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Abstract Using the wave-packet approach to neutrino oscillations, we analyze quantum-memory-assisted entropic uncertainty
relations and show that uncertainty and the non-local advantage of quantum coherence are anti-correlated. Furthermore, we explore
the hierarchy among three different definitions of NAQC, those based on l1-norm, relative entropy and skew information coherence
measures, and we find that the coherence content detected by the l1-norm-based NAQC overcomes the other two. The connection
between QMA-EUR and NAQC could provide a better understanding of the physical meaning of the results so far obtained and
suggest their extension to quantum field theory.

1 Introduction

Coherence and quantum correlations play a central role in quantum information, quantum computation and cryptography [1], and
recently the extension to particle physics of these topics has attracted much attention in view of potential applications in the above-
cited fields. Different definitions and quantifications of coherence and of quantum correlations have been introduced, and it seems
that they can find a natural and clear placing inside the complete complementarity relations (CCR) approach [2–4].

During the years, many studies have been carried on quantum correlation in neutrino systems [5–16], but only recently the
attention has been placed on the study of uncertainty relation in neutrino oscillations [17, 18].

The uncertainty principle is one of the cardinal point of quantum mechanics. It provides a limit to our ability to accurately predict
the measurement outcomes for a pair of incompatible observables of a quantum system. The principle was expressed for the first time
by Heinsenberg, in 1927, for position and momentum [19] and was formulated by Kennard [20] in terms of variances. Afterward, it
was generalized to any pair of incompatible observables and with the advent of Shannon information theory, the uncertainty relations
have been expressed in terms of entropy. The first to wonder whether the uncertainty principle could be expressed in terms of entropy
was Everett [21], who found Hirschman’s support [22] and over the years many studies have addressed this topic [23–27].

Recently, advances have been made that allow a generalization of such studies to the case in which the parts of the considered system
can be correlated in a non-classical way [28, 29]. In fact, the correlation between subsystems can be used to reduce the uncertainty
below the usual limits, and the entropic uncertainty relations has been generalized to the case of quantum memory—quantum-
memory-assisted entropic uncertainty relations (QMA-EUR).

In this paper, we consider the QMA-EUR in the physical context of neutrino oscillations. Moreover, to investigate what happens
when correlations between systems are present, we consider the non-local advantage of quantum coherence (NAQC) [30], which
has been proved to be the strongest one inside the whole hierarchy of quantum correlations, overtaking even the Bell non-locality.
NAQC occurs in a bipartite system when the average coherence of the conditional state of a subsystem B, after a local measurements
on A, exceeds the coherence limit of the single subsystem. Several definitions of NAQC have been formulated, which differ in the
coherence measures adopted.

In this work, we analyze the relation between NAQC and uncertainty, using the relative entropy as coherence measure. Then,
we note that the three criteria Nα(ρAB ) > Cα corresponding to α � l1, re, sk (respectively, l1-norm, relative entropy and skew
information) may identify different regions of NAQC correlation, so NAQC is not only related to the form of the quantum state,
but also to the choice of coherence measures. The question is whether there exists a hierarchy between these three different NAQC
definitions in the case of neutrino oscillations, and assuming the value of the physical parameters of three different experiments, we
provide a positive answer.
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At last, we want to remark that uncertainty is directly related to observational aspects and in particular to variances. Therefore,
the connection with NAQC, highlighted in Ref. [17] and in this paper, could on the one hand clarify the physical meaning of the
results obtained about in neutrino oscillations [4, 14, 16]; on the other hand, relying on the approach of [31, 32] helps to extend this
result to quantum field theory in terms of variances of Hermitian operators (flavor changes), analogously to what done in Ref. [33].
The plan of the paper is as follows: in Sect. 2, we recall the notions of QMA-EUR and of NAQC and find their expression in terms of
neutrino oscillation probabilities. We also investigate the relation between the NAQC and uncertainty using a wave packet approach,
finding that the uncertainty is anti-correlated with the NAQC. In Sect. 3, we further analyze the NAQC in neutrino oscillations. It
comes out that in this context a hierarchy between the three different NAQC is present. Section 4 is devoted to conclusions and
outlook.

2 QMA-EUR and NAQC

Let us suppose Bob prepares a bipartite system ρAB , where the two parts A and B are correlated. Then, he sends part A to Alice and
keeps part B as a quantum memory. After receiving A, Alice operates on it deciding to measure one of the observables P and R and
tells to Bob her choice. Based on Alice’s measurement choice, Bob is able to guess her outcomes with minimal deviation limited
by the uncertainty’s lower bound by means of the part B which is correlated with A.

The quantum memory can reduce the uncertainty, and the usual EUR, H (P) + H (R) ≥ − log2 c, expressed in terms of Shannon
entropy [29], is modified, in terms of von-Neumann entropy, as:

S(P|B) + S(R|B) ≥ − log2 c(P|R) + S(A|B). (1)

The quantities in Eq. (1) are the following:

• S(A|B) � S(ρAB ) − S(ρB ) is the conditional von Neumann entropy of systemic state ρAB with S(ρAB ) � −tr (ρAB log2 ρAB ),
ρB � trA(ρAB )

• S(X |B) � S(ρXB ) − S(ρB) is the conditional von Neumann entropy of ρXB � ∑
i (|ψ X

i 〉A〈ψ X
i |IB)ρAB (|ψ X

i 〉A〈ψ X
i |IB) (that is

the state of B after performing a measurement on A of the observable X with eigenstates |ψ X
i 〉),

• c(P|R) � max j,k |〈ψ P
j |φR

k 〉|2 represents the maximal overlap between the eigenstates |ψ P
j 〉 and |φR

k 〉 of the observables P and R.

Since the correlations reduce uncertainty and the NAQC represents the strongest quantifier of quantum correlations, we verify its
role within QMA-EUR. Several definitions of NAQC have been provided, based on different coherence measures. Given a state ρ

in the reference basis {|i〉}, a measure of coherence takes the form:

CD(ρ) � min
δ∈I D(ρ, δ), (2)

that is the minimum distance between ρ and the set of incoherent states I . D(ρ, δ) is a distance measure between two quantum
states. For example, one can consider D(ρ, δ) � ||ρ − δ||l1 , with ||.||l1 is the l1-norm or D(ρ, δ) � S(ρ||δ), the quantum relative
entropy. By minimizing over the set of incoherent states, one can obtain two bona fide measures of coherence [34] as:

Cl1 (ρ) �
∑

i �� j

|〈i |ρ| j〉|, Cre(ρ) � S(ρdiag) − S(ρ), (3)

where S(ρ) is the von Neumann entropy of ρ and ρdiag is the matrix of the diagonal elements of ρ.
Another possible coherence measure we can consider is the skew information [35]:

Csk(ρ) � −1

2
Tr{[√ρ, K ]2}, (4)

where K is an Hermitian operator in a Hilbert space of dimension N.
Mondal et al. [30] defined the NAQC of a bipartite state ρAB considering the average coherence of the post-measurement state

{pB|�a
i
, ρB|�a

i
} of B after a local measurement �a

i on A:

Nα(ρAB ) � 1

2

∑

i �� j,a�±
pB|�a

i
C

σ j
α (ρB|�a

i
), (5)

where �±
i � I±σi

2 , with I and σi , (i � 1, 2, 3) being the identity and the three Pauli operators; pB|�a
i

� Tr(�a
i ρAB ), ρB|�a

i
�

TrA(�a
i ρAB )/pB|�a

i
.C

σ j
α (ρB|�a

i
) is the coherence of the conditional state of B with respect to the eigenbasis ofσ j , with α � l1, re, sk.

For a one-qubit state ρ, the sum of Cα(ρ) with respect to the three mutually unbiased bases is upper-bounded, respectively, by
Cl1 � √

6, Cre � 2.23 and Csk � 2. If Nα(ρAB ) > Cα , ρAB is said to have acquired NAQC.
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2.1 QMA-EUR and NAQC in neutrino oscillations

At time t, the state for a two-flavor neutrino of initial flavor α is:

ρα
AB (t) � |aαα(t)|2|10〉〈10| + aαβ (t)a∗

αα(t)|01〉〈10| + | aαβ (t)|2|01〉〈01| + aαα(t)a∗
αβ (t)|10〉〈01| (6)

where α, β � e, μ, τ . We choose as incompatible observables (P, R) � (σx , σy). In this case, the maximal overlap is c(P, R) � 1
2 .

Starting by Eq. (6) (see Appendix 1), we find that entropic uncertainty Uα and the uncertainty’s lower bound Uα
b are the LHS and

the RHS of Eq. (1), respectively. They can be expressed in terms of oscillation probabilities1 as:

Uα(t) �S(ρα
PB (t)) + S(ρα

RB (t)) − 2S(ρα
B (t)) � 2(Pαα(t) log2 Pαα(t) + Pαβ (t) log2 Pαβ (t) + 1) (7)

Uα
b (t) �S(ρα

AB (t)) − S(ρα
B (t)) − log2 c(P, R) � Pαα(t) log2 Pαα(t) + Pαα(t) log2 Pαβ (t) + 1 (8)

Since the QMA-EUR is expressed in terms of von Neumann entropy, we consider the entropy-based NAQC to investigate the relation
between these quantities. The expression of the entropy-based NAQC in terms of oscillation probabilities is:

N (ρα
AB )(t) � 2 − Pαα(t) log2 Pαα(t) − Pαβ (t) log2 Pαβ (t) (9)

By these equations, it is simple to obtain the result:

Uα(t) � 2Uα
b (t) � 2[3 − N (ρα

AB (t))]. (10)

Equation (10) shows how a stronger quantum correlation will lead to a reduced uncertainty.
In Fig. 1, the entropic uncertainty, the uncertainty’s lower bound and the entropy-based NAQC are plotted using the experimental

parameters from the Daya Bay [36, 37], KamLAND [38, 39] and MINOS [40, 41] experiments. These experiments studied neutrino
oscillations with the aim of producing precision measurements of the neutrino mixing angle and of the neutrino squared mass
difference. Daya-Bay and KamLAND are electron-antineutrino disappearance experiments, and their oscillation parameters are
sin2 2θ13 � 0.084 and �m2

ee � 2.42×10−3eV 2 for Daya-Bay and tan2 2θ12 � 0.47 and �m2
12 � 7.49×10−5eV 2 for KamLAND.

MINOS is a muonic neutrino disappearance experiment, and its oscillation parameters are sin2 2θ23 � 0.95 and �m2
32 � 2.32 ×

10−3eV 2. We used these parameters by replacing them in the oscillation probability formula, Eq. (30), in terms of which the NAQCs
and the QMA-EUR are expressed.

The wave packet approach confirms the results by Wang et al. [17], obtained by means a plane-wave approximation, according to
which the uncertainty is completely anti-correlated with the quantum correlations: the stronger the quantum correlation, the smaller
the uncertainty. In particular, we have shown in [14] that in the wave packet approach the asymptotic trend of the NAQC depends on
the mixing angle, with NAQC attaining its maximum value at great distances if the value of the mixing angle overcomes a threshold2.
This happens in KamLAND and MINOS experiments, and consequently we see from Fig. 1 that the entropy uncertainty and its
lower bound go to zero.

3 Hierarchy among α-based NAQCs in neutrino oscillations

In this section, we further analyze the NAQC in neutrino oscillations showing some interesting results, which arise from the
comparison among the NAQCs based on the three different coherence measures mentioned in Sect. 2.

The expression of the entropy-based NAQC in terms of oscillation probabilities is given by Eq. (9), and analogously, following
Ref. [30], we determine the expressions of the l1-norm-based NAQC and of the skew information-based NAQC:

Nl1 (ρα
AB (t)) � 2 + 2

√
Pαα(t)Pαβ (t), (11)

and

Nsk(ρα
AB (t)) � 2 + 4Pαα(t)Pαβ (t). (12)

In Fig. 2, we compare the plots of the NAQC obtained using the three different coherence measures and referring to MINOS, Daya
Bay and KamLAND experiments.

From Fig. 2, we can observe how in the case of neutrino oscillations the l1-norm-based NAQC is able to capture more quantum
resource with respect to the others. Furthermore, it represents an upper limit for the other two measures. These observations confirm
our previous results about the large distances behavior of NAQC [14] for all three cases. In Fig. 2, we also observe a different trend
of the plots relating to the KamLAND experiment compared to the other two. In fact, it can be seen from Fig. 2b that there is a
non-monotonous growth of the minima of the NAQC. In particular, notice how the second minimum is lower than the first. Indeed,

1 The expression of neutrino oscillation probability in the wave packet approach is obtained in Appendix 5
2 Note that threshold values are different if we consider NAQC based on different coherence measures.
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(c) MINOS experiment

Fig. 1 QMA-EUR (on the left panel) and NAQC (on the right panel) as a function of the distance for: a Daya Bay, bKamLAND, c MINOS. The experimental
parameters used are sin2 2θ13 � 0.084 and �m2

ee � 2.42 × 10−3eV 2 for Daya Bay, tan2 2θ12 � 0.47 and �m2
12 � 7.49 × 10−5eV 2 for KamLAND and

sin2 2θ23 � 0.95 and �m2
32 � 2.32 × 10−3eV 2 for MINOS

123



Eur. Phys. J. Plus        (2022) 137:1272 Page 5 of 9  1272 

0 5 10 15
2.

2.2

2.4

2.6

L(km)

N
A
Q
C

l1 re sk

(a) DAYA BAY experiment

0 30 60 90 120 150 180
2.

2.25

2.5

2.75

3.

L(km)

N
A
Q
C

l1 re sk

(b) KamLAND experiment

10 100 1000

2.

2.25

2.5

2.75

3.

L(km)

N
A
Q
C

l1 re sk

(c) MINOS experiment

Fig. 2 Comparison among the α-based NAQCs, (α � l1, re, sk) for Daya Bay, KamLAND and MINOS experiments

Fig. 3 Entropy-based NAQC as a
function of the distance for a
mixing angle of 20◦. The solid
and the dashed lines represent the
plot for the wave packet and plane
wave approaches, respectively
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in [16] we found, in addition to the thresholds determining different asymptotic trends of the NAQCs, a further effect of varying the
value of this angle. In an intermediate range of values of this angle, in fact, the monotonicity of NAQC is lost, and this is just the
case of KamLAND experiment. Furthermore, we evaluated the mixing angle for which the minimum of the entropy-based NAQC
coincides with the bound value 2.23, see Fig. 3. This minimum is positioned at L equal to π times the oscillation length, and the
value of the mixing angle corresponding to it turns out to be 20◦.

Figure 3 also shows a difference between the plots obtained with the plane wave and the wave packet approaches. In fact, by
using plane waves we can reach a NAQC for certain regular range of distances. This does not happen in the case of wave packets,
where above a certain distance we can always reach a NAQC.

4 Conclusions

The convergence between topics of quantum information and the physics of elementary particles, in particular of neutrino oscillations
has led in this last field to the development of a wide and systematic study of different definitions and quantifiers of coherence
and quantum correlations. In this paper, using a wave-packet approach,3 we considered the quantum-memory-assisted entropic
uncertainty relation in the physical context of neutrino oscillations, investigating the relation between the non-local advantage of
quantum coherence and uncertainty. We found that the uncertainty is anti-correlated with the NAQC, a result in accordance with
what obtained by Wang et al. [17], in the plane-wave approximation. However, the richer structure generated by the wave-packet
approach suggested that entropic uncertainty can go to zero asymptotically in the distance for sufficiently high values of the mixing
angle.

Given the several definitions of NAQC based on three different coherence measures - l1-norm, relative entropy and skew infor-
mation—we then proceeded to further analyze the hierarchy among them. In particular, the l1-norm-based NAQC resulted to be
more able to capture quantum resources with respect the other two quantities. It is obviously interesting to investigate whether this
hierarchy is confined to the instance of neutrino oscillations, or if it is true in any context. This question will be one subject of future
investigations.

Finally, we reiterate what was observed in the introduction, i.e., that the anti-correlation between QMA-EUR and NAQC could
represent a useful basis for a better understanding of the physical meaning of the various results recently obtained on NAQC in

3 The relevance of the wave packet approach has been discussed in connection with recent experiments in Refs. [42, 43].
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neutrino oscillations [4, 14, 16]. Indeed, uncertainty relations could be generally formulated in terms of variances and thus are
potentially more connected to quantities with an operational meaning, also in view of possible implementation of quantum protocols
with neutrinos. We also envisage that the extension of the present results to quantum field theory, which we plan to perform relying
on the approach of [31, 32], could be carried out in terms of variances of Hermitian operators (flavor charges), analogously to what
done in Ref. [33].
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Appendix A: QMA-EUR and NAQC in terms of neutrino oscillation probability

We consider the state for a neutrino of flavor α:

|να(t)〉 � aαα(t)|να〉 + aαβ (t)|νβ〉. (13)

The corresponding density matrix in the orthonormal basis {|00〉, |01〉, |10〉, |11〉} is given by Eq. (6):

ρα
AB (t) �

⎛

⎜
⎜
⎝

0 0 0 0
0 |aαβ (t)|2 aαβ (t)a∗

αα(t) 0
0 aαα(t)a∗

αβ (t) |aαα(t)|2 0
0 0 0 0

⎞

⎟
⎟
⎠ (14)

A.1 QMA-EUR

We rewrite Eq. (1) for this density matrix, by considering as incompatible observables P and R the Pauli matrix σx and σy . So we
have to evaluate:

S(σx |B) + S(σy |B) ≥ − log2 c(σx |σy) + S(A|B) (15)

where

S(σx |B) � S(ρσx B ) − S(ρB )

S(σy |B) � S(ρσy B ) − S(ρB )
(16)

with:

ρσx B �
∑

i�1,2

(|xi 〉〉xi |)ρAB (|xi 〉〉xi |) � 1

2

⎛

⎜
⎜
⎝

|aαα(t)|2 0 0 aαβ (t)a∗
αα(t)

0 |aαβ (t)|2 aαα(t)a∗
αβ 0

0 aαβ (t)a∗
αα(t) |aαα(t)|2 0

aαα(t)a∗
αβ 0 0 |aαβ (t)|2

⎞

⎟
⎟
⎠ (17)

ρσy B �
∑

i�1,2

(|yi 〉〉yi |)ρAB (|yi 〉〉yi |) � 1

2

⎛

⎜
⎜
⎝

−|aαα(t)|2 0 0 − aαβ (t)a∗
αα(t)

0 |aαβ (t)|2 − aαα(t)a∗
αβ 0

0 − aαβ (t)a∗
αα(t) |aαα(t)|2 0

−aαα(t)a∗
αβ 0 0 − |aαβ (t)|2

⎞

⎟
⎟
⎠ (18)

|xi 〉 and |yi 〉 are the eigenstates of σx and σy , respectively. ρB is given by the partial trace with respect to A of ρAB :

ρB �
(|aαα(t)|2 0

0 |aαβ (t)|2
)

(19)

By considering the spectral representation ρ � ∑
i λi |i〉〈i |, we can evaluate the von Neumann entropy as S(ρ) � − ∑

i λi log2 λi ,
where λi are the eigenvalues of ρ. Hence, we find S(ρσx B ) � −2 · 1

2 (|aαα(t)|2+|aαβ (t)|2) log2[ 1
2 (|aαα(t)|2+|aαβ (t)|2)]. However,

|aαα(t)|2� Pαα and |aαβ (t)|2� Pαβ are nothing more than survival and transition probability, respectively, such that Pαα + Pαβ � 1.
Thus, S(ρσx B ) � 1. We also find S(ρB ) � −Pαα log2 Pαα−Pαβ log2 Pαβ . From Eq. (16), it is clear that S(σx |B) � 1+Pαα log2 Pαα +
Pαβ log2 Pαβ . In the same way, we can evaluate S(σy |B) � S(σx |B), S(A|B) � Pαα log2 Pαα + Pαβ log2 Pαβ and c(σx , σy) � 1

2 .
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At this point, we are able to write the left-hand side and the right-hand side of Eq. (15), corresponding, respectively, to the entropic
uncertainty and to the uncertainty’s lower bound as:

Uα �2(Pαα log2 Pαα + Pαβ log2 Pαβ + 1) (20)

Uα
b �Pαα log2 Pαα + Pαα log2 Pαβ + 1 (21)

A.2 NAQC

Here we show the basic steps to write the NAQC in terms of neutrino probability.
Following [30], we decompose our density matrix, Eq. (6), as:

ρAB � 1

4
(I4 + r · œ ⊗ I2 + I2 ⊗ s · œ +

∑

i, j

ti jσi ⊗ σ j ), (22)

where r ≡ (rx , ry, rz), s ≡ (sx , sy, sz) and ti j are the correlation matrix elements. The decomposition coefficients can be found as:
ri � Tr[ρAB (σi ⊗ I2)], si � Tr[ρAB (I2 ⊗ σi )] and ti j � Tr[ρAB (σi ⊗ σ j )] , (i, j � x, y, z), where σi are the Pauli matrices. We
need these coefficients to evaluate Eq. (5), i.e.,

Nα(ρAB ) � 1

2

∑

i �� j,a�±
pB|�a

i
C

σ j
α (ρB|�a

i
), (23)

Here, pB|�a
i

� 1
2γ ja and C

σ j
α (ρB|�a

i
) has a different definition depending on the coherence measure used:

– l1-norm: C
σ j
l1

�
√∑

i �� j α2
ika

γ 2
ka

– relative entropy: C
σ j
re � ∑

p�+,− λ
p
ka

log2 λ
p
ka

− β
p
jka

log2 β
p
jka

– skew information: C
σ j
sk � (

∑
i �� j α2

ik )(1−
√

1−(2λ±
ka

−1)2)

γ 2
ka (2λ±

ka−1)2

where αi ja � si + (−1)ati j , γka � 1 + (−1)ark , λ±
ia

� 1
2 ±

√∑
j α2

j ia
2γia

and β±
i ja

� 1
2 ± αi ja

2γ ja
.

Following these instructions, it is simple to obtain the expressions given by Eqs. (9,11,12) for the NAQCs.

Appendix B: wave packet description of neutrino oscillations

We briefly review the wave packet approach to neutrino oscillations [44, 45]. Let us consider a neutrino with flavor α, (α � e, μ, τ ),
propagating along x axis:

|να〉(x, t) �
∑

j

U∗
α jψ j (x, t)|ν j 〉, (24)

where Uα j are the PMNS mixing matrix elements and ψ j (x, t) is the wave function of the mass eigenstate |ν j 〉 with mass m j . By
assuming a Gaussian distribution for the momentum of the massive neutrino ν j :

ψ j (p) � (2πσ P
p

2
)−

1
4 exp

{

− (p − p j )2

4σ P
p

2

}

(25)

where p j is the average momentum and σ P
p is the momentum uncertainty determined by the production process, we can write the

wave function as:

ψ j (x, t) � 1√
2π

∫

dpψ j (p)eipx−i E j (p)t , (26)

where E j (p) �
√
p2 + m2

j is the energy. We suppose that the Gaussian momentum distribution, Eq. (25), is strongly peaked around

p j , that is, we assume the condition σ P
p  E2

j (p j )/m j . This allows us to approximate the energy with:

E j (p) � E j + v j (p − p j ), (27)
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where E j �
√
p2
j + m2

j is the average energy and v j � ∂E j (p)
∂p

∣
∣
∣
∣p�p j � p j

E j
is the group velocity of the wave packet of the massive

neutrino ν j .
Using these approximations, we can perform an integration on p of Eq. (26), obtaining:

ψ j (x, t) � (2πσ P
x

2
)−

1
4 exp

[

−i E j t + i p j x − (x − v j t)2

4σ P
x

2

]

(28)

where σ P
x � 1

2σ P
p

is the spatial width of the wave packet.

At this point, by substituting Eq. (28) in Eq. (24) it is possible to obtain the density matrix operator byρα(x, t) � |να(x, t)〉〈να(x, t)|
which describes the neutrino oscillations in space and time. Although in laboratory experiments it is possible to measure neutrino
oscillations in time through the measurement of both the production and detection processes, due to the long-time exposure in time
of the detectors it is convenient to consider an average in time of the density matrix operator. In this way ρα(x) is the relevant density
matrix operator and it can be obtained by a Gaussian time integration.

In the case of ultra-relativistic neutrinos, it is useful to consider the following approximations: E j � E + ξP
m2

j
2E , where E is the

neutrino energy in the limit of zero mass and ξP is a dimensionless quantity that depends on the characteristics of the production

process, p j � E − (1 − ξP )
m2

j
2E and v j � 1 − m2

j

2E2
j
. Considering these approximations, ρα(x) becomes:

ρα(x) �
∑

j,k

U∗
α jUαk exp

[

−i
�m2

jk x

2E
−

(
�m2

jk x

4
√

2E2σ P
x

)
2 −

(

ξP
�m2

jk

4
√

2Eσ P
p

)
2
]

|ν j 〉〉νk |, (29)

where �m2
jk � m2

j − m2
k .

Taking into account that the detection process, described by the operator Oβ (x − L), takes place at a distance L from the origin
of the coordinates, the transition probability is given by:

Pνα→νβ (L) � Tr(ρα(x)Oβ (x − L))�
∑

j,k

U∗
α jUαkU

∗
β jUβk exp

[

−2π i
L

Losc
jk

−
(

L

Lcoh
jk

)
2 − 2π2(1 − ξ )2

(
σx

Losc
jk

)
2
]

, (30)

where Losc
jk is the oscillation length and Lcoh

jk the coherence length, defined by:

Losc
jk � 4πE

�m2
jk

, Lcoh
jk � 4

√
2E2

|�m2
jk |

σx , (31)

with σ 2
x � σ P

x
2

+ σ D
x

2
and ξ2σ 2

x � ξ2
Pσ P

x
2

+ ξ2
Dσ D

x
2
, where σ D is the uncertainty of the detection process and ξD depends from the

characteristics of the detection process.
We note that the wave packet description confirms the standard value of the oscillation length. The coherence length is the distance

beyond which the interference of the massive neutrinos ν j and νk is suppressed. The last term in the exponential of Eq. (31) implies
that the interference of the neutrinos is observable only if the localization of the production and detection processes is smaller than
the oscillation length.
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