structures [11].

More precisely, recall that a metric contact pair [6] of type (h, k) on a manifold M is 4-tuple (α1, α2, φ, g) such
that (α1, α2) is a contact pair [2,5] of type (h, k), φ is an endomorphism field of M such that

φ2 = −Id+ α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0,
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where Z1 and Z2 are the Reeb vector fields of (α1, α2), and g is a Riemannian metric such that g(X,φY ) = (dα1 +
dα2)(X,Y ) and g(X,Zi) = αi(X), for i = 1, 2. The metric contact pair is said to be normal [7] if the two almost
complex structures of opposite orientations J = φ−α2⊗Z1+α1⊗Z2 and T = φ+α2⊗Z1−α1⊗Z2 are integrable.
A quite important notion is the one of decomposability of φ, which means that the tangent spaces of the leaves of the
characteristic foliations of the pair are preserved by φ. The decomposability of φ is equivalent to the orthogonality of the
two characteristic foliations and implies that the their leaves are φ-invariant submanifolds and moreover minimal [8].

In this paper, after giving some characterizations of normal metric contact pairs with decomposable φ, we address
the problem of the minimality of the invariant submanifolds. Observe that on a metric contact pair manifold we have
several notions of invariant submanifold: with respect to φ, to J or to T . We first give some general results concerning
the invariant submanifolds of a metric contact pair manifold with decomposable φ, then we specialize to the normal case
and we prove the following:

Theorem 3. Let (M,α1, α2, φ, g) be a normal metric contact pair manifold with decomposable φ and Reeb vector
fields Z1 and Z2. If N is a φ-invariant submanifold of M such that Z1 is tangent and Z2 orthogonal to N , then N is
minimal. Moreover ifN is connected, then it is a Sasakian submanifold of one of the Sasakian leaves of the characteristic
foliation of α2.

Theorem 4. Let (M,α1, α2, φ, g) be a normal metric contact pair manifold with decomposable φ and Reeb vector
fields Z1 and Z2. Let N be a φ-invariant submanifold of M nowhere tangent and nowhere orthogonal to Z1 and Z2.
Then N is minimal if and only if the angle between ZT1 (ZT1 being the tangential component of Z1 along N ) and Z1 (or
equivalently Z2) is constant along the integral curves of ZT1 .

Theorem 5. Let (M,α1, α2, φ, g) be a metric contact pair manifold with decomposable φ and Reeb vector fields
Z1 and Z2. Suppose that the almost complex structure J = φ − α2 ⊗ Z1 + α1 ⊗ Z2 is integrable. Then a J-invariant
submanifold N of M is minimal if and only if it is tangent to the Reeb distribution.

The last result, applied to the case of a normal metric contact pair, gives the desired generalization of the result of
Vaisman to normal metric contact pairs of type (h, k). Nevertheless it should be remarked that the full generalization
of the original Vaisman result concerning the Vaisman manifolds is not true. In fact we give an example where the
submanifold is both J and T -invariant, then tangent to the Reeb distribution, and therefore minimal, but it does not
inherit the contact pair structure of the ambient manifold.

In what follows we denote by Γ (B) the space of sections of a vector bundle B. For a given foliation F on a
manifold M , we denote by TF the subbundle of TM whose fibers are given by the distribution tangent to the leaves.
All the differential objects considered are assumed to be smooth.

2 Preliminaries

A contact pair (or bicontact structure) [2,5,11] of type (h, k) on a manifold M is a pair (α1, α2) of 1-forms such that:

α1 ∧ (dα1)
h ∧ α2 ∧ (dα2)

k is a volume form,

(dα1)
h+1 = 0 and (dα2)

k+1 = 0.

The Élie Cartan characteristic classes of α1 and α2 are constant and equal to 2h+ 1 and 2k + 1 respectively. The
distribution Kerα1 ∩ Ker dα1 (respectively Kerα2 ∩ Ker dα2) is completely integrable [2,5] and then it determines
the characteristic foliation F1 of α1 (respectively F2 of α2) whose leaves are endowed with a contact form induced by
α2 (respectively α1). The equations

α1(Z1) = α2(Z2) = 1, α1(Z2) = α2(Z1) = 0 ,

iZ1
dα1 = iZ1

dα2 = iZ2
dα1 = iZ2

dα2 = 0 ,

where iX is the contraction with the vector field X, determine uniquely the two vector fields Z1 and Z2, called Reeb
vector fields. Since they commute [2,5], they give rise to a locally free R2-action, an integrable distribution called Reeb
distribution, and then a foliation R of M by surfaces. The tangent bundle of M can be split as:

TM = TF1 ⊕ TF2 = H1 ⊕H2 ⊕ V,

where TFi is the subbundle determined by the characteristic foliation Fi, Hi the subbundle whose fibers are given by
ker dαi ∩ kerα1 ∩ kerα2, V = RZ1 ⊕ RZ2 and RZ1,RZ2 the line bundles determined by the Reeb vector fields.
Moreover we have TF1 = H1 ⊕ RZ2 and TF2 = H2 ⊕ RZ1. The fibers of the subbundle H1 ⊕ H2 are given by the
distribution kerα1 ∩ kerα2.

Definition 1 We say that a vector field is vertical if it is a section of V and horizontal if it is a section of H1 ⊕H2. A
tangent vector will be said vertical if it lies in V and horizontal if it lies in H1 ⊕H2. The subbundles V and H1 ⊕H2

will be called vertical and horizontal respectively.
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The two distributions ker dα1 and ker dα2 are also completely integrable and give rise to the characteristic foli-
ations Gi of dαi respectively. We have TGi = Hi ⊕ V, for i = 1, 2. The contact pair on M induces on each leaf
of G1 (respectively of G2) a contact pair of type (0, k) (respectively (h, 0)). Each of them is foliated by leaves of F1

(respectively of F2) and also by leaves of R.
A contact pair structure [6] on a manifold M is a triple (α1, α2, φ), where (α1, α2) is a contact pair and φ a tensor

field of type (1, 1) such that:

φ2 = −Id+ α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0,

where Z1 and Z2 are the Reeb vector fields of (α1, α2).
One can see that αi ◦ φ = 0, for i = 1, 2 and that the rank of φ is equal to dimM − 2. The endomorphism φ is said

to be decomposable if φ(TFi) ⊂ TFi, for i = 1, 2.
In [7] we defined the notion of normality for a contact pair structure as the integrability of the two natural almost

complex structures of opposite orientations J = φ− α2 ⊗Z1 + α1 ⊗Z2 and T = φ+ α2 ⊗Z1 − α1 ⊗Z2 on M . This
is equivalent to the vanishing of the tensor field

N1(X,Y ) = [φ, φ](X,Y ) + 2dα1(X,Y )Z1 + 2dα2(X,Y )Z2 ,

where [φ, φ] is the Nijenhuis tensor of φ.
A compatible metric [6] with respect to a contact pair structure (α1, α2, φ) on a manifoldM , with Reeb vector fields

Z1 and Z2 is a Riemannian metric g on M such that g(φX, φY ) = g(X,Y ) − α1(X)α1(Y ) − α2(X)α2(Y ) for all
X,Y ∈ Γ (TM). A Riemannian metric g is said to be an associated metric [6] if g(X,φY ) = (dα1 + dα2)(X,Y ) and
g(X,Zi) = αi(X), for i = 1, 2 and for all X,Y ∈ Γ (TM).

It is clear that an associated metric is compatible, but the converse is not true. However a compatible metric always
satisfies the second equation g(X,Zi) = αi(X), for i = 1, 2, and then the subbundlesH1⊕H2, RZ1, RZ2 are pairwise
orthogonal.

A metric contact pair (MCP) on a manifoldM is a 4-tuple (α1, α2, φ, g) where (α1, α2, φ) is a contact pair structure
and g an associated metric with respect to it. The manifold M will be called an MCP manifold or an MCP for short.

For an MCP (α1, α2, φ, g) the endomorphism field φ is decomposable if and only if the characteristic foliations F1,
F2 are orthogonal [6]. In this case (αi, φ, g) induces a metric contact structure on the leaves of Fj , for j 6= i. Also, the
MCP induces MCP’s on the leaves of Gi.

It has been shown in [9] that a normal MCP structure of type (h, 0) is nothing but a non-Kähler Vaisman structure
on the manifold.

If the MCP on M is normal with decomposable endomorphism, then the leaves of Fi are Sasakian. Also, those of Gi
are non-Kähler Vaisman manifolds foliated by leaves of Fi (which are Sasakian) and by leaves ofR (which are complex
curves).

Interesting examples and properties of such structures were given in [3–8].

Example 1 If (M1, α1, φ1, g1) and (M2, α2, φ2, g2) are two Sasakian manifolds, then the structure (α1, α2, φ, g) with
φ = φ1 ⊕ φ2 and g = g1 ⊕ g2 is a normal MCP on the product M1 ×M2 with decomposable endomorphism. So we
have such a structure on R2h+2k+2 using the standard Sasakian structures on R2h+1 and R2k+1 given by

α1 = 1
2 (dz −

∑h
i=1 yidxi), g1 = α1 ⊗ α1 +

1
4

∑h
i=1((dxi)

2 + (dyi)
2)

α2 = 1
2 (dz

′ −
∑k
j=1 y

′
jdx

′
j), g2 = α2 ⊗ α2 +

1
4

∑k
j=1((dx

′
j)

2 + (dy′j)
2).

The Reeb vector fields are Z1 = 2 ∂
∂z and Z2 = 2 ∂

∂z′ . The endomorphism φ sends the vector fields Xi = ∂
∂yi

to
Xh+i =

∂
∂xi

+ yi
∂
∂z and X ′

j =
∂
∂y′j

to X ′
k+j =

∂
∂x′

j
+ y′j

∂
∂z′ .

Remark 1 As already explained in [7, Section 3.4], normal MCP manifolds were already studied in [11] under the name
of bicontact Hermitian manifolds and can be regarded as a generalization of the Calabi-Eckmann manifolds. An MCP
is a special case of a metric f -structure with complemented frames in the sense of Yano [16]. The normality condition
for such structures is well known and is in fact the same condition we have asked for an MCP to be normal. What is
completely new in our context is the fact that the normality condition is equivalent to the integrability of the two almost
complex structures J and T defined above. Even in the special case of the Vaisman manifolds this was not known as it
was observed in [9] (see the short discussion before Proposition 2.10) where it was used for classification purposes. It
should also be observed that P-manifolds introduced in [14] by Vaisman are MCP manifolds of type (h, 0) with Killing
Reeb vector fields.
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3 Normal metric contact pairs

We are now interested on metric contact pairs which are at the same time normal. The following proposition is an
immediate corollary of [4, Corollary 3.2 and Theorem 3.4].

Proposition 1 Let (α1, α2, φ, g) be a normal MCP on a manifold, with decomposable φ, Reeb vector fields Z1, Z2, and
Z = Z1 + Z2. Let ∇ be the Levi-Civita connection of the associated metric g. Then we have

g((∇Xφ)Y,W ) =
2∑
i=1

[dαi(φY,X)αi(W )− dαi(φW,X)αi(Y )] ; (1)

∇XZ = −φX. (2)

Now we want to characterize the normal MCP manifolds between the MCP’s as Sasakian manifolds are between the
almost contact manifolds.

Theorem 1 Let (α1, α2, φ, g) be a contact pair structure on a manifold M with compatible metric g, decomposable φ
and Reeb vector fields Z1, Z2. Then (α1, α2, φ, g) is a normal MCP if and only if, for all X,Y ∈ Γ (TM),

(∇Xφ)Y =
2∑
i=1

[g(Xi, Yi)Zi − αi(Yi)Xi] , (3)

where Xi and Yi , i = 1, 2, are the orthogonal projections of X and Y respectively on the foliation Fj , with j 6= i.

Proof Suppose that (α1, α2, φ, g) is a normal MCP. By (1), for all W ∈ Γ (TM) we have:

g ((∇Xφ)Y,W ) =g((∇X1
φ)Y,W ) + g((∇X2

φ)Y,W )

=
2∑
i=1

[dαi(φY,Xi)αi(W )− dαi(φW,Xi)αi(Y )]

=
2∑
i=1

[(dα1 + dα2)(φYi, Xi)αi(W )− (dα1 + dα2)(φW,Xi)αi(Yi)]

=
2∑
i=1

[g(Xi, Yi)g(W,Zi)− αi(Yi)g(W,Xi)]

=g(W,
2∑
i=1

[g(Xi, Yi)Zi − αi(Yi)Xi]) ,

which is equivalent to (3).
Conversely, suppose that (3) is true. Putting Y = Zj in (3), we obtain

−φ∇XZ = (∇Xφ)Z = α1(X)Z1 + α2(X)Z2 −X = φ2X ,

where Z = Z1 + Z2. This gives ∇XZ = −φX since ∇XZ is horizontal (see [4, Lemma 3.5]). Then we have:

dα1(X,Y ) + dα2(X,Y ) =
1

2

2∑
i=1

[Xαi(Y )− Y αi(X)− αi([X,Y ])]

=
1

2

2∑
i=1

[Xg(Zi, Y )− Y g(Zi, X)− g(Zi,∇XY −∇YX)]

=
1

2
[g(∇XZ, Y )− g(∇Y Z,X)]

=
1

2
[g(−φX, Y ) + g(φY,X)]

= g(X,φY ),

which means that the compatible metric g is even associated.
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To prove the vanishing of the tensor field N1, let us compute [φ, φ]. Taking X ∈ Γ (TF1) and Y ∈ Γ (TF2) in (3),
we obtain 0 = (∇Xφ)Y = ∇X(φY )− φ∇XY , which implies ∇X(φY ) = φ∇XY . Then we obtain

[φ, φ](X,Y ) =φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ] + [φX, φY ]

=φ2(∇XY −∇YX)− φ(∇φXY − φ∇YX)

− φ(φ∇XY −∇φYX) + φ∇φXY − φ∇φYX
=0

and N1(X,Y ) = [φ, φ](X,Y ) = 0. Now by (3) with X,Y ∈ Γ (TF1), we have (∇Xφ)Y = g(X,Y )Z2 − α2(Y )X .

Then we get

[φ, φ](X,Y ) =φ2(∇XY −∇YX)− φ(∇φXY − φ∇YX − (∇Y φ)X)

− φ(φ∇XY + (∇Xφ)Y −∇φYX) + φ∇φXY − φ∇φYX
=g(φX, Y )Z2 − g(X,φY )Z2

=− 2dα2(X,Y )Z2 .

Hence N1(X,Y ) = [φ, φ](X,Y ) + 2dα2(X,Y )Z2 = 0. In the same way we obtain N1(X,Y ) = [φ, φ](X,Y ) +
2dα1(X,Y )Z1 = 0 for all X,Y ∈ Γ (TF2). This shows the normality and completes the proof. ut

Theorem 2 Let (M,α1, α2, φ, g) be an MCP manifold with decomposable φ, Z1, Z2 the Reeb vector fields and Z =
Z1 + Z2. Let R be the curvature operator of g. Then the MCP (α1, α2, φ, g) is normal if and only if

RXY Z =
2∑
i=1

[αi(Yi)Xi − αi(Xi)Yi]. (4)

Proof Suppose that the MCP is normal. By (2) and (3), for all X,Y ∈ Γ (TM), we have

RXY Z = −∇X(φY ) +∇Y (φX) + φ[X,Y ]

= −
(
∇Xφ

)
Y +

(
∇Y φ

)
X

=
2∑
i=1

[αi(Yi)Xi − αi(Xi)Yi].

Conversely suppose that (4) is true. Then for Y horizontal we have:

RZY Z = −Y1 − Y2 = −Y.

Using this in the following equation
1

2

(
RZX Z − φ(RZφX Z)

)
= φ2X + h2X ,

which holds for MCP manifolds (see [4, Proposition 4.1]), where h = 1
2LZφ and LZ is the Lie derivative along Z, we

get
1

2
(−Y − φ(−φY )) = φ2Y + h2 Y

which implies h = 0. In particular from the equation ∇XZ = −φX − φhX (see [4, Theorem 3.4]), we have ∇XZ =
−φX . Since h = 0, the vector field Z is Killing [4,6], then it is affine and we have:

RZX Y = −∇X∇Y Z +∇∇XY Z = ∇XφY − φ∇XY = (∇Xφ)Y.

Then for every X,Y,W ∈ Γ (TM), recalling that for an MCP with decomposable φ the characteristic foliations are
orthogonal, we obtain:

g((∇Xφ)Y,W ) = g(RZX Y,W ) = g(RYW Z,X) = g(
2∑
i=1

[αi(Wi)Yi − αi(Yi)Wi], X)

=
2∑
i=1

[g(αi(W )Yi, Xi)− g(W,αi(Yi)Xi)]

=
2∑
i=1

[g(W,Zi)g(Yi, Xi)− g(W,αi(Yi)Xi)]

= g(W,
2∑
i=1

[g(Yi, Xi)Zi − αi(Yi)Xi]),
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which implies that (∇Xφ)Y =
∑2
i=1[g(Xi, Yi)Zi − αi(Yi)Xi] and then the pair is normal by Theorem 1. ut

4 φ-invariant submanifolds

In this section we study the φ-invariant submanifolds of MCP manifolds. We first give some general results, then we
specialize to several cases concerning the submanifold position relative to the Reeb distribution.

Let (α1, α2, φ) be a contact pair structure of type (h, k) on a manifold M .

Definition 2 A submanifold N of M is said to be invariant with respect to φ (or φ-invariant) if its tangent space at every
point is preserved by φ, that is if φpTpN ⊂ TpN for all p ∈ N .

In the same way one can define J-invariant submanifolds and T -invariant submanifolds for the two almost complex
structures defined in Section 2.

The simplest examples of φ-invariant surfaces are given by the leaves of the foliation R tangent to the Reeb dis-
tribution. When we suppose the endomorphism field φ decomposable, by definition the leaves of the two characteristic
foliations Fi of the 1-forms αi are φ-invariant. The same is true for the leaves of the two characteristic foliations Gi of
the 2-forms dαi.

Observe that in the second case only one of the two Reeb vector fields is tangent to the submanifolds. In the first and
third cases both the Reeb vector fields are tangent and such submanifolds are invariant with respect to J and T .

Despite to the case of a metric contact manifold, where the Reeb vector field is always tangent to a φ-invariant
submanifold, in our case the situation can be quite different as we have just seen. We will show several nontrivial
examples in the sequel.

In what follows (M,α1, α2, φ, g) will be a given MCP manifold with Reeb vector fields Z1, Z2 and N a φ-invariant
submanifold of M . We will denote by ZTi (respectively Z⊥

i ) the tangential (respectively normal) component of the two
vector fields Z1 and Z2 along N .

Proposition 2 Along the φ-invariant submanifold N the tangent vector fields ZT1 , ZT2 and the normal vector fields Z⊥
1 ,

Z⊥
2 are vertical.

Proof For every X ∈ Γ (TN) we have g(φZ⊥
i , X) = −g(Z⊥

i , φX) = 0 because φX ∈ Γ (TN). Then the vector fields
φZ⊥

i are also orthogonal to N . As 0 = (φZi)|N = φZTi + φZ⊥
i , we get φZTi = φZ⊥

i = 0 because one is tangent and
the other is orthogonal to N . We conclude by recalling that the distribution kerφ is spanned by Z1 and Z2. ut

Proposition 3 There is no point p of the φ-invariant submanifold N such that the tangent vectors (Z1)p and (Z2)p are
both orthogonal to the tangent space TpN .

Proof If at a point p ∈ N the two vectors (Zi)p (for i = 1, 2) are orthogonal to the tangent space TpN , we have
(Z⊥
i )p = (Zi)p and they are linearly independent. Take an open neighborhood U of p in M such that on U ∩N the two

vector fields Z⊥
1 , Z⊥

2 still remain linearly independent. By Proposition 2 they span RZ1 ⊕ RZ2 along U , and then the
Reeb vector fields Z1, Z2 are both orthogonal to TqN at each point q ∈ U ∩N .

Let X be a vector field defined on U , tangent to N and such that Xp 6= 0. Then φX and [X,φX] are also tangent to
N . Since for every point q ∈ U ∩ N the tangent space TqN is in the kernels of α1 and α2 (because it is orthogonal to
(Zi)q), along N we have

0 = (α1 + α2) ([X,φX]) = −2 (dα1 + dα2) (X,φX) = 2g(X,X)

contradicting the fact that Xp 6= 0. ut

4.1 The case N tangent to only one Reeb vector field

Proposition 4 If the φ-invariant submanifold N is tangent to one of the two Reeb vector fields, say Z1, and transverse
to the other one Z2 , then N is everywhere orthogonal to Z2 . Moreover the dimension of N is odd.

Such submanifolds were called semi-invariant by Blair, Ludden and Yano [11] in the context of Hermitian manifolds.
The semi-invariance is understood with respect to the almost complex structure J = φ− α2 ⊗ Z1 + α1 ⊗ Z2.

Proof Since Z1 is tangent to N , we have ZT1 = (Z1)|N 6= 0. Now 0 = g (Z1, Z2)|N = g(ZT1 , Z
T
2 ) which implies

ZT2 = 0. Indeed if at a point p ∈ N , ZT2 6= 0, the two vectors (ZTi )p would be linearly independent. By Proposition
2, they will span the tangent subspace R(Z1)p ⊕ R(Z2)p, and then Z2 will be tangent to N at p, but Z2 is supposed to
be transverse to N. Now it is clear that φ is almost complex on the orthogonal complement of RZ1 in TN . Hence the
dimension of N is odd. ut
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The following result is a restatement of [11, Propositions 4.2 and 4.3]:

Proposition 5 ([11]) If the φ-invariant submanifold N is tangent to the vector field Z1 and orthogonal to Z2, then
(α1, φ, g) induces a metric contact structure on N . If in addition the MCP on M is normal then N is Sasakian.

Proof Let α̃1 and α̃2 denote the forms induced on N by α1 and α2. To prove that α̃1 is a contact form, one has
just to show that ˜dα1 is symplectic on ker α̃1. First observe that since Z2 is orthogonal to N we have α̃2 = 0, then
dα̃1 = dα̃1 + dα̃2. Now, for p ∈ N , let X ∈ TpN such that α̃1(X) = 0 and dα̃1(X,Y ) = 0 for every Y ∈ TpN .
Then (dα̃1 + dα̃2)(X,Y ) = 0 and we get g(X,φY ) = 0. As we also have 0 = α1(X) = g(X,Z1), one can say that
g(X, ·) = 0 on N and then X = 0. Hence α̃1 is contact on N . The normality of the induced structure on N follows
from the vanishing of the tensor N1 and the fact that dα̃2 = 0 on N . ut

4.2 The case N nowhere orthogonal and nowhere tangent to Z1 and Z2

Proposition 6 If the φ-invariant submanifold N is nowhere orthogonal and nowhere tangent to Z1 and Z2, then it has
odd dimension. Moreover its tangent bundle TN intersects the vertical subbundle V along a line bundle spanned by the
vector field ZT1 (or equivalently by ZT2 ).

Proof In this case, by Proposition 2 we have necessarily that ZT1 and ZT2 are vertical, linearly dependent and nonzero.
The same holds for Z⊥

1 and Z⊥
2 . So ZT1 spans the intersection of TN with the vertical subbundle V . Now every vector

field tangent to N and orthogonal to ZT1 is necessary orthogonal to the Reeb distribution. By the φ-invariance of TN , φ
is almost complex on the orthogonal complement of RZT1 in TN and then N has odd dimension. ut

Example 2 As a manifold consider the product H6 = H3 × H3 where H3 is the 3-dimensional Heisenberg group.
Let {α1, α2, α3} (respectively {β1, β2, β3}) be a basis of the cotangent space at the identity for the first (respectively
second) factor H3 satisfying

dα3 = α1 ∧ α2 , dα1 = dα2 = 0,

dβ3 = β1 ∧ β2 , dβ1 = dβ2 = 0.

The pair (α3, β3) determines a contact pair of type (1, 1) on H6 with Reeb vector fields (X3, Y3), the Xi’s (respectively
the Yi’s) being dual to the αi’s (respectively the βi’s). The left invariant metric

g = α2
3 + β2

3 +
1

2
(α2

1 + β2
1 + α2

2 + β2
2)

is associated to the pair with decomposable tensor structure φ given by φ(X2) = X1 and φ(Y2) = Y1. The MCP
manifold (H6, α3, β3, φ, g) is normal because it is the product of two Sasakian manifolds. Let h3 denotes the Lie
algebra of H3. The three vectors Z = X3 + Y3, X1 + Y1 and X2 + Y2 span a φ-invariant subalgebra of the Lie algebra
h3 ⊕ h3 of H6 which determines a foliation in H6. Each leaf is φ-invariant, nowhere tangent and nowhere orthogonal
to the Reeb vector fields.

4.3 The case N tangent to the Reeb distribution

Proposition 7 If the φ-invariant submanifold N is tangent to both Z1 and Z2, then it has even dimension.

Proof If the Reeb distribution is tangent to N then on its orthogonal complement in TN the endomorphism φ is almost
complex and this completes the proof. ut

Example 3 Take the same MCP onH6 = H3×H3 as in Example 2. The four vectorsX3, Y3,X1+Y1 andX2+Y2 span
a φ-invariant Lie subalgebra n4 of h3 ⊕ h3 which determines a foliation on H6. Each leaf of this foliation is φ-invariant
and tangent to the Reeb distribution.

Remark 2 When the φ-invariant submanifold N is tangent to both the Reeb vector fields Z1 and Z2, the contact pair
(α1, α2) onM does not induce necessarily a contact pair onN . Indeed from Example 3, take any leaf L4 of the foliation
determined by the subalgebra n4. Then L4 is a φ-invariant submanifolds of the MCP manifold H6. However the contact
pair (α3, β3) induces a pair of 1-forms on the 4-dimensional manifold L4 whose Élie Cartan classes are both equal to
3. Then the induced pair on L4 is not a contact one.
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From this construction one can also have a most interesting example where, in addition, the submanifold is closed
without being a contact pair submanifold.

Example 4 Consider once again the normal MCP on the nilpotent Lie group H6 = H3 × H3 defined in Example 2,
and the foliation on H6 defined by the Lie algebra n4 described in Example 3. Let Le be the leaf passing through the
identity element of the Lie group H6. One can see that the Lie subgroup Le is isomorphic to H3 × R. In fact by using
the change of basis of its Lie algebra n4, Ui = Xi+Yi for i = 1, 2, 3 and U4 = X3, we get [U1, U2] = U3 and the other
brackets are zero. Since the structure constants of the nipotent Lie algebra n4 are rational, there exist cocompact lattices
Γ of Le. For example, since H3 can be considered as the group of the real matrices

γ(x, y, z) =

1 y z
0 1 x
0 0 1

 ,

take Γ ' Γr × Z where Z acts on the factor R and Γr = {γ(x, y, z)|x ∈ Z, y ∈ rZ, z ∈ Z}, with r a positive integer,
acts on the first factor H3 by left multiplication (see e.g. [13]). Because Le is a subgoup of H6, it is a lattice of H6

too. Now the closed nilmanifold N4 = Le/Γ is a submanifold of the nilmanifold M6 = H6/Γ . Since the MCP on
H6 is left invariant, it descends to the quotient M6 as a normal MCP (α̃3, β̃3, φ̃, g̃) of type (1, 1) with decomposable
endomorphism φ̃. Moreover the closed submanifold N4 is φ̃-invariant and tangent to the Reeb distribution. Note that
the contact pair (α̃3, β̃3) on M6 does not induce a contact pair on the submanifold N4, because the Élie Cartan classes
of the induced 1-forms are equal to 3 and the dimension of N4 is 4.

We know (see [7]) that a normal MCP with decomposable endomorphism is nothing but a Hermitian bicontact
manifold of bidegree (1, 1) [11]. As we will see later in Paragraph 4.4, in a normal MCP a φ-invariant submanifold
tangent to the Reeb distribution is a complex submanifold. So according to Example 4 we can state what follows:

Proposition 8 There exists a Hermitian bicontact manifold of bidegree (1, 1) carrying a closed complex submanifold
which does not inherit a bicontact structure.

Remark 3 This contradicts a statement of Abe (see [1, Theorem 2.2]). The construction of the MCP manifold M6 and
its submanifold N4 in Example 4 gives clearly a counterexample.

4.4 Relationship with T and J-invariance

Put ρ = α2 ⊗ Z1 − α1 ⊗ Z2. One can easily see that a connected submanifold of M is ρ-invariant if and only if it is
tangent or orthogonal to the Reeb distribution. The following holds:

Proposition 9 Let M ′ be a submanifold of the MCP manifold M . If M ′ is orthogonal to the Reeb distribution, then
none of the endomorphisms φ, J and T leaves M ′ invariant.

Proof Let M ′ be a submanifold of M orthogonal to the Reeb distribution. By Proposition 3, it cannot be φ-invariant.
Suppose that M ′ is invariant with respect to J or T . Since it is orthogonal to the Reeb vector fields, it is also ρ-invariant.
Now by the relations φ = J + ρ = T − ρ, we obtain that M ′ is φ-invariant, and this is not possible. ut

Proposition 10 Let M ′ be a submanifold of the MCP manifold M . Then any two of the following properties imply the
others:
(a) M ′ is φ-invariant,
(b) M ′ is J-invariant,
(c) M ′ is T -invariant,
(d) M ′ is tangent to the Reeb distribution.

Proof From the relations J = φ − ρ and T = φ + ρ, one can remark that any two of the four endomorphisms fields
{φ, J, T, ρ} are linear combinations of the remaining two. So if we replace the property (d) with “M ′ is ρ-invariant”, then
the conclusion is obvious. Suppose without loss of generality that M ′ is connected. We have seen that the property “M ′

is ρ-invariant” is equivalent to “M ′ is tangent or orthogonal to the Reeb vector fields”. But by Proposition 9, the property
“M ′ is orthogonal to the Reeb distribution” is not compatible with Properties (a) , (b) and (c), and this completes the
proof. ut

Example 5 Consider R2h+2k+2 together with the normal MCP described in Example 1 with h > 0. For any pair of
integers n1, n2 such that 0 < n1 ≤ h and 0 ≤ n2 ≤ k, the 2(n1 + n2)-dimensional distribution spanned by the vector
fields Yi = Xi +

1
2xiZ1, JYi for i = 1, . . . , n1 and (in the case n2 > 0) by Y ′

j = X ′
j +

1
2x

′
jZ2, JY ′

j for j = 1, . . . , n2
is completely integrable. On the open set {xi 6= 0, x′j 6= 0} this distribution is invariant with respect to the complex
structure J but it is not invariant with respect to φ. So it gives rise to a foliation by 2(n1 + n2)-dimensional J-invariant
submanifolds which are not φ-invariant.
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5 Minimal φ-invariant submanifolds

In Section 4, we observed that the leaves of the two characteristic foliations of an MCP with decomposable endomor-
phism φ are φ-invariant submanifolds. Moreover, in [8] we have seen that these submanifolds are minimal. In this section,
we extend this result to further φ-invariant submanifolds of normal or complex MCP manifolds (the latter terminology
meaning that just one of the two natural almost complex structure is supposed to be integrable).

Theorem 3 Let (M,α1, α2, φ, g) be a normal MCP manifold with decomposable φ and Reeb vector fields Z1 and Z2.
If N is a φ-invariant submanifold of M such that Z1 is tangent and Z2 orthogonal to N , then N is minimal. Moreover
if N is connected, then it is a Sasakian submanifold of one of the Sasakian leaves of the characteristic foliation of α2.

Proof Denote by B the second fundamental form of the submanifold N , by ∇ the Levi-Civita connection of the metric
g on M , and by ∇̃ its induced connection on N . By Proposition 5, (α1, Z1, φ, g) induces a Sasakian structure on N , say
(α̃1, Z1, φ̃, g̃). Then for every X, Y ∈ Γ (TN) we have

(
∇̃X φ̃

)
Y = g̃(X,Y )Z1 − α̃1(Y )X (see e.g. [10]). Using this

and (3) for all X, Y ∈ Γ (TN) orthogonal to Z1, we obtain

B(X,φY )− φB(X,Y ) = (∇Xφ)Y −
(
∇̃X φ̃

)
Y = g(X2, Y2)(Z2 − Z1) (5)

since X, Y are horizontal, X2 and Y2 being respectively the orthogonal projections of X and Y on TF1. But the vector
field B(X,φY ) − φB(X,Y ) must be orthogonal to N by the φ-invariance of N . Then g(X2, Y2) = 0 for every X,
Y ∈ Γ (TN) orthogonal to Z1, which gives X2 = 0. This implies that N is tangent to the characteristic distribution of
α2.

Equation (5) becomes
B(X,φY )− φB(X,Y ) = 0.

If we interchange the roles ofX and Y and take the difference, we get B(X,φY ) = B(Y, φX) which implies B(X,Y ) =
−B(φX, φY ). Now locally, take an orthonormal φ-basis of the metric contact structure on N

Z1, e1, φe1, . . . , es, φes.

We have B(Z1, Z1) = 0 since ∇Z1
Z1 = 0 (see [6]). As ej are orthogonal to Z1, we obtain:

trace(B) = B(Z1, Z1) +
s∑
j=1

(B(ej , ej) + B(φej , φej)) = 0,

which means that N is minimal. ut

Consider a φ-invariant submanifold N of an MCP which is nowhere tangent and nowhere orthogonal to the Reeb
vector fields. In Proposition 6, we have seen that at every point its tangent space intersects the Reeb distribution giving
rise to the distribution on N spanned by ZT1 (or equivalently by ZT2 ). For such a submanifold we have

Theorem 4 Let (M,α1, α2, φ, g) be a normal metric contact pair manifold with decomposable φ and Reeb vector fields
Z1 and Z2. Let N be a φ-invariant submanifold of M nowhere tangent and nowhere orthogonal to Z1 and Z2. Then N
is minimal if and only if the angle between ZT1 and Z1 (or equivalently Z2) is constant along the integral curves of ZT1 .

Proof Put ζ = 1
‖ZT

1 ‖Z
T
1 = ± 1

‖ZT
2 ‖Z

T
2 . Using (3) for all X, Y ∈ Γ (TN) orthogonal to ζ, we obtain

B(X,φY )− φB(X,Y ) = ((∇Xφ)Y )
⊥ = g(X1, Y1)Z

⊥
1 + g(X2, Y2)Z

⊥
2

since X, Y are horizontal because they are necessarily orthogonal to Z1 and Z2. The term on the right is symmetric on
(X,Y ), then we get

B(X,φY )− φB(X,Y ) = 0.

As previously this yields B(X,Y ) = −B(φX, φY ). Now take a local orthonormal basis on N in this manner

ζ, e1, φe1, . . . , es, φes.

We obtain

trace(B) = B(ζ, ζ) +
s∑
j=1

(B(ej , ej) + B(φej , φej)) = B(ζ, ζ).

In order to compute B(ζ, ζ), observe that there exists a smooth function θ onN taking nonzero values in ]−π/2, π/2[
and for which ζ = (cos θ)Z1 + (sin θ)Z2. This function is well defined on N since ζ lies in V = RZ1 ⊕ RZ2
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and g(ζ, Z1) > 0. It represents the oriented angle (Z1, ζ) in the oriented orthonormal basis (Z1, Z2) of V along N .
One can easily show that ZT1 = (cos θ)ζ, ZT2 = (sin θ)ζ and then, since Jζ = −(sin θ)Z1 + (cos θ)Z2, we have
Z⊥
1 = −(sin θ)Jζ and Z⊥

2 = (cos θ)Jζ. Hence Jζ is a nonvanishing section of the normal bundle TN⊥ of N in M .
Using the equations ∇Zi

Zj = 0, for i, j = 1, 2, concerning MCP’s [6], we obtain

∇ζζ = ζ(θ)Jζ.

This yields
trace(B) = B(ζ, ζ) = ζ(θ)Jζ

which is zero if and only if ζ(θ) = 0. ut

Example 6 For the φ-invariant submanifolds described in Example 2, the Reeb vector fields X3 and Y3 make a constant
angle with their orthogonal projection 1

2 (X3 + Y3). Hence they are minimal.

A theorem of Vaisman [15] states that on a Vaisman manifold a complex submanifold inherits the structure of
Vaisman manifold if and only if it is minimal or equivalently if and only if it is tangent to the Lee vector field (and
therefore tangent to the anti-Lee one). This result has been generalized to the lcK manifolds as follows (see [12, Theorem
12.1]): a complex submanifold of an lcK manifold is minimal if and only if it is tangent to the Lee vector field. Non-
Kähler Vaisman manifolds are special lcK manifolds. According to [9] they are, up to a constant rescaling of the metric,
exactly normal MCP manifolds of type (h, 0), the Reeb vector fields being the Lee and the anti-Lee vector field. What
follows is a generalization of the theorem of Vaisman to complex MCP manifolds of any type (h, k).

Theorem 5 Let (M,α1, α2, φ, g) be an MCP manifold with decomposable φ and Reeb vector fields Z1 and Z2. Suppose
that the almost complex structure J = φ− α2 ⊗ Z1 + α1 ⊗ Z2 is integrable. Then a J-invariant submanifold N of M
is minimal if and only if it is tangent to the Reeb distribution.

We have the same conclusion if we replace J with the almost complex structure T = φ + α2 ⊗ Z1 − α1 ⊗ Z2.
Recall that for a submanifold tangent to the Reeb distribution, we have equivalence between invariance with respect to
J , T and φ (see Proposition 10). Hence minimal J-invariant submanifolds of an MCP are necessarily φ-invariant and
T -invariant. We can restate Theorem 5 for a normal MCP as follows:

Corollary 1 Let (M,α1, α2, φ, g) be a normal MCP manifold with decomposable φ. Then a J-invariant submanifold
N of M is minimal if and only if it is T -invariant.

The J-invariant submanifolds described in Example 5 are not minimal. Of course they are not tangent to the Reeb
distribution.

We have seen that the MCP on H3 ×H3, given in Example 2, is normal because each factor is a Sasakian manifold.
The submanifolds decribed in Example 3 are tangent to the Reeb distribution and then they are minimal. The following
statement gives further interesting examples.

Corollary 2 Consider an MCP (α1, α2, φ, g) with decomposable φ on a manifold. Suppose that J (or T ) is integrable.
Then the leaves of the characteristic foliations G1 and G2 of dα1 and dα2 are minimal.

Proof (of Theorem 5) In order to compute the normal mean curvature H of the J-invariant submanifold N , one needs
the expression of the tensor field F (X,Y ) = (∇XJ)Y where∇ is the Levi-Civita connection of g. Since J is integrable,
g is Hermitian with fundamental 2-form

Φ = dα1 + dα2 − 2α1 ∧ α2.

First observe that α2 ◦ J = α1 and dαi(JX, JY ) = dαi(X,Y ). Moreover by the decomposability of φ we have
πi ◦ J = J ◦ πi where πi : TM → TGj (for j 6= i with i, j = 1, 2) denote the orthogonal projections. Next, using
this and the classical equation for a Hermitian structure 4g((∇XJ)Y,W ) = 6dΦ(X, JY, JW )− 6dΦ(X,Y,W ), after a
straightforward calculation we get:

F (X,Y ) = [−dα2(X,Y )− dα1(X, JY )]Z1 + [dα1(X,Y )− dα2(X, JY )]Z2

+ α2(Y )π1JX − α1(Y )π2JX − α1(Y )π1X − α2(Y )π2X.

Any vector v tangent to M at a point of N decomposes as v = vT + v⊥ where vT and v⊥ are tangent and orthogonal
to N respectively. The J-invariance implies that J(vT ) = (Jv)T and J(v⊥) = (Jv)⊥. Denote by B the second
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fundamental form of the submanifold N . Then B(X, JY ) = J B(X,Y ) + F (X,Y )⊥ and B(JX, JY ) + B(X,Y ) =
JF (Y,X)⊥ + F (JX, Y )⊥. Hence we obtain

B(X,X) + B(JX, JX) = −2‖π2X‖2Z⊥
1 + 2‖π1X‖2Z⊥

2

+ 2[−α1(X)π1JX − α2(X)π2JX − α2(X)π1X + α1(X)π2X]⊥

Let N ′ be the open set of N consisting of all points where ZT1 6= 0. It is also a J-invariant submanifold of M . Take an
orthonormal (local) J-basis on N ′

e1, Je1, . . . , en, Jen.

One can choose it in such a way that e1 = 1
‖ZT

1 ‖Z
T
1 and then Je1 = 1

‖ZT
1 ‖Z

T
2 . Since the el and Jel, for l = 2, . . . , n,

are orthogonal to ZT1 , ZT2 , Z⊥
1 and Z⊥

2 , they are orthogonal to Z1 and Z2 too. So they are horizontal. Now the normal
mean curvature along N ′ is H|N ′ = 1

2n trace(B) = 1
2n

∑n
l=1 (B(el, el) + B(Jel, Jel)), and becomes

H|N ′ =
1

n

(
−

n∑
l=1

‖π2el‖2Z⊥
1 +

n∑
l=1

‖π1el‖2Z⊥
2 + (π2Z

T
1 − π1ZT2 )⊥

)
. (6)

If we suppose N minimal, then H|N ′ = 0 and the scalar products with Z⊥
i yield

0 = ng(H|N ′ , Z⊥
1 ) = −‖π2ZT1 ‖2 − ‖Z⊥

1 ‖2
n∑
l=1

‖π2el‖2

0 = ng(H|N ′ , Z⊥
2 ) = ‖π1ZT2 ‖2 + ‖Z⊥

2 ‖2
n∑
l=1

‖π1el‖2.

Then we get π2ZT1 = 0 and π1ZT1 = Jπ1Z
T
2 = 0 along N ′ which means that ZTi = Zi at these points. Hence Z1

and Z2 are tangent to N ′. Now we have to prove that N = N ′. Every point p of N is in the closure of N ′ in N . For
otherwise, there exists an open neighborhood Up of p in N which does not intersect N ′, i.e. Z1 and Z2 are orthogonal to
the J-invariant (and also φ-invariant) submanifold Up. But this contradicts Proposition 3. Now since ZT1 = Z1 on N ′,
by continuity of ZT1 we have (ZT1 )p = (Z1)p and then p ∈ N ′. Hence N = N ′ so that Z1 and Z2 = JZ1 are tangent
to N .

Conversely suppose that Z1 and Z2 are tangent toN . Then ZTi = (Zi)|N which implies thatN = N ′, and replacing
in Equation 6 we get H = 0. This completes the proof. ut

Remark 4 One could hope on a full generalization of the original Vaisman result, which could be stated as follows: a J
and T -invariant submanifold of a normal MCP inherits the structure of normal MCP if and only if it is minimal. In fact
this kind of generalization is not possible, because the submanifold in Example 4 is both J and T -invariant, therefore it
is minimal, but it does not inherit the normal MCP of the ambient manifold by Proposition 8.
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Alsace, Mulhouse, 2000.
3. Bande G., Blair D. E.: Symmetry in the geometry of metric contact pairs, Math. Nachr. 286, 1701–1709 (2013)
4. Bande G., Blair D. E., Hadjar A.: On the curvature of metric contact pairs, Mediterr. J. Math. 10, 989–1009 (2013)
5. Bande G., Hadjar A.: Contact Pairs, Tohoku Math. J. 57, 247–260 (2005)
6. Bande G., Hadjar A.: Contact pair structures and associated metrics, Differential Geometry - Proceedings of the 8th International Collo-

quium, World Sci. Publ., 266–275 (2009)
7. Bande G., Hadjar A.: On normal contact pairs, Internat. J. Math. 21, 737–754 (2010)
8. Bande G., Hadjar A.: On the characteristic foliations of metric contact pairs, Harmonic maps and differential geometry, Contemp. Math.

542, Amer. Math. Soc., Providence, 255–259 (2011)
9. Bande G., Kotschick D.: Contact pairs and locally conformally symplectic structures. Harmonic maps and differential geometry, 85-98,

Contemp. Math. 542, Amer. Math. Soc., Providence, 85–98 (2011)
10. Blair D. E.: Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 2nd Ed., vol. 203, Birkhäuser (2010)
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