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Abstract: This paper introduces a model for intraday copper futures prices based on a stochastic
differential equation (SDE). In particular, we derive an SDE that fits the model to the data and
that is based on the whitening filter approach, a method characterizing linear time-variant systems.
This method is applied to construct a model able to simulate the trajectories of copper futures
prices, statistically described by means of an empirical autocorrelation approach. We show that
the predictability of copper futures prices is rather weak. In fact, the developed model produces
trajectories close to the actual data only in the short term. Consequently, the investment risk for
copper futures is high. We also show that the performance of the model improves significantly if the
time series satisfy particular conditions, e.g., those with a determinism measure.

Keywords: stochastic differential equations; autocorrelation; dynamical systems; determinism; time
series analysis; copper; prices

1. Introduction

Financial time series modeling is an essential aspect of forecasting and risk evaluation
in financial markets. In this paper, we consider the case of copper, which, according to the
NYMEX, is the third most used metal, which makes it important to assess the nature of its
price fluctuations. Further, the likely pressure on copper prices due to its possible scarcity
is a cause for concern Gordon et al. (2006); Tilton and Lagos (2007), especially in light of its
importance for the growing network industry.

Our previous works, Mastroeni and Vellucci (2019); Mastroeni et al. (2018), showed
that a significant level of noise is usually present in the time series of copper futures
intraday prices, supporting the conclusion that logarithmic returns have both a stochastic
and deterministic nature. Hence, the use of stochastic models appears to be a natural choice.

In this paper, we develop a novel stochastic differential equation (SDE) that models the
data and is based on the whitening filter approach Wiener (1949), a method characterizing
linear time-variant systems. From a statistical point of view, we assume that the time
series of prices can be described by autocorrelation. This property is obtained by means
of statistical analyses of the historical data recorded for the futures copper closing prices
(HG1 ticker) as exchanged on the COMEX market (CMX). Starting from a model of the
empirical autocorrelation shown by the time series of prices, we introduce an SDE, which
is characterized by this autocorrelation, and fits the model to the data. To the best of our
knowledge, there have been no papers following this approach.

The purpose of the developed SDE model is to move one step further concerning the
analysis started in our previous paper Mastroeni et al. (2018). In that paper, we showed
that the time series of copper prices (the same studied in the present paper but for a shorter
interval) exhibited both stochastic and chaotic features. At the same time, the recurrence
plot of the time series revealed a pattern typical of intermittency phenomena.
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The presence of stochastic features and intermittency phenomena called for a second
step of the time series analysis started in Mastroeni et al. (2018), i.e., a new approach to
short-term modeling for copper futures prices.

Our model produced trajectories close to the real data only in the short run. This is
due, on the one hand, to the fitted model from the empirical autocorrelation and, on the
other, to the predominantly stochastic behavior of the copper price time series, which can
only be predicted in the short term Mastroeni and Vellucci (2019, 2022). To investigate the
stochastic (vs deterministic) nature of the data, we follow the intuition behind recurrence
analysis Eckmann et al. (1987); Marwan et al. (2007). In the Appendix A, we show that the
performance of the model improved significantly when the time series had an empirical
autocorrelation function close to the damped cosine model and a determinism measure
(DET), based on a recurrence plot, close to one. In the numerical section, we show that
the presence of a large stochastic component produced a poorer performance than that
obtained for time intervals with a large deterministic component.

So far, the literature does not seem to have focused on mathematical modeling of
the copper futures market, following econometric and statistical approaches instead. The
following is a brief review of the literature supporting this claim.

In Jin et al. (2021), the authors analyzed the effect of the price correlation between
domestic and foreign copper futures contracts. Guo et al. (2020) investigated the nonlinear
correlation between the spot and futures prices in China’s copper market using nonlinear
Granger causality and multifractal methods. Gong and Lin (2018) examined whether
structural breaks contained incremental information for forecasting the volatility of copper
futures. In Zheng et al. (2022), the authors conducted a comparative exploration of the
chaotic characteristics of Chinese and international copper futures prices, showing the
differences in those series through recurrence plots and correlation dimensions.

The co-movements of the dynamic correlations between copper futures and spot
prices on a scale by scale basis were analyzed in Yu et al. (2021), using grey correlation
analysis and wavelet analysis. In Galán-Gutiérrez and Martín-García (2022), Granger
causality was exploited to test whether, during the first COVID-19 wave, the evolution
of the pandemic was cointegrated with the price structure of copper futures, on the
one hand, and with incremental levels of copper stocks, on the other. The authors of
Idrovo-Aguirre and Contreras-Reyes (2021) proposed the impulse–response functions of
a vector autoregressive model to capture the dynamic between copper prices and house
building permits.

As for the development of a model that fit the same copper time series considered
in Mastroeni et al. (2018), the paper Rivero and Vellucci (2022) modeled the copper price
time series with a matching pursuit algorithm, which used a waveform dictionary with
rectangular window functions introduced in De Carli and Vellucci (2018). The novelty
of the present paper is the introduction of an SDE for the copper futures market: to the
best of our knowledge, this is the only paper in the literature that attempts to provide a
mathematical model for the copper futures market.

This paper is organized as follows. Section 2 describes the state space reconstruc-
tion by introducing a formal definition of determinism for time series. In Section 3, we
recall the whitening filter approach and prove some preliminary useful results. Section 4
contains a brief exploratory analysis of the data, whereas in Section 5, we give the main
results of the paper, constructing an SDE characterized by a damped cosine autocorrelation
function. In Section 6.2, we perform some numerical simulations on the SDE obtained in
the preceding sections for copper futures prices’ time series and, in the Appendix A, we
compare them with the results obtained from an artificial time series. Section 7 is devoted
to our conclusions.
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2. Background
2.1. State Space Reconstruction

With the state space reconstruction problem, we aim at recreating states where the
only information available is contained in a time series. In other words, we would like the
time series {x(k)}n

k=1 = {x(1), x(2), . . . , x(n)} to be approximately described by a smooth
dynamical system f on a d-dimensional manifoldM (which we assume to beM = Rd):

s(t) = f t(s(0)) (1)

where s(t) is the state at time t. For t ≥ 0, f t is the time-t map of the continuous dynamical
system, i.e., the transformation of state space which takes s(0) to s(t). For noise-free data,
the time series is related to the dynamical system by

x(t) = h(s(t)), (2)

where h :M→ R is known as the measurement function.
To analyze a time series through the formalism of dynamical systems theory, the

reconstruction of state space is necessarily the first step. There is no way to reconstruct
states in their original form because f and h are typically both unknown but, luckily, the
reconstructed state space is in some sense equivalent to the original.

The state space is reconstructed according to the delay coordinate method proposed
by Takens (1981) and Packard et al. (1980). The delay coordinate method defines the state
vector at time i as follows

x(i) =
[
x(i), x(i + τ), x(i + 2τ), . . . , x(i + (d− 1)τ)

]T , (3)

where d is the embedding dimension, and τ is an appropriate time delay. Here, T denotes
the transpose, and we adopt the convention that states are represented by column vec-
tors. Obviously, if n is the length of the time series, then i ranges in {1, 2, . . . , n− (d− 1)τ}.
For a complete characterization of τ and d see Mastroeni et al. (2018, 2019);
Mastroeni and Vellucci (2019, 2022) and references therein.

In Takens (1981), Takens studied the delay reconstruction map Φ( f ,h), introducing the
following result:

Theorem 1 (Takens 1981). For generic pairs ( f , h), where

• f :M→M is a C2-diffeomorphism ofM in itself, and
• h :M→ R is a C2-differentiable function,

the map Φ( f ,h) :M→ R2d+1 defined by

Φ( f ,h)(s) =
[

h(s), h( f τ(s)), . . . , h
(

f 2τd(s)
)]T

(4)

is an embedding ofM in R2d+1.

The important point of the theorem depends on the topological notion of “genericity”:

Definition 1. Let P be a property of functions in Ck(M,N ), which they might or might not have.
Then, we say that P( f ) is true for a generic f ∈ Ck(M,N ) if the set of functions for which it holds
is open and dense in Ck-topology.

For Theorem 1 to work, the genericity needs to be taken in the space of pairs ( f , h), but
it can be replaced guaranteeing additional requirements for f , directed towards establishing
a slightly different version of the theorem:

Theorem 2. Let f :M→M be a C2-diffeomorphism such that
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• the periodic points with period k ≤ 2d are finite in number;
• if x is any periodic point with period k ≤ 2 d, then the derivative of φk at x has all dis-

tinct eigenvalues.

Then, for a generic h ∈ C2(M,R), the map Φ(φ,y) :M→ R2d+1 defined as in Theorem 1 is
an embedding ofM in R2d+1.

Under the assumptions of Taken’s Theorem 1, an embedding is a smooth one-to-one
coordinate transformation with a smooth inverse. For a compact manifoldM, a smooth one-
to-one mapM→M whose derivative is everywhere one-to-one is a smooth embedding,
i.e., the inverse is smooth for free (the local smoothness of the inverse essentially comes
from the inverse function theorem).

If Φ is an embedding, then a smooth dynamics F is induced on the space of recon-
structed vectors:

Ft(x) = Φ ◦ f t ◦Φ−1(x), (5)

where F is equivalent to the original dynamics f . Likewise, the reconstructed states can be
used to estimate F; thus, we can use this for the purpose of the paper, as described in the
following section.

2.2. A Definition of Determinism

In this section, we formalize the notion of determinism of a time series, taking it from the
field of chaos theory. It is based on the recurrence plot, introduced by Eckmann et al. (1987)
to visualize the different times at which a trajectory visits roughly the same area of the state
space, which in turn is the result of the state space reconstruction theory, already seen in
the previous section.

Let ‖‖ be the Euclidean norm in Rd and ε be a tolerance parameter to be chosen as
recommended in Mastroeni et al. (2018, 2019); Mastroeni and Vellucci (2019, 2022) and
references therein. Let

Θ(x) :=

{
1, x > 0
0, x ≤ 0

(6)

be the Heaviside step function. Then, we have the following definition of the recur-
rence plot.

Definition 2. Let us consider the matrix

Mij = Θ(ε− ‖v(i)− v(j)‖) . (7)

The recurrence plotR is the set of all points (i, j) for which Mij = 1:

R :=
{
(i, j) ∈ R2∣∣Mij = 1

}
(8)

The matrix M is symmetric due to the symmetry of the Euclidean norm, so that the
recurrence plotR is likewise symmetric around the bisecting line of the first quadrant.

Let P(l) be the histogram of diagonal lines of length l, i.e.,

P(l) =
N

∑
i,j=1

(
1−Mi−1,j−1

)(
1−Mi+l,j+l

) l−1

∏
k=0

Mi+k,j+k .

As recalled in Marwan et al. (2007), “processes with uncorrelated or weakly correlated,
stochastic or chaotic behavior cause none or very short diagonals, whereas deterministic
processes cause longer diagonals and less single, isolated recurrence points”. This allows
us to introduce the following definition of the determinism of a system:
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Definition 3. Fix lmin > 1. Then, the percentage of recurrence points placed on diagonal structures
with respect to all recurrence points,

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

, (9)

is introduced as a measure for the determinism of the system.

(For the choice of lmin see Marwan et al. (2007)). This is the measure for determinism
of the reconstructed system and, from Equation (5), also of the smooth dynamical system f
that approximately describes the starting time series.

3. Preliminary Results: The Whitening Filter Approach

Let us recall the whitening filter approach and introduce some preliminary results that
we need to achieve the mathematical results in the subsequent sections.

One of the most commonly used methods to characterize a linear time-variant system,
that is, to specify its input–output relationship, is based on the impulse response of the
system. For example, a two-terminal pair system, with input x(t) and output y(t) is
depicted in Figure 1. The impulse response of the linear time-variant system is denoted
by h(t, τ). It is the output at time t to an input applied at time τ. Given T > 0, for a
physically realizable system, we assume that h(t, τ) is zero outside the range [0, T]. Then,
the input–output relation assumes the form:

y(t) =
∫ T

0
h(t, τ)x(τ)dτ (10)

Let us consider now a nonstationary noise n(t) that can be characterized by its autocor-
relation Rn(t, τ). The whitening filter problem consists in finding the system h(t, τ) for a
given Rn(t, τ), such that the output spectrum is Rn′(t− τ) = δ(t− τ). Let us introduce the
following Proposition.

Figure 1. Linear time-variant system, S.

Proposition 1. Let
{

φj
}

be the set of eigenfunctions of Rn(τ, τ′),

λjφj(τ) =
∫ T

0
Rn(τ, τ′)φj(τ

′)dτ′. (11)

Then, the filter given by the expansion of equation:

h(t, τ) = ∑
j

aj(t)φj(τ) where aj(t) =
∫ T

0
h(t, τ)φj(τ)dτ (12)

solves the whitening filter problem.

Proof. Given the expression of noise output

n′(t) =
∫ T

0
h(t, τ)n(τ)dτ, (13)
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we can compute its autocorrelation function as:

Rn′(t1, t2) = E
[
n′(t1)n′(t2)

]
= E

[∫ T

0
h(t1, τ)n(τ)dτ

∫ T

0
h(t2, τ′)n(τ′)dτ′

]
= E

[∫ T

0

∫ T

0
h(t1, τ)h(t2, τ′)n(τ)n(τ′)dτdτ′

]
=
∫ T

0

∫ T

0
h(t1, τ)h(t2, τ′)E

[
n(τ)n(τ′)

]
dτdτ′, (14)

and then,

Rn′(t1, t2) =
∫ T

0

∫ T

0
h(t1, τ)h(t2, τ′)Rn(τ, τ′)dτdτ′. (15)

If n(t) is real Rn(τ, τ′), it is symmetric; therefore, a standard eigenfunction approach
can be used to solve the integral Equation (15).

Let
{

φj
}

be the set of eigenfunctions of Rn(τ, τ′),

λjφj(τ) =
∫ T

0
Rn(τ, τ′)φj(τ

′)dτ′. (16)

Since the set of eigenfunctions is complete, the system functions can be expanded as

h(t, τ) = ∑
j

aj(t)φj(τ), (17)

where

aj(t) =
∫ T

0
h(t, τ)φj(τ)dτ. (18)

By using the expansion (17), Equation (15) becomes:

Rn′(t1, t2) = ∑
j

aj(t2)
∫ T

0
h(t1, τ)

[∫ T

0
Rn(τ, τ′)φj(τ

′)dτ′
]

dτ

= ∑
j

λjaj(t2)
∫ T

0
h(t1, τ)φj(τ)dτ

= ∑
j

λjaj(t1) aj(t2). (19)

If one first considers making the output noise spectrum only stationary:

Rn′(t1, t2) = R(t1 − t2), (20)

then aj(t1) is identified as
(
γj/λj

)1/2
ψj(t1), where ψj(t1) and γj are the eigenfunction and

eigenvalue associated with R(t1 − t2), respectively:

γjψj(t1) =
∫ T

0
R(t1 − t2)ψj(t2)dt2. (21)

Now, we denote by L( f (s)) = L f (s) or simply F(s) the bilateral Laplace transform of
a function f : R 7→ R.
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If a random (wide-sense stationary) process n(t) passes through a time-invariant filter
h(τ), such as the one depicted in Figure 1, then the autocorrelation function given by
Equation (15) becomes

Rn′(t) =
∫ ∞

−∞

∫ ∞

−∞
Rn(t− τ + τ′)h(τ)h(τ′)dτdτ′. (22)

For white noise input, Rn(t) = δ(t), and

Rn′(t) =
∫ ∞

−∞
h(τ − t)h(τ)dτ. (23)

The power spectrum of the output is the Laplace transform of Rn′(t):

Sn′(s) =
∫ ∞

−∞
Rn′(t)e

−stdt =
∫ ∞

−∞

∫ ∞

−∞
h(τ − t)h(τ)e−stdtdτ. (24)

By integrating first with respect to t:∫ ∞

−∞
h(τ − t)e−stdt = e−sτ

∫ ∞

−∞
h(γ)esγdγ = e−sτ H(−s), (25)

and then with respect to τ, we obtain:

Sn′(s) = H(−s)
∫ ∞

−∞
h(τ)e−sτdτ = H(−s)H(s). (26)

Let us now explain what the relation is between a pole or zero of H(s) and the
corresponding pole or zero of H(−s). The poles and zeros of H(−s) are those of H(s)
mirrored across the imaginary axis of a complex plane. Therefore, the poles and zeros
of Sn′(s) are paired across the imaginary axis. With N pole pairs and M zero pairs in
Sn′(s), we have (in principle) 2N+M different choices of whitening filter that produce Sn′(s).
However, imposing the causality/stability of the whitening filter, we have to place all the
poles in the left-hand-side complex plane. After that, we have just 2M choices. Then, to
impose a minimum phase, we place all zeros in the left-hand-side complex plane. At the
end, the filter is stable, causal, and minimum phase. Here, we refer to a strictly stable linear
system as being one with all the poles of its transfer function in the open left-hand-side
complex plane C0− = {s ∈ C : <s < 0}, and we refer to a stable linear system as being one
with poles in the closed left-hand-side complex plane.

4. Exploratory Data Analysis

The dataset employed in our analysis was the time series of intraday Generic 1st
Futures Copper closing prices (HG1 ticker) as exchanged on the COMEX market (CMX)
and retrieved from the Bloomberg website. The dataset consisted of 2864 observations and
spanned from 8 June 2021 to 8 June 2022.

We denoted the time series of intraday prices by {P(t)}n
t=1, with P(t) ∈ R+, and the

logarithmic returns by {p(t)}n−1
t=1 =

{
ln P(t+1)

P(t)

}n−1

t=1
. The overall time series is shown in

Figures 2 and 3.
The data were not equally spaced intraday prices, i.e., the number of intraday obser-

vations was not constant but varied over time. See Figure 4.
The Hurst exponent of the series p(t) was 0.53, which meant that the time series was

trending. This value was near to 0.5 (i.e., the time series was generated by a geometric
Brownian motion).
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Figure 2. Temporal behavior of intraday prices {P(t)}n
t=1.

Figure 3. Temporal behavior of logarithmic returns {p(t)}n−1
t=1 .

Figure 4. Distribution of intraday observations by day.
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Figure 5 shows the autocorrelation of the considered data set for time lags up to points
in time 10 (number of observations, recall that we have intraday prices). The red line is the
autocorrelation computed from the data, while the green line corresponds to the nonlinear
fit according to the expression

R(τ) = σ2e−α|τ| cos(ωτ) (27)

The damped cosine function was a good approximation to the autocorrelation for time
lags up to approximately 10 observations.

Figure 5. Autocorrelation of the intraday futures log returns, from 28 April 2022 to 18 May 2022.

5. Construction of the SDE-Based Model

Let us assume the logarithmic returns p(t) = ln P(t+1)
P(t) were characterized by the

damped cosine autocorrelation R(τ) = E[p(t) p(t + τ)] described by (27), whose decay
rate is governed by the coefficient α.

Since we know that the autocorrelation price process p(t) fits a function such as
(27), the problem was to derive an SDE that describes a process with this autocorrelation.
Theorem 3 answers this question:

Theorem 3. Let w(t) be the white noise. Let also p(0) = κ1, ṗ(0) = κ2, and w(0) = κ3. If
Rp(τ) = E[p(t) p(t + τ)] is the autocorrelation of log-price p(t) described by (27), then the SDE
that results from the whitening filter procedure is

p̈(t) + 2α ṗ(t) + β2 p(t) + (κ2 − κ3 + 2ακ1)δ(t) + κ1δ̇(t) = βw(t) + ẇ(t), (28)

where δ is the Dirac delta function, β =
√

ω2 + α2, and the variance of w(t) is 2ασ2.

Proof. The Wiener–Kolmogorov whitening procedure from Wiener (1949) is used on Rp(τ)

to represent the log-price p(t) = ln P(t+1)
P(t) as a function of time, driven by a white noise

input w(t). The procedure is used in the proof to decompose the Laplace transform of
Rp(τ) into the product of white noise and a system function: LR(s) = W(s)H(−s)H(s).
Here, the quantity H(s) is the transfer function of the whitening filter for the log-price p(t),
and W(s) is the transform of the white noise w(t) that drives p(t).

The Laplace transform of the autocorrelation function Rp(τ) is

LR(s) =
∫ ∞

−∞
σ2e−α|τ| cos(ωτ)e−sτdτ. (29)
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Splitting the module,

LR(s) =
∫ ∞

0
σ2 cos(ωτ)e−(α−s)τdτ +

∫ ∞

0
σ2 cos(ωτ)e−(α+s)τdτ, (30)

solving the integrals,

LR(s) = σ2
(

α− s
ω2 + (α− s)2 +

s + α

ω2 + (s + α)2

)
, (31)

and factorizing the resulting expression, we obtain

LR(s) = 2ασ2
(

β− s
s2 − 2αs + β2

)(
β + s

s2 + 2αs + β2

)
, (32)

where β =
√

ω2 + α2. Hence, we have

H(s) =
β + s

s2 + 2αs + β2 , (33)

and
W(s) = 2ασ2. (34)

Indeed, the autocorrelation function Rw(τ) of the white noise input is found by taking
the inverse Laplace transform of (34) as

Rw(τ) = 2ασ2δ(τ), (35)

where 2ασ2 is the variance of w(t).
From the definition of a transfer function, we have that H(s) = P(s)

W(s) , where P(s) is
the Laplace transform of p(t). Moreover, it is well known that for a generic function y(t),

sY(s) = L(ẏ(t)) + y(0) = L(ẏ(t) + y(0)δ(t))

s2Y(s) = L(ÿ(t)) + sy(0) + ẏ(0) = L(ÿ(t) + y(0)δ̇(t) + ẏ(0)δ(t)).

Applying these last considerations to Equation (33), and recalling that p(0) = κ1,
ṗ(0) = κ2, and w(0) = κ3, we obtain the differential Equation (28).

Remark 1. As anticipated in Section 3, it can be easily demonstrated that the whitening filter,
whose transfer function is described by Equation (33) in the proof of Theorem 3, is unique, stable,
causal, and minimum phase.

At this stage, we do not yet have the formulation of a standard SDE, i.e., a rigorously
defined equivalent implicit Ito’s integral equation. For instance,

dp(t) = a(t, p(t))dt + b(t, p(t))dB(t) ⇔

p(t) = p(0) +
∫ t

0
a(s, p(s))ds +

∫ t

0
b(s, p(s))dBs, (36)

where B denotes a Wiener process (the standard Brownian motion). Instead, the approach
followed in Theorem 3 presents us with these mathematical problems Evans (2012):

• Defining the white noise w(t) in a rigorous way;
• Showing that (28) has a solution, discussing uniqueness, asymptotic behavior, and

dependence upon α and ω.
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However, we can start from (28) with a heuristic explanation: we could think of the
white noise introduced in Theorem 3 as the “derivative” of Brownian motion. It is just
heuristic reasoning because the standard Brownian motion is nowhere differentiable with
probability one, but it is a way to start and move intuitively from (28). To formalize this
rigorously, we use the theory of generalized functions.

As we know, a generalized function is a continuous linear function on the set of
infinitely differentiable functions with bounded support, which we denote with C∞

0 or
simply D. The space of generalized functions on D is denoted by D′. We write

F[φ] : D → R. (37)

We define the generalized derivative of F[φ] to be the generalized function F′[φ],
so that

F′[φ] ≡ −F
[
φ′
]
, for all φ ∈ D. (38)

Thinking of Brownian motion as a random function, we can define a white noise w(t)
as its generalized derivative. Hence:

Lemma 1. Let B(t) ≥ 0 be a real-valued Brownian motion on a probability space (Ω,A, P). Then,

Ḃ(t) = w(t). (39)

Proof. Formally, according to Evans (2012); Lord et al. (2014), white noise w(t) is a stochas-
tic process on a probability space (Ω,A, P) with E[w(t)] = 0 and E[w(s)w(t)] = δ(s− t)
for all s, t ∈ [0, 1], where δ denotes the Dirac delta function.

We define

D(t, ∆t) :=
B(t + ∆t)− B(t)

∆t
for t ≥ 0, (40)

for some ∆t > 0. Then, D(t, ∆t) is a stochastic process on (Ω,A, P) with

E[D(t, ∆t)] = 0 for all t ≥ 0, (41)

and for all s, t ≥ 0,

η(s− t, ∆t) := Cov[D(s, ∆t), D(t, ∆t)] =


∆t− |s− t|

∆t2 , if |s− t| ≤ ∆t

0 , if |s− t| ≥ ∆t
. (42)

Let φ ∈ D. Then, we have

lim
∆t→0

∫ ∞

−∞
φ(x)η(x, ∆t) dx = lim

∆t→0

∫ ∆t

−∆t
φ(x)

∆t− |x|
∆t2 dx, (43)

i.e., replacing x 7→ ∆tx,

lim
∆t→0

∫ 1

−1
φ(∆tx)(1− |x|) dx = φ(0)

∫ 1

−1
(1− |x|) dx = φ(0). (44)

Therefore, in distribution, we can write

η(x, ∆t) ∆t→0→ δ(x) . (45)

Thus, we have that the derivative of the covariance matrix for the Brownian motion is
the same as the covariance matrix for the white noise; thus, the derivative of the Brownian
motion is the white noise.

In a similar manner, we introduce the second time derivative on a Wiener process (or
just the time derivative on a white noise):
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Lemma 2. Let B(t) ≥ 0 be a real-valued Brownian motion on a probability space (Ω,A, P). Then,
the stochastic process

B̈(t) = ẇ(t) = η(t) (46)

has the following statistics:

E[η(t)] = 0 ; E[η(t)η(s)] = − d2

dz2 δ(z)

∣∣∣∣∣
z=t−s

. (47)

Proof. Similar to the proof of Lemma 1, we define

D(t, ∆t) :=
w(t + ∆t)− w(t)

∆t
for t ≥ 0, (48)

and we take ∆t at the last step.
For the expected value of D(t, ∆t) we have that 1

∆t{E[w(t + ∆t)]−E[w(t)]} = 0. For
the covariance, we have instead

E[D(t, ∆t)D(s, ∆t)] =
1

∆t2E[(w(t + ∆t)− w(t)) (w(s + ∆t)− w(s))], (49)

i.e.,

E[D(t, ∆t)D(s, ∆t)] =
1

∆t2

{
E[w(t + ∆t)w(s + ∆t)]−E[w(t + ∆t)w(s)]+

−E[w(t)w(s + ∆t)] +E[w(t)w(s)]
}

. (50)

From the statistics of a white noise,

E[w(t)w(s)] = E[w(t + ∆t)w(s + ∆t)] = δ(t− s)

E[w(t + ∆t)w(s)] = δ(t− s + ∆t)

E[w(t)w(s + ∆t)] = δ(t− s− ∆t), (51)

we have that

E[D(t, ∆t)D(s, ∆t)] = − 1
∆t2 [δ(t− s + ∆t)− 2δ(t− s) + δ(t− s− ∆t)] (52)

= − d2

dz2 δ(z)

∣∣∣∣∣
z=t−s

(53)

as ∆t→ 0.

Corollary 1. The Ito’s integral form of Equation (28) is{
dp(t) = v(t)dt− κ1dΘ + dB(t), (p(0) = κ1, v(0) = 2κ1 − κ3)

dv(t) = −
(

β2 p(t) + 2αv(t)
)

dt− (κ2 − κ3)dΘ + (β− 2α)dB(t)
, (54)
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where Θ is the Heaviside step function with the distributional derivative Θ̇ = δ. Equation (54) has
the unique solution:

p(t) = e−αt

ω [p0(ω cos ωt + α sin ωt) + v0 sin ωt]+
+ e−αt

ω

∫ t
0 eαs(ω cos ω(t− s) + (β− α) sin ω(t− s))dB(s)+

+ e−αt

ω (−κ1(ω cos ωt + α sin ωt) + (κ3 − κ2) sin ωt)
v(t) = e−αt

ω

[
p0β2 sin ωt + v0(ω cos ωt− α sin ωt)

]
+

+ e−αt

ω

∫ t
0 eαs(ω(β− 2α) cos ω(t− s) + (β2 − αβ + 2α2) sin ω(t− s)

)
dB(s)

+ e−αt

ω

(
−κ1β2 sin ωt + (κ3 − κ2)(ω cos ωt− α sin ωt)

)
. (55)

Proof. From Lemmas 1 and 2, we can rewrite Equation (28) as

p̈(t) + 2α ṗ(t) + β2 p(t) + (κ2 − κ3 + 2ακ1)δ(t) + κ1δ̇(t) = βḂ(t) + B̈(t). (56)

To reduce the order in Equation (56), we combine the derivative terms shifting some
of them around. Hence, we obtain a first-order system with the substitution v(t) =
ṗ(t)− Ḃ(t) + κ1δ(t), i.e., v̇(t) + B̈(t)− κ1δ̇(t) = p̈. Accordingly,

v̇(t) + B̈(t)− κ1δ̇(t) + 2α
(
v(t) + Ḃ(t)− κ1δ(t)

)
+ β2 p(t)+

+ (κ2 − κ3 + 2ακ1)δ(t) + κ1δ̇(t) = βḂ(t) + B̈(t)⇒ . (57)

With simple algebra, we obtain{
ṗ(t) = v(t)− κ1δ(t) + Ḃ(t)
v̇(t) = −2αv(t)− β2 p(t)− (κ2 − κ3)δ(t) + (β− 2α)Ḃ(t)

, (58)

and thus the corresponding well-defined Ito’s integral form (54).
By passing to the vectorial form and neglecting the Heaviside terms, Equation (54) can

be rewritten as

d
[

p(t)
v(t)

]
= A

[
p(t)
v(t)

]
dt +

[
1
β− 2α

]
dB(t), (59)

where

A =

[
0 1
−β2 −2α

]
. (60)

Given any initial value (p(0), v(0)) = (p0, v0) ∈ R2, from the linearity of the SDE, we
know that Equation (59) has the unique solution Mao (2007)[

p(t)
v(t)

]
= eAt

[
p0
v0

]
+
∫ t

0
eA(t−s)

[
1
β− 2α

]
dB(s). (61)

To consider the neglected terms, let us replace the Brownian motion B(t) by the process
X(t) such that

X(t) : =
∫ t

0

[
1
β− 2α

]
dB(s) +

∫ t

0

[
−κ1
κ3 − κ2

]
dΘ(s)

=

[
1
β− 2α

]
B(t) +

[
−κ1
κ3 − κ2

]
Θ(t) + X(0) =

[
X(1)(t)
X(2)(t)

]
, (62)

whose quadratic variation is[
X(1), X(1)

]
t
= t + κ2

1Θ(t),
[

X(2), X(2)
]

t
= (β− 2α)2t + (κ3 − κ2)

2Θ(t)[
X(1), X(2)

]
t
= (β− 2α)t + κ1(κ2 − κ3)Θ(t). (63)
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Now, for a one-dimensional Brownian motion {B(t) : t ≥ 0}, we have

E
[
B(t) | F+(s)

]
= E

[
B(t)− B(s) | F+(s)

]
+ B(s) (64)

= E[B(t)− B(s)] + B(s) = B(s). (65)

Hence, a Brownian motion is a martingale with respect to the filtration (F+(t) : t ≥ 0).
Moreover, using the definition of the total variation of a real-valued function, it is possible
to show that the variation of Θ is 0 on every interval in (−∞, 0) and 1 on every larger
interval. This means that the total variation of Θ is Θ itself; hence, it is a càdlàg adapted
process of finite variation. Thus, X(t) is a semi martingale Rogers and Williams (2000).

Hence, Equation (54) can be rewritten as

d
[

p(t)
v(t)

]
= A

[
p(t)
v(t)

]
dt + dX(t). (66)

Ito’s formula gives us the solution of (66), i.e.,[
p(t)
v(t)

]
= eAt

[
p0
v0

]
+
∫ t

0
eA(t−s) dX(s). (67)

The matrix A has the property that A
[

p
v

]
=

[
v

−β2 p− 2αv

]
, so we can use it to define

sequences xn, yn as

An
[

1
0

]
=

[
xn

xn+1

]
An
[

0
1

]
=

[
yn

yn+1

]
,

where x0 = 1, x1 = 0, y0 = 0, y1 = 1, and

xn+2 = −2αxn+1 − β2xn

yn+2 = −2αyn+1 − β2yn.

The general closed formula for xn, yn, when the discriminant of the quadratic poly-
nomial ∆ is not zero, is in terms of x+, x− = −2α±

√
∆

2 . In our case, ∆ = 4α2 − 4β2 = −4ω2,
which is by definition different from 0. Thus, x+, x− = −α± iω, and

yn =
1

2ωi
(xn

+ − xn
−)

xn =
1

2ωi
(x+xn

− − x−xn
+).

So:
∞

∑
k=0

1
k!
(At)k

[
0
1

]
=

[
∑∞

k=0
yktk

k!

∑∞
k=0

yk+1tk

k!

]
=

1
2ωi

[
ex+t − ex−t

x+ex+t − x−ex−t

]
,

which is the right column of eAt. The left column is similarly calculated as:

1
2ωi

[
x+ex−t − x−ex+t

−β2(ex−t − ex+t)].

Equation (54) then has the unique solution:



Risks 2022, 10, 218 15 of 21



p(t) = e−αt

ω [p0(ω cos ωt + α sin ωt) + v0 sin ωt]+
+ e−αt

ω

∫ t
0 eαs(ω cos ω(t− s) + (β− α) sin ω(t− s))dB(s)+

+ e−αt

ω

∫ t
0 eαs(−κ1(ω cos ω(t− s) + α sin ω(t− s)) + (κ3 − κ2) sin ω(t− s))dΘ(s)

v(t) = e−αt

ω

[
p0β2 sin ωt + v0(ω cos ωt− α sin ωt)

]
+

+ e−αt

ω

∫ t
0 eαs(ω(β− 2α) cos ω(t− s) + (β2 − αβ + 2α2) sin ω(t− s)

)
dB(s)

+ e−αt

ω

∫ t
0 eαs(−κ1β2 sin ω(t− s) + (κ3 − κ2)(ω cos ω(t− s)− α sin ω(t− s))

)
dΘ(s)

. (68)

Thus, since Θ(0) = 0, we have the claim.

6. Numerical Implementation and Experiments

In this section, we demonstrate how the whitening filter approach with a damped
cosine function as an autocorrelation function was able to fit the data through examples of
simple simulations and intraday prices of copper futures.

6.1. Simulations

We generated an artificial time series that was a damped cosine function, whose
oscillations were blurred by white noise w(t). The time series was the following:

s(t) = 2 e−
t

100 cos
(

t
2

)
w(t), (69)

where w(t) ∈ [0, 1] ∀t. Figure 6 shows the autocorrelation of s(t) for time lags up to points
in time 30. The red line is the autocorrelation computed from data, while the green line
corresponds to a nonlinear fit, according to expression (27). Compared to Figure 5 for
copper prices, the damped cosine function perfectly fit the empirical autocorrelation of the
artificial data.

Figure 6. Autocorrelation of the artificial time series (69).

As shown in Figure 7, we randomly generated 250 observations from the distribution
(69), and our approximation (green), according to model (54), was able to come close to the
true values of the series up to about 60 observations. This was certainly a better result than
that observed for the copper price series. The improved results obtained on the artificial
series were due to the fact that it had an empirical autocorrelation function that perfectly fit
the damped cosine assumed by our model. Moreover, let us recall that, from Section 6.2,
the determinism coefficient seemed to be able to explain the goodness of the fit. Indeed, the
determinism of the artificial data was much higher than that of copper prices—DET = 0.88
for s(t).
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Figure 7. Price trajectories generated by the model (54) vs. the artificial data (69). On the left: the
entire temporal range. On the right: the first 25 time steps.

6.2. Intraday Copper Futures Prices

First, time-series data were segmented into consecutive equal segments by applying a
time window of width n = 250 observations. All the segments were disjoint. In particular,
we focused on the following time ranges: (i) from 8 June 2021 to 8 July 2021; (ii) from
9 July 2021 to 10 August 2021; (iii) from 21 September 2021 to 17 November 2021; (iv) from
18 November 2021 to 8 December 2021; (v) from 9 December 2021 to 12 January 2022;
(vi) from 13 January 2022 to 28 February 2022; and (vii) from 28 April 2022 to 18 May 2022.
All these ranges were characterized by an autocorrelation function, such as the one depicted
in Figure 5. In the following, we denote them by the corresponding Roman numerals.

In order to perform the simulations for the SDE model (54), we employed the R
solver deSolve. This package uses a scheme introduced by Petzold (1983) for automatically
determining whether an initial value problem, dy/dt = f (y, t), y(t0) = y0, can be solved
more efficiently using a class of methods suited for nonstiff problems or a class of methods
designed for stiff problems. We approximated a Dirac delta by a Gaussian function whose
width was controlled by a parameter σ. We chose a Gaussian function located in the origin
and with σ = 0.1. We also used a geometric Brownian motion simulation model with
2000 possible trajectories. We fixed one of these trajectories, adding it to the deterministic
part with Dirac delta term, according to the scheme (54). We repeated this procedure for all
the trajectories, selecting the one which minimized the sum of the residuals

r( p̂(t)) :=
n−1

∑
t=1

(p(t)− p̂(t))2, (70)

where n is the width of the time window, {p(t)} is the time series of logarithmic returns,
and { p̂(t)} represents the simulated prices according to Equation (54). We denote by p̂opt(t)
the simulated price series, which minimizes (70), and ropt = r( p̂opt(t)).

However, since the log returns of copper were cosine-exponentially autocorrelated
only for time lags up to 10 observations, the ability of the developed model (54) to represent
the copper price behavior was expected to be acceptable only for that time frame. Indeed
this was the case, as shown in Figures 8–10. The trajectories were very close to the real data
up to 10 observations. The residuals estimated for the optimum trajectory, ropt, can be read
in Table 1 where we also detailed the values of the standard deviation and determinism for
each of the considered time ranges. The model’s ability to fit data only up to 10 observations
was related to the following points: (1) the data did not really show an inflection and sign
change in the first three points, as we would expect from the cosine—see Figure 5—and
the damped cosine function (27) was just a valid approximation for the first few lags;
(2) the determinism level in Table 1 revealed the presence of a large stochastic component,
and this meant that the behavior of the copper price could be predicted only in the short
term Mastroeni and Vellucci (2019, 2022). Regarding Table 1, the worst values of ropt were
achieved in the ranges (vii), (v), and (ii), and these were also the ranges that showed the
smallest possible value of determinism (i.e., 0). In terms of the residuals of (iii): they were
about 18, as in (ii), which had a null value of determinism, despite the latter being different
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from 0 for (iii). With the exception of range (iii), all intervals with a determinism other than
0 appeared to show lower residuals. The values of the standard deviation did not seem to
be able to explain the goodness of fit. In fact, the Pearson correlation coefficient between
the standard deviation and ropt was −0.0836063, whereas between determinism and ropt, it
was −0.6120757.

Figure 8. Price trajectories generated by the model (54) vs. the copper price data. Temporal ranges:
(i) on the left and (ii) on the right.

Figure 9. Price trajectories generated by the model (54) vs. the copper price data. Temporal ranges:
(iii) on the left and (iv) on the right.

Figure 10. Price trajectories generated by the model (54) vs. the copper price data. Temporal ranges:
(v) on the left, (vi) on the right and (vii) below.
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Table 1. Characterization of the log returns of copper for different time ranges.

Range Standard Deviation Determinism ropt

(i) 0.00002467958 0.2163743 14.96101
(ii) 0.00001708622 0 18.56718
(iii) 0.00004668479 0.3684211 18.03019
(iv) 0.00001576487 0.4649123 15.72518
(v) 0.00001830713 0 21.52263
(vi) 0.00002218824 0.4850746 17.27463
(vii) 0.00002092907 0 28.45987

7. Conclusions

In this paper, we developed a novel stochastic differential equation (SDE) that fit the
model of intraday copper futures prices and was based on the whitening filter approach
Wiener (1949), a method characterizing linear time-variant systems. We assumed that the
time series of prices could be described by its autocorrelation. This property was obtained
through statistical analyses of historical data. Starting from an empirical autocorrelation
model obtained from the price time series, we introduced an SDE that was characterized
by this autocorrelation and fit the model to the data.

The model we developed produced trajectories close to the real data only in the short
run. This was due, on the one hand, to the model fitted by empirical autocorrelation and,
on the other, to the predominantly stochastic behavior of the copper price time series, which
can only be predicted in the short term Mastroeni and Vellucci (2019, 2022). To investigate
the stochastic (vs. deterministic) nature of the data, we followed the intuition behind the
recurrence analysis Eckmann et al. (1987); Marwan et al. (2007). In the Appendix A, we also
show that the performance of the model improved significantly, when the time series had
an empirical autocorrelation function close to the damped cosine model and a determinism
measure (DET) based on the recurrence plot close to one. Therefore, future work will
include the assumption of more complex functions to model the autocorrelation function
of intraday copper futures prices.

Based on the numerical results presented in Section 6.2 regarding the level of deter-
minism through the recurrence plot and the performance of the SDE model, this paper
showed that the predictability of copper futures prices is rather weak. In fact, as already
said, the model we derived produced trajectories close to the actual data only in the short
term. Consequently, the investment risk of copper futures is high, which confirms the
results in Mastroeni et al. (2018). Based on the reconstructed copper price phase space,
the recurrence plot confirmed that deterministic features coexisted with stochastic ones in
copper futures prices. In the intervals considered, the level of determinism was often zero,
indicating that the copper futures prices were not predictable.

Compared to other metal futures such as aluminum and nickel, copper futures seem to
have a higher investment risk. For instance, the prices considered by Sun et al. (2022) were
highly deterministic. In any case, the time series considered here were different in terms of
granularity and time span, and intraday copper futures are probably a riskier investment
than daily ones. Investigating this aspect could be an interesting issue for a future work.

Additional further research would be to generalize the SDE model to the multivariate
case. In fact, since copper prices are correlated with other commodities (such as steel, gold,
and oil), it would be interesting to know whether this model could use this information.
In any case, co-movements among these series did not arise from the model, but it is
necessary to use ad hoc methodologies, e.g., those employed in our previous papers
Mastroeni et al. (2021, 2022); Benedetto et al. (2020, 2021), Benedetto et al. (2016). A
possible generalization of the SDE model proposed in this paper should integrate these
methodologies in the whitening filter approach.
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Appendix A. Option Prices on Copper Futures

The present research aimed at matching the paths between the copper future prices
and the proposed model. In this section, we also consider the prices of options on copper
futures, collected from Barchart.com. We focused on American options with an expiration
date at the end of December 2022.

We considered the daily open prices for the options contract. We also considered
options contracts “near the money” (i.e., whose strike price was close to the current market
price of the corresponding underlying security) — here, it was 10 strikes +/−— and
options contracts with 50 Strikes +/−. We focused on the strike prices 3.40 and 3.45. The
results concerning these contracts are depicted in Figures A1 and A2.

The obtained results did not appear to be as good as those achieved for futures. How-
ever, this could be due to several reasons, for example the granularity of the data (intraday
for futures, daily for options), which did not make it possible to effectively compare the
results in this section with those shown in the previous ones.

Figure A1. Price trajectories generated by the model (54) vs. the option prices on copper futures.
Temporal range: from 1 February 2021 to 25 February 2022. Strikes (near the money): 340 call
(top left), 340 put (top right), 345 call (bottom left), and 345 put (bottom right).
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Figure A2. Price trajectories generated by the model (54) vs. the option prices on copper futures.
Temporal range: from 1 February 2021 to 25 January 2022. Fifty strikes +/−: 340 call (top left),
340 put (top right), 345 call (bottom left), and 345 put (bottom right).
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