
Circular causality in event structures

Massimo Bartoletti1, Tiziana Cimoli1, G. Michele Pinna1, and Roberto Zunino2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
2 DISI, Università di Trento and COSBI, Italy

Abstract. We propose a model of events with circular causality, in the
form of a conservative extension of Winskel’s event structures. We show
a correspondence between the configurations in our event structures, and
the proofs of a fragment of Propositional Contract Logic.

1 Introduction

Circular reasoning often appears in the compositional modelling and verification
of concurrent systems [1, 2, 6, 7]. Circularity is also a common situation when
reasoning about contracts [4]. A task may depend on others which have already
been executed (dependencies in the past), but also on behalf that some other
tasks will be performed in the future. Circularity arises when two or more tasks
mutually rely on the guarantees provided by each other (circular dependencies).

Event structures (ES) are one of the classical model for concurrency, since [8].
Notwithstanding the variety of ingredients appeared in the literature, ES are
at least equipped with a relation (usually written `) modelling causality, and
another one modeling conflicts (or consistency). Extensions to ES often use
other relations to model other kind of dependencies, e.g. or-causality [3]. ES can
provide a basic semantic model for assume/guarantee rules, by interpreting the
enabling b ` a as: “I will do a after you have done b”.

However, circularity is usually prohibited in ES, either at the syntactic level,
like in Winskel’s prime event structures, or at the semantic level, like in Boudol’s
flow event structures [5]. Indeed, the classical notion of causality among events
only captures dependencies in the past, but not of the other kind. For instance,
in the ES with enablings b ` a and a ` b, none of the events a and b is reachable,
because of the circularity of the constraints.

We propose an extension of Winskel’s event structures with a new circular
causality relation (
). The ES prescribing a
 b (intuitively, “I will do a if you
promise to do b”) together with the other prescription b
 a has a configuration
where both a and b have happened, despite of the circular dependencies. The con-
figurations of these new ES do still enjoy the finiteness and finite-completeness
properties of classical ES, thought they are not coincidence-free, which is correct
from our point of view because of the presence of circular dependencies.

Our main technical result is an encoding of ES with circular causality into a
fragment of Propositional Contract Logic PCL [4], through which we show that
the problem of deciding if a set of events is a configuration can be reduced to
provability in the logic (which is shown in [4] to be decidable).

2 Event structures with circular causality

In Def. 1 below we present our extension to Winskel’s ES [8], to which we refer for
the details about ES. We assume an irreflexive and symmetric conflict relation
on events, and for a set of events X, we define the predicate CF (X) as follows:
CF (X) , (∀e, e′ ∈ X : ¬(e#e′)).

Definition 1. An event structure with circular causality (CES) is a quadruple
E = (E,#,`,
) where: (i) E is a set of events, (ii) # ⊆ E×E is an irreflexive
and symmetric relation, called conflict relation, (iii) ` ⊆ ℘fin(E) × E is the
enabling relation, (iv)
 ⊆ ℘fin(E) × E is the circular enabling relation. The
relations ` and
 are saturated, i.e. for all X,Y ⊆fin E and for ◦ ∈ {`,
},
X ◦ e ∧ X ⊆ Y ∧ CF (Y) =⇒ Y ◦ e.

A configuration C is a “snapshot” of the behaviour of the system modeled
by an ES, where for each event e ∈ C it is possible to find a finite justification,
i.e. a sequence of events containing all the causes of e. We refine the notion
in [8] to deal with circular causality. Intuitively, for all events ei in the sequence
〈e0 . . . en〉, either ei is `-enabled by its predecessors, or it is
-enabled by the
whole sequence. Note that, differently from other event-based models, if C is a
configuration, not necessarily a subset of C is a configuration as well (see e.g., E1

in Fig. 1). This makes it difficult to reason compositionally about configurations,
and this is why the notion in Def. 2 below is a little more general than what
suggested by our intuition. In an X-configuration C, the set C can contain an
event e even in the absence of a justification of e through a standard/circular
enabling — provided that e belongs to X. This allows, given an X-configuration,
to add/remove any event and obtain an Y -configuration, possibly with Y 6= X.

Definition 2 (Configuration). Let E = (E,#,`,
) be a CES. For all C,X ⊆
E we say that C is an X-configuration of E iff CF (C) and:

∀e ∈ C. ∃e0, . . . , en ∈ C. e ∈ {e0, . . . , en} ∧
∀i ≤ n. (ei ∈ X ∨ {e0, . . . , ei−1} ` ei ∨ {e0, . . . , en}
 ei)

The set of all X-configurations of E is denoted by FE(X), or just FE when X = ∅.

Example 1. Consider the four CES in Fig. 1.

– E0 has enablings ∅ ` a, ∅
 b, and conflict a#b. By Def. 2 we have
∅, {a}, {b} ∈ FE0 , but {a, b} 6∈ FE0 .

– E1 has enablings {a} ` b and {b}
 a. Here ∅, {a, b} ∈ FE1 , {b} ∈ FE1({b})
and {a} ∈ FE1({a}), while neither {a} nor {b} belong to FE1(∅).

– E2 has enablings {a, b} ` c, {c}
 a, and {c}
 b. The only non-empty
configuration of E2 is {a, b, c}.

– E3 has enablings {a, b}
 c, {a, b}
 d, {c} ` a, and {d} ` b. We have that
{a, b, c, d} ∈ FE3 . Note that, were one (or both) of the
 turned into a `,
then the only ∅-configuration would have been the empty one.

a b

E0

a b

E1

c

b

a

E2

c

db

a

E3

Fig. 1. CES are depicted as directed hypergraphs, where nodes stand for events. An
hyperedge from a set of nodes X to node e denotes an enabling X ◦ e, where ◦ = `
if the edge has a single arrow, while ◦ =
 if the edge has a double arrow. A conflict
a#b is represented by a dotted line between a and b.

We now present some basic properties of CES. Unless stated otherwise, in
all the statements below in this section we assume a CES E = (E,#,`,
).

Property 1. For all C,C ′, X, Y ⊆ E such that CF (C ∪ C ′): (a) C ∈ F(C); (b)
X ⊆ Y =⇒ F(X) ⊆ F(Y); (c) C ∈ F(X) ∧ C ′ ∈ F(X) =⇒ C ∪ C ′ ∈ F(X).

For A ⊆ F(X), with A ↑ we indicate that there exists C ′ ∈ F(X) such that
for all C ∈ A, C ⊆ C ′. We say that A is finitely compatible, and write A ↑fin , iff
∀A0 ⊆fin A. A0 ↑.

Property 2 (Finite-completeness). A ⊆ FE(X) ∧ A ↑fin =⇒
⋃

A ∈ FE(X).

Property 3 (Finiteness). e ∈ C ∈ F(X) =⇒ ∃C0 ∈ F(X). e ∈ C0 ∧ C0 ⊆fin C.

Note that CES do not enjoy coincidence-freeness, i.e., it is not always true that:

∀C ∈ F. ∀e, e′ ∈ C.
(
e 6= e′ =⇒ (∃C ′ ∈ F. C ′ ⊆ C ∧ (e ∈ C ′ ⇐⇒ e′ 6∈ C ′)

)
A counterexample to coincidence-freeness is E1 in Fig. 1, where {a, b} ∈ FE1 ,

but there exists no configuration including only a or b. Indeed, the absence of
coincidence-freeness is a peculiar aspect of circularity: if two events are circularly
dependent, then each configuration that contains one of them must contain both.

Property 4. For all C,C ′, X, Y ⊆ E such that CF (C ∪ C ′):

1. C ∈ F(X) ∧ C ′ ∈ F(X ∪ C) =⇒ C ∪ C ′ ∈ F(X)
2. C ∈ F(X) ∧ C ′ ∈ F(X ∪ Y) ∧ C ` Y =⇒ C ∪ C ′ ∈ F(X)
3. C ∈ F(X ∪ C ′) ∧ C ′ ∈ F(X ∪ Y) ∧ C
 Y =⇒ C ∪ C ′ ∈ F(X)

3 Relation with logics

We define an encoding of (finite) CES into Propositional Contract Logic
(PCL, [4]), an extension of intuitionistic logic which allows for circular reasoning
through a “contractual implication” connective. The Hilbert-style axiomatisa-
tion of PCL extend that of IPC with the following axioms:

>� > (φ� φ)→ φ (φ′ → φ)→ (φ� ψ)→ (ψ → ψ′)→ (φ′ � ψ′)

In [4] a proof system is given which enjoys cut elimination and the subformula
property; these imply the decidability of the entailment relation `PCL.

In Def. 3 we show a translation from CES into PCL formulae. In particular,
our mapping is a bijection into the fragment of PCL which comprises atoms,
conjunctions, and non-nested (standard/contractual) implications. For an event
structure E = 〈E,#,`,
〉, we denote with !E the set of events {!e | e ∈ E},
and we assume !E disjoint from E. For each event in e ∈ E ∪ !E, we assume an
atom e in the logic. For a set X ⊆ E, we write !X for the formula

∧
e∈X !e.

Definition 3. Let E = 〈E,#,`,
〉 be a finite CES. The mapping [·] from E

into PCL formulae is defined as follows:

[(Xi ◦ ei)i] =
∧
i

[Xi ◦ ei] [a # b] = (!a ∧ !b)→ ⊥

[X ◦ e] =
(
!e ∧ X ∧ !X

)
[◦] e where [◦] =

{
→ if ◦ = `
� if ◦ =

Theorem 1. Let E be a finite CES. Then, for all C ⊆ E:

C ∈ FE(X) ⇐⇒ [E], !C, X `PCL C and [E], !C 6`PCL ⊥

Example 2. Consider the CES E2 from Fig. 1. We have that:

[E2] =
(
(!c ∧ !a ∧ !b ∧ a ∧ b)→ c

)
∧
(
(!a ∧ !c ∧ c)� a

)
∧
(
(!b ∧ !c ∧ c)� b

)
Let C = {a, b, c}. We have that C ∈ FE2 , and [E2], !C `PCL C. Note that,
were the !-ed atoms omitted in the premises of → / �, then we would have,
e.g., [E2], !a, !c `PCL a∧ c, from which by Theorem 1 we would have incorrectly
deduced that {a, c} ∈ FE2 .

Acknowledgments. Work partially supported by by Autonomous Region of Sar-
dinia under grants L.R.7/2007 CRP2-120 (TESLA) and CRP-17285 (TRICS).

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 15(1), 1993.

2. M. Abadi and G. D. Plotkin. A logical view of composition. Theoretical Computer
Science, 114(1), 1993.

3. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures, and processes. Inf. Comput., 171(1):1–49, 2001.

4. M. Bartoletti and R. Zunino. A calculus of contracting processes. In LICS, 2010.
5. G. Boudol. Flow event structures and flow nets. In Semantics of Systems of Con-

current Processes, 1990.
6. P. Maier. Compositional circular assume-guarantee rules cannot be sound and com-

plete. In FoSSaCS, 2003.
7. M. Viswanathan and R. Viswanathan. Foundations for circular compositional rea-

soning. In ICALP, 2001.
8. G. Winskel. Event structures. In Advances in Petri Nets, pages 325–392, 1986.

