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Abstract. In this paper we prove the first result of Nekhoroshev stability for steep Hamiltonians in Hölder

class. Our new approach combines the classical theory of normal forms in analytic category with an improved

smoothing procedure to approximate an Hölder Hamiltonian with an analytic one. It is only for the sake of

clarity that we consider the (difficult) case of Hölder perturbations of an analytic integrable Hamiltonian, but

our method is flexible enough to work in many other functional classes, including the Gevrey one. The stability

exponents can be taken to be (` − 1)/(2nα1...αn−2) + 1/2 for the time of stability and 1/(2nα1...αn−1) for

the radius of stability, n being the dimension, ` > n + 1 being the regularity and the αi’s being the indices of

steepness. Crucial to obtain the exponents above is a new non-standard estimate on the Fourier norm of the

smoothed function. As a byproduct we improve the stability exponents in the Ck class, with integer k.
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1. Introduction and main results

1. The main goal of this work is to introduce a unified way for proving “long time stability” of the action

variables for perturbations of completely integrable Hamiltonian systems which belong to a large class of function

spaces. We will limit ourselves here to Hölder perturbations of analytic systems, but our method is flexible

enough to be adapted to many other settings1.

The effective stability theory for nearly-integrable hamiltonian systems was initiated by the pioneering work

of J.E. Littlewood [14] and reached a first main achievement in the seventies with the work of N.N. Nekhoroshev

[19]; it was then developed by many authors. The usual setting is that of Hamiltonian systems of the form

(1.1) H(I, θ) = h(I) + f(I, θ),

where (I, θ) ∈ Rn × Tn are the action-angle variables and f is small with respect to h. In Nekhoroshev’s work

the Hamiltonian H is analytic and h satisfies a steepness condition (see definition 1.1 below). The theory has

been then developed in various settings: H can be assumed to be Gevrey (which includes the analytic case) or

Ck with k ≥ 2 and integer, while h can be assumed to be convex or quasi-convex (see for example [18] or [5])

The norm of f , relative to the function space at hand, is denoted by ε. For systems as (1.1), the previous

results assert that the action variables are confined in a ball of radius R(ε) centered at the initial action during

1Assuming that the unperturbed system is analytic is just a matter of simplification.
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a time T(ε), provided that ε is smaller that some threshold E. We say that R(ε) is the confinement radius,

T(ε) is the stability time and E is the applicability threshold. The remarkable fact is that – h being given – the

results depend only on the norm of f and not on its particular form.

Much attention has been paid in the literature in order to obtain good estimates for the quantities R(ε) and

T(ε) in the different frameworks. As we shall see in the sequel, in the setting of Hölder perturbations of analytic

integrable systems, the method we introduce in this paper yields sharper estimates than those that are found

in the literature up to now. Before stating rigorously our results, however, it is useful to have an overview of

the classical results on the effective stability of near-integrable Hamiltonian systems.

2. The classical results. Let us briefly describe the classical abstract results. In the 70’s Nekhoroshev

proved his seminal theorem [19], which asserts that for a steep real-analytic function h and for any real-analytic

perturbation f with analytic extension to a complex domain D, all solutions are stable at least over exponentially

long time intervals. Namely, there exist positive exponents a, b and a positive threshold E, depending only on

h, such that if |f |D ≤ E, then any initial condition (I0, θ0) gives rise to a solution
(
I(t), θ(t)

)
which is defined at

least for |t| ≤ exp
(
c(1/ε)a

)
and satisfies |I(t)− I0| ≤ Cεb in that range. Here |f |D is the C0 sup-norm on the

domain D and c, C are positive constants which also depend only on h. With our notation, for these systems:

(1.2) T(ε) = exp(c(1/ε)a), R(ε) = Cεb,

while the expression of the threshold E is quite difficult to obtain explicitly2, see [19]. Since the constants c and

C are less significant than the exponents we will get rid of them in our subsequent description.

Nekhoroshev’s proof is based on the construction of a partition (a “patchwork”) of the phase space into

zones of approximate resonances of different multiplicities, over which one can construct adapted normal forms.

The global stability result necessitates a very delicate control of the size and disposition of the elements of

the patchwork in order to produce a “dynamical confinement” preventing the orbits from fast motions along

distances larger than the confinement radius (see below for a discussion).

In the convex case, as noticed in [11] and [4], a shrewd use of energy conservation leads to a much simpler

and “physical” way to confine the orbits. This gave rise to two distinct series of works, originating in the

articles of Lochak [15] - where the simultaneous approximation method was introduced - and Pöschel [23] -

where the construction of Nekhoroshev’s patchwork was made much easier - both relying on the convexity or

quasi-convexity of the integrable Hamiltonian.

The simplicity of these methods made it possible to prove that the Nekhoroshev Theorem in the analytic

case holds with

(1.3) T(ε) = exp(c(1/ε)1/2n), R(ε) = Cε1/2n,

if h is assumed to be quasi-convex (see [15, 17, 23]). Moreover, besides the global result, one can state local

results for neighborhoods of resonant surfaces. For m ∈ {1, . . . , n − 1}, consider a sublattice Λ ∈ ZnK := {k ∈
Zn : |k|1 ≤ K} of rank m and the resonant subset MΛ := {I ∈ Rn | ∇h(I) ∈ Λ⊥}. Then, for all trajectories

starting at a distance of order ε1/2 of MΛ, one gets larger stability exponents, namely a = b = 1/(2(n −m)).

Moreover, in the resonant block BΛ (which is obtained by eliminating fromMΛ all the intersections with other

resonant subsets MΛ′ , with rank Λ′ = m+ 1) one can even take a = 1/(2(n−m)), b = 1/2.

As alluded to above, long time stability does not require a priori the analyticity of the Hamiltonian at hand.

For general Gevrey quasi-convex systems3, the fast decay of the Fourier coefficients also yields exponentially

long stability times. Namely, for β-Gevrey systems (where β is the Gevrey exponent) it is proved in [18] that

T(ε) = exp
(
c/ε1/(2nβ)

)
, R(ε) = Cε1/(2nβ).

The proof is based on a direct construction of normal forms for Gevrey systems. This study was initiated by M.

Herman for proving the optimality of the stability exponents by constructing explicit examples taking advantage

of the flexibility of the Gevrey category, see below.

2Thresholds have been studied more extensively in applications to celestial mechanics, see e.g. [21] or [3]
3See [18] for the definition.
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Soon after, finitely differentiable systems have been investigated in [5] using a direct implementation of

Lochak’s scheme in this setting, which yields the estimates

T(ε) = c/ε(`−2)/(2n) R(ε) = Cε1/(2n)

for quasi-convex C` systems with ` ≥ 2 and integer. On the other hand, the stability of C` systems, with ` an

integer such that ` ≥ `∗n+1 for some suitable `∗ ≥ 1, `∗ ∈ N, satisfying a property known as Diophantine-Morse

condition4, was investigated in [6], where the values

T(ε) = c/ε`
∗/[3(4(n+1))n] R(ε) = Cε1/(4(n+1))n

were found.

The case ` = +∞ has been studied in [1], where the authors find that, in the case h(I) = I2/2 and for fixed

b ∈ (0, 1/2), for any M > 0 there exists CM > 0 such that

T(ε) =
CM
εM

R(ε) = CMε
b .

The result is achieved by implementing an innovative global normal form in Pöschel’s framework.

Finally, we also refer to the recent work [7] and references therein for much more information about stability

in various functional classes.

3. Purpose of the work. The objective of this paper is to make a systematic use of analytic smoothing

methods to derive normal forms in a very simple way - whatever the regularity of the Hamiltonians at hand -

from the usual analytic ones. This way we get maximal flexibility to adapt the different long-time stability proofs

to a large class of function spaces. We will investigate here only the case of Hölder differentiable Hamiltonians,

but our method extends to any steep functions belonging to any regularity class which admits an analytic

smoothing. More precisely, the proposed strategy (see Section 4.3) allows us to prove, in a very simple way, the

first Nekoroshev-type result of stability for Hölder steep Hamiltonians with presumed sharp exponents5. In this

case one cannot expect to get more than polynomial stability times relative to the size ε of the perturbation [5].

In the course of the proof we need to adjust in a rather unusual way the size of the various parameters: ultraviolet

cutoff and, in an essential way, the analyticity width, as a function of the size ε of the perturbation.

4. Main results. Let us fix the main definitions and assumptions. In the following, given ν ∈ {1, . . . ,∞}, we

denote by | · |ν the corresponding `ν-norm in Rn or Cn. We denote by Bν(I0, R) the open ball centered at I0 of

radius R for the norm | · |ν in Rn.

Consider a Hamiltonian of the form (1.1), where we assume, for the sake of simplicity, that the unperturbed

part h is analytic6 while only the perturbation f is Hölder, so:

(1.4) h ∈ Cω(B∞(0, R)ρ0), f ∈ C`(B∞(0, R)× Tn),

where B∞(0, R)ρ0
is the complex extension of analyticity width ρ0 ≥ 1 of B∞(0, R), and ` ∈ (1,+∞) (meaning

that f is Hölder differentiable when ` is not an integer, see section 3 for a brief overview on this class of

functions). The small parameter is

(1.5) ε := |f |C`(B∞(0,R)×Tn),

(see (3.2) for a definition of the Hölder norm). We denote by ω = ∇h : Rn → Rn the action-to-frequency map

attached to h.

4The Diophantine-Morse property is a special case of the Diophantine-steep condition introduced in [22] which, in turn, is

a prevalent condition on integrable systems that ensures long time stability once these are perturbed. All steep functions are

Diophantine-steep.
5Sharpness has the same meaning as in [13], i.e. these are the best values of the exponents for T(ε) and R(ε) that one can

obtain with these techniques.
6As we will see in the course of the proof, assuming that h is Hölder with large enough exponents would be enough, see

Section 4.3.2
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We will assume that the Hessian of h is uniformly bounded from above:

(1.6) M := sup
I∈B∞(0,R)ρ0

∥∥D2h(I)
∥∥
op
<∞,

where ‖ ‖op stands for the operator norm induced by the Hermitian norm on Cn.

We will also assume that the Hamiltonian h is steep according to the following definition.

Definition 1.1 (Steepness). Fix δ > 0. A C1 function h : B∞(0, R + δ) → R is steep with steepness indices

α1, . . . ,αn−1 ≥ 1 and steepness coefficients C1, . . . , Cn−1, δ if:

(1) infB∞(0,R) |ω(I)|2 > 0;

(2) for any I ∈ B∞(0, R) and any m-dimensional subspace Γ orthogonal to ω(I), with 1 ≤ m < n:

(1.7) max
0≤η≤ξ

min
u∈Γ,|u|2=η

|πΓω(I + u)|2 > Cmξ
αm , ∀ξ ∈ (0, δ],

where πΓ stands for the orthogonal projection on Γ.

Remark 1.1. Note that a uniformly strictly convex function is steep with steepness indices equal to 1.

Remark 1.2. The steepness condition is generic in the space of jets of sufficiently regular functions (see [20] for

the general discussion and [25], [2] for sufficient conditions for steepness in the space of jets of order four and

five respectively).

Our main theorem is the following.

Theorem 1.1 (Stability estimates in the steep case). Consider a near-integrable Hamiltonian system (1.1)

satisfying (1.4) and assume ` ≥ n + 1 7. Suppose that h is steep in B∞(0, R) with steepness indices α :=

(α1, . . . ,αn−1) and set:

a :=
`− 1

2nα1 × · · · ×αn−2
+

1

2
, b :=

1

2nα1 × · · · ×αn−1
.

Then, there exist positive constants E = E(n, `,α), C′′I := C′′I (n, `,α), C′′T := C′′T(n, `,α) such that, for ε ≤ E,

the radius and time of confinement relative to any initial condition in the set B∞(0, R/4) satisfy:

(1.8) R(ε) ≤ C′′I ε
b , T(ε) ≤ C′′T

1

| ln ε|`−1 εa
.

Remark 1.3.

• The presence of the logarithm in (1.8) comes from the fact that in our method we have some freedom to fix

the analyticity width depending on ε, in contrast with the classical analytic setting. We send the reader to

Remark 5.1, where this comment is contextualized, the dependence of the analyticity width in ε is made precise

and a qualitative justification is given.

• If we set α1, . . . ,αn−1 = 1 (i.e. the convex case) we obtain better estimates than in [5].

• Our proof relies on the geometric construction of the geography of resonances introduced in [13], which is

appropriate only for Hamiltonians in n ≥ 3 degrees of freedom. Here too we shall restrict to this setting, the

2 d.o.f. isoenergetic non-degenerate case being easily managed through KAM theory. A specific construction

should be implemented to treat the peculiarity of the isoenergetic degenerate 2 d.o.f. case. This study is in

progress in a forthcoming work.

5. Prospects.

The sharpness of the exponents in Theorem 1.1 should be proved in the same way as in the case of convex

system. The first attempt to tackle this problem led to work in the Gevrey category instead of the analytic

one and construct examples with unstable orbits, which experience a drift in action of the same order as the

confinement radius within a time of the same order as the stability time, see [18]. It has then be realized that

7Actually one could probably get ` & n/2 by making use of Paley-Littlewood theory.
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the initial conjecture in quasi-convex analytic systems (a ∼ 1/2n, see [10] and Lochak [15]) was in fact incorrect:

as proved in [8] using a purely topological argument together with the previous remark on the local exponents

near simple resonances, one can choose a = 1/(2(n − 1)) as a global stability exponent for T(ε). This result

was improved soon after with a ∼ 1/(2(n − 2)) (see [26]). The construction of unstable system proving the

optimality of these latter exponents was achieved in [18], [16], [26]. A remarkable fact is that the unstable

mechanism introduced by Arnold in the 60’s, with its subsequent improvements, is exactly what is needed to

produce the unstable examples in the quasi-convex case.

As for the steep case, a careful construction of the geography of resonances leads with strong evidence to

the conjecture that the exponents a = 1/(2nα1...αn−2) and b = 1/(2nα1...αn−1) are sharp (see ref. [13]). The

question of constructing explicit examples with unstable orbits proving this sharpness is still open nowadays

and is maybe the last challenging problem in the general long time stability theory, probably relying on new

Arnold diffusion ideas.

The paper is organized as follows: in the next section we give a short overview of the classical methods with

particular attention on the geometry of resonant blocks, on which the present work strongly relies. Next we

define the functional setting. In Section 4 we introduce the analytic smoothing appropriately adapted to our

problem. Finally Section 5 is devoted to the study of the steep case.

Acknowledgements. We wish to thank A. Bounemoura, L. Biasco, L. Chierchia, M. Salvatori, and L. Nieder-

man for fruitful discussions and stimulating comments, which definitively helped to improve this work. J.E.M.

acknowledges the support of the INdAM-GNAMPA grant “Spectral and dynamical properties of Hamiltonian

systems”.

2. General setting and classical methods: a geometric framework

1. Resonances, resonant normal forms and the steepness condition. Consider a Hamiltonian system of

the form (1.1) defined on O × Tn, where O is an open subset of Rn. The main feature underlying Hamiltonian

perturbation theory is that one can modify the form of the perturbation f by composing H with properly

chosen local Hamiltonian diffeomorphisms, in order to remove a large number of “nonessential harmonics”. The

result of this process - a local normal form - strongly depends on the location of the domain of the normalizing

diffeomorphism w.r.t the resonances of the unperturbed part h, and enables one to discriminate between fast

drift and extremely slow drift directions in the action space, according to this location.

Let us first make this idea more precise. Given an integer lattice Λ ⊂ Rn of dimension m ∈ {1, . . . , n− 1} –

a resonance lattice – one associates with Λ the resonance vector subspace Λ⊥ ⊂ Rn in the frequency space Rn,

together with the corresponding resonance subset in the action space previously introduced

MΛ := ω−1(Λ⊥) = {I ∈ O | ω(I) ∈ Λ⊥},

where ω = ∇h is the frequency map. The dimension m of Λ is said to be the multiplicity of the resonanceMΛ.

Of course, given a resonance module Λ′ ⊃ Λ with dim Λ′ > dim Λ, the resonance MΛ′ is contained in MΛ, so

that a resonance subset contains in general infinitely many resonances of higher multiplicity. The complement

M0 ⊂ O of the union of all resonance subsets is the non-resonant subset. In general, a resonance subset MΛ

has no particular structure, however, one can think of MΛ as a submanifold of Rn of the same dimension as

Λ⊥ (with perharps singular loci).

As a rule, when ε is small enough, for a small enough ε-depending neighborhood WΛ of the parts of the

resonance subset MΛ located far enough from resonances of higher multiplicity8, one can iteratively construct

a symplectic diffeomorphism ΨΛ, whose image contains WΛ × Tn, such that the pull-back HΛ = H ◦ΨΛ takes

8In fact, only a finite ε-depending subset (related to the cutoff K(ε) introduced below) of these resonances has to be taken into

account.
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the following form

(2.1) HΛ = h+NΛ +RΛ.

Here RΛ is a remainder whose C2 norm is (very) small9 with respect to ε and the resonant part NΛ contains

only harmonics belonging to Λ, that is:

NΛ(I, θ) =
∑

k∈Λ, |k|1≤K(ε)

ak(I) eik·θ,

where K(ε) is an ultraviolet cutoff which has to be properly chosen10. Both terms NΛ and RΛ of course

depend on ε. A subset WΛ for which such a normal form is proved to exist will be called a normal form

neighborhood associated with Λ, with multiplicity dim Λ. One proves that the space of actions can be covered

by such neighborhoods, and in Section 5.1, we will construct finer covers by subsets of those, named resonant

blocks (and denoted by DΛ in the aforementioned section).

The iterative process to construct the normalizing diffeomorphism involves the control of small denominators

which appear during the resolution of the so-called homological equation, and which depend on the location of

the normalization domain with respect to the resonances (see for instance [23]). This can be seen as a drawback

of the method which could be greatly simplified by an idea due to Lochak (see below), however the general

method presented here give precise dynamical informations which would not be reachable otherwise.

The Hamilton equations generated by (2.1) yield the following form for the evolution of the action variables:

(2.2)

I(t)− I(0) =

∫ t

0

∂θNΛ

(
I(s), θ(s)

)
+ ∂θRΛ

(
I(s), θ(s)

)
ds

=
∑

k∈Λ, |k|1≤K(ε)

k ·
(∫ t

0

i ak(I(s)) eik·θ(s) ds
)

+R(t).

The variation of I is therefore the sum of the main part

(2.3) D(t) :=
∑

k∈Λ, |k|1≤K(ε)

k · N (k)(t), N (k)(t) =

∫ t

0

i ak(I(s)) eik·θ(s) ds,

and the very small remainder term R(t).

To simplify the presentation in the following, we will forget about the angles and consider only the action

part of the solutions of our system (which is legitimized by the fact that the angles play no role in the various

estimates).

The whole theory relies firstly on the obvious fact that the main drift term D(t) in (2.3) belongs to the vector

space Vect Λ spanned by Λ (which is often called “plane” of fast drift), and secondly on the smallness of the

remainder term R. A solution starting from some initial condition I(0) ∈ WΛ will therefore remain very close

to the fast drift space

I(0) + Vect Λ

during a very long time – governed by the smallness of R – as long as it is contained inside the neighbor-

hood WΛ. This makes it necessary to understand first the intersections of the fast drift planes I + Vect Λ and

the neighborhoods WΛ to which they are attached.

As an extreme example, let us consider the Hamiltonian

h(I) =
1

2
(I2

1 − I2
2 )

on A2, with (invertible) frequency map ω(I1, I2) = (I1,−I2). We focus on the resonance module Λ = Z(1,−1),

so that Λ⊥ = R(1, 1) and Vect Λ = MΛ. Hence, given an initial action I(0) ∈ MΛ, the entire fast drift affine

9The smallness depends on the regularity of the system.
10This choice is indeed a main issue in the theory.



7

subspace I(0)+Vect Λ coincides withMΛ, so that nothing prevents the fast drift to take place during the whole

motion provided the perturbation is well-chosen: the resonance MΛ is called a superconductivity channel. No

long time stability result can be expected in this case: indeed, when f(I, θ) = sin(θ1 − θ2), the initial condition

I = 0, θ = 0 yields the fast evolution (I1(t), I2(t)) = (−εt, εt) for the action variables 11.

In constrast with the previous example, for the Hamiltonian

H(I, θ) =
1

2
|I|22 + εf(θ)

on An, for any Λ ⊂ ZnK , the the resonant set MΛ coincides with Λ⊥, so that the affine planes of fast drift

are always orthogonal to MΛ. In this case a fast drift - if it happens - makes the orbits move away from the

resonance in a very short time.

These extreme examples illustrate the role of the Nekhoroshev condition: steepness is an intermediate quan-

titative property, which prevents from the existence of the superconductivity channels by ensuring a certain

amount of transversality between the fast drift planes and the corresponding resonances in action. Starting

from an action I = I(0) located at some resonance MΛ, so that its associated frequency ω(I) is orthogonal to

Γ := Vect Λ, the condition

(2.4) max
0≤η≤ξ

min
u∈Γ,|u|2=η

|πΓω(I + u)|2 > Cmξ
αm , ∀ξ ∈ (0, δ],

(where πΓ stands for the orthogonal projection on Γ) imposes that a drift of length ξ starting from I and

occuring along the fast drift plane I + Γ makes the projection πΓ(ω) change by an amount of Cmξ
αm during

the way.

Figure 1. Geometric interpretation of the steep condition

This admits an easy geometric interpretation (see Figure 1). Assume dim Λ = m and consider the vector

space Γ spanned by Λ, together with its orthogonal space Λ⊥ - of dimension n − m. Then one can define a

family of tubular neighborhoods of Λ⊥ of width δ > 0 by

(2.5) Tδ(Λ
⊥) = {$ ∈ Rn | πΓ($) < δ}, δ > 0 .

Each such neighborhood gives rise to a neighborhood of the resonance MΛ in action, namely:

(2.6) Wδ(MΛ) = ω−1
(
Tδ(Λ

⊥)
)
.

Therefore, condition (2.4) just says that any orbit starting from I and drifting to a distance ξ from I along the

plane of fast drift Γ must exit the neighborhood Wδ(MΛ) with δ = Cmξ
αm .

11Here a proper choice of the initial angles is needed.
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Note finally that given disjoint subsets T, T′ of tubular neighborhoods of the form (2.5), the associated

neighborhoods ω−1(T) and ω−1(T′) are disjoint too, whatever the geometric assumptions on the frequency

map ω.

2. Nekhoroshev’s hierarchy. This section is inspired by Nekhoroshev’s ideas as presented in the very nice

paper [13]. We also refer to [12] for further details and to [22] for a different approach. Nekhoroshev’s strategy

to prove long-time stability results for perturbations of steep Hamiltonians is based on the previous description

of resonant neighborhoods, and relies on the following key observation.

Given ε small enough, there exist T (ε), R(ε) and a covering of the action space O by resonant “blocks”

(Bm,p)0≤p≤pm , for 0 ≤ m ≤ n− 1, and m, p, pm ∈ N, which satisfy the following properties:

(1) T (ε)→ +∞ and R(ε)→ 0 when ε→ 0;

(2) each block Bm,p is contained in a resonant neighborhood of multiplicity m and admits an enlargement

B̂m,p ⊃ Bm,p contained in the same resonant neighborhood;

(3) any solution starting from an initial condition in Bm,p either stays inside B̂m,p for 0 ≤ t ≤ T (ε) or

admits a first exit time t1 such that I(t1) belongs to a block Bm′,p′ with m′ < m;

(4) for any initial condition I(0) inside a block Bm,p and for any interval I such that I(t) ∈ B̂m,p for all

t ∈ I, then

|I(t)− I(0)|2 < R(ε), ∀t ∈ I.

We say that m is the multiplicity of the block Bm,p. Taking the previous observation for granted, the stability

of the action variable over a timescale T (ε) is easy to prove by finite induction. Given an initial condition I(0)

located in some block Bm0,p0
, either I(t) ∈ B̂m0,p0

for 0 ≤ t ≤ T (ε), or there is a t1 such that I(t) ∈ B̂m0,p0

for 0 ≤ t < t1 and I(t1) belongs to a block Bm1,p1
with m1 < m0. Consequently, there is a finite sequence

(m0, p0), . . . , (mj , pj) such that m0 > m1 > · · · > mj (with maybe mj = 0) and a finite sequence of times

t0 = 0 < t1 < · · · < tp = T (ε) such that for 0 ≤ i < j:

I(t) ∈ B̂(mi,pi), ∀t ∈ [ti, ti+1].

In words, any orbits crosses a finite number of enlarged blocks during the interval [0, T (ε)] and get trapped

inside the last one. To conclude, one just has to use property (4), which proves that the distance between I(0)

and I(t) is at most nR(ε) for t ∈ [0, T (ε)].

One should be aware that the covering by the blocks is not a partition of O: two distinct blocks may have

a nonempty intersection. However, one can choose the blocks visited by the orbits according to a hierarchical

order, in such a way that their multiplicity decreases as t increases 12. We say that a covering of O by blocks

satisfying the previous properties is a Nekhoroshev patchwork.

3. Construction of Nekhoroshev patchworks. Let us now describe how the blocks are constructed so as

to possess their covering and confinement properties13.

Given ε > 0, we first fix an ultraviolet cutoff K(ε) and consider only the set Mε of resonance modules which

are spanned by vectors of length smaller than K(ε). Given a resonant module Λ ∈ Mε of multiplicity m, we

start with the resonant zone of “width” δΛ

ZΛ := WδΛ(MΛ) = ω−1
{
$ ∈ Rn | |πΓ($)|2 < δΛ

}
,

where δΛ has to be properly chosen as a function of ε and the various geometric invariants of the module (see

section 5). We then define the (ε-dependent) resonant zone Zm of multiplicity m as

Zm =
⋃

Λ∈Mε, dim Λ=m

ZΛ.

12This raises the question of the existence of local finite time Lyapunov functions on the phase space, a still unclear issue.
13A source of inspiration for nowadays governments.
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Given Λ ∈Mε, dim Λ = m, the block attached to Λ is obtained by removing from ZΛ its intersection with the

complete resonant zone of multiplicity m+ 1:

BΛ = ZΛ \ Zm+1.

The blocks Bm,p are the connected components of Zm. With no great loss of generality, one can think of (the

closure of) a block as a submanifold with boundary and corners – even if it is not necessary.

The following figure shows the construction of the blocks in the case n = 3 (and in a transverse section). The

resonance zone of multiplicity 2 if the disjoint union of the blue blocks, the resonance zone of multiplicity 1 is

the union on the strips with red boundaries, while the 0-multiplicity zone is the complement of the 1-multiplicity

zone.

In any case, the blocks satisfy two main properties.

− The closures of two different blocks can intersect only when their multiplicities are distinct.

This comes from a very careful choice of the widths of the various resonance zones (see [13] and Section

5), which in fact ensures a more stringent (and crucial) property: the enlargement of a block contained in

some BΛ cannot intersect any other block contained in the zone BΛ, neither any other neighborhood MΛ′ with

dim Λ′ = dim Λ (see below for precisions on the construction of the enlargement).

Fast drift Mon
Spare t' = chz tBm.se#EEpMm.ndimn--dimN=m
\ un§
| ! !

Mon"
In beau , pmrtofthebmt

Math "
ofhighwmnltîtvicity .

Ingram : mbowfrmmt.fr Bmik .

Figure 2. Construction of the resonant blocks

We state the second property in the spirit of Conley’s isolating blocks theory.

− The frontier ∂Bm,p of Bm,p is the union of two subsets

∂Bm,p = ∂+Bm,p + ∂−Bm,p
where ∂+Bm,p (resp. ∂−Bm,p) is contained in blocks Bm′,p′ with m′ > m (resp. m′ < m).

This raises new questions which could be the starting point of a better understanding of the relations between

diffusion along invariant subsets and long-time stability theory. Indeed, given a block Bm,p, a description of the

(generic) features of the Hamiltonian vector field XHε at the frontier ∂Bm,p has never been done. In particular,

nothing is known on the locus where XHε “enters the block” and the locus where XHε “exits the block”. These

two subsets are crucial for the understanding of the homology of the invariant sets contained into the blocks,

following Conley’s theory, and could provide one with a new tool for constructing diffusing orbits in the steep

setting.
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ÏËËËË..
Figure 3. Interpretation of the resonant blocks in the light of Conley’s theory

le → o if E → 0

a •

FETER

.ee#**mTmqoe---Imfessitilityf
snpneonductrng charnels

Figure 4. The Steepness property prevents the existence of superconductivity channels by

ensuring a contact of finite order between the resonant manifold and the plane of fast drift.

Here in the figure, ` is the size of the resonant zone (see Section 5.1)

Going back to the construction of Nekhoroshev’s patchwork, we have to make precise the process conducting

to the enlargement of a block and its stability property. Here we will again make a crucial use of the fact that

an orbit starting from an initial condition I := I(0) located in Bm,p will remain extremely close to the fast drift

space I + Vect Λ for 0 ≤ t ≤ T (ε), as long as it stays inside the resonant neighborhood MΛ and far enough

to the higher multiplicity resonance zones. Hence, to enlarge the block Bm,k, we just have to add to it the

collection of all the parts of the disks centered at points I ∈ Bm,p which are contained in the intersection of

the fast drift spaces I + Vect Λ with the resonant neighborhood MΛ (the resulting added subset is the green

part in the previous two figures). We have in fact to add a very small neighborhood of these union of disks,

in order to prevent the solutions to exit the extended block under the influence of the remainder part R of

the dynamics during the time T (ε), but this would not change our description significantly. Finally, one has

to make sure that the extension will not intersect any other block of the same neighborhood BΛ or any other

resonance neighborhood, which can be done by a careful tuning of the width of the zone (see Section 5).

This concludes our description of Nekhoroshev’s method.
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3. Functional setting

For n ≥ 1, we denote the standard n-dimensional torus by Tn = Rn/2πZn and the standard 2n-dimensional

annulus by An = Rn × Tn.

1. Hölder differentiable functions. Given an integer q ≥ 0 and an open subset D of Rn, we denote

by Cq(D) the set of q-times continuously differentiable maps f : D → R (C0(D) being the set of continuous

functions on D). We identify Cq(Tn) with the subset of Cq(Rn) formed by the functions that are 2πZn-periodic

and Cq(D×Tn) with the subset of Cq(D×Rn) formed by the functions which are 2πZn-periodic with respect

to their last n variables.

We use the conventional notation for partial derivatives: given f ∈ Cq(D) and α ∈ Nn, we set for x ∈ D:

∂αf(x) =
∂|α|f

∂xα1
1 . . . ∂xαnn

(x),

with |α| = α1 + · · ·+ αn.

We denote by Cqb (D) the set of f ∈ Cq(D) such that

(3.1) ‖f‖Cq(D) := sup
|α|≤q

sup
x∈D
|∂αf(x)| < +∞,

so that
(
Cqb (D), ‖·‖Cq(D)

)
is a Banach space with multiplicative norm14. It is understood that, for a function

defined on a compex domain D, the ‖·‖C0(D) is the usual sup-norm.

If ` > 0 is a non-integer real number, we write q := b`c for its integer part and µ = ` − q ∈ (0, 1) for its

fractional part. Given a non-negative integer q and µ ∈ (0, 1), we denote by Cq,µb (D) the space formed by those

functions f ∈ Cq(D) such that

|f |Cq,µ(D) := ‖f‖Cq(D) + sup
α∈Nn:|α|=q

sup
x,y∈D:

0<|x−y|<1

|∂αf(x)− ∂αf(y)|
|x− y|µ

< +∞.(3.2)

It is well-known that
(
Cq,µb (D), | · |Cq,µ(D)

)
is also a Banach space with multiplicative norm. Functions belonging

to these spaces are called Hölder-differentiable functions.

Given a non-integer real number ` > 0, together with its integer part q := b`c and its fractional part

µ = ` − q ∈ (0, 1), we also write C`b(D) instead of Cq,µb (D) and | · |C`(D) instead of | · |Cq,µ(D). Clearly

C`b(D) ⊂ C`′b (D) when ` ≥ `′ and if f ∈ C`b(D)

(3.3) |f |C`′ (D) ≤ |f |C`(D).

2. Domains and their complex extensions.

Let us define the complex n-dimensional torus TnC and the complex 2n-dimensional annulus AnC as

(3.4) TnC = Cn/2πZn and AnC = Cn × TnC.

We use angle coordinates θ on TnC (with the usual abuse θ ∈ Cn when there is no ambiguity) and action-angle

coordinates (I, θ) on AnC. We see TnC as a real n-dimensional vector bundle over Tn. Consequently, we write

(3.5) |θ| := max
j

(|Im θj |) , |I| := max
j
|Ij | , |(I, θ)| = max (|I|, |θ|) .

For integer vectors k ∈ Zn, we use the “dual” `1-norm, which we write |k| only when there is no risk of confusion.

We need to introduce specific domains in AnC. First, given r > 0, for a domain D ⊂ Rn, we set

(3.6) Dr :=
{
z ∈ Cn : ∃z∗ ∈ D : |z − z∗|2 < r

}
.

As for the torus, given s > 0, we introduce the global complex neighborhood

(3.7) Tns :=
{
θ ∈ TnC : |θ| < s

}
.

14That is, satisfying an inequality of the form |fg| ≤ C|f ||g| for a suitable constant C.
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We will essentially deal with complex domains of the form

(3.8) Dr,s := Dr × Tns ⊂ AnC.

We finally write DR
r and DR

r,s for the projections of Dr and Dr,s on Rn and An respectively.

3. Analytic functions and norms. If g is a bounded holomorphic function defined on Tns , Dr or Dr,s we

denote the corresponding classical sup-norms by

(3.9) |g|s = sup
θ∈Tns

|g(θ)|, |g|r = sup
I∈Dr

|g(I)|, |g|r,s = sup
(I,θ)∈Dr,s

|g(I, θ)|.

Fix a bounded holomorphic function g : Dr,s+2σ → C, where σ > 0, and let g(I, θ) =
∑
k∈Zn ĝk(I)ei k·θ be its

Fourier expansion, where k · θ = k1θ1 + · · ·+ knθn. We then introduce the weighted Fourier norm

(3.10) ||g||r,s := sup
I∈Dr

∑
k∈Zn

|ĝk(I)| e|k|s,

which is finite and satisfies

(3.11) |g|r,s ≤ ||g||r,s ≤ cothn σ |g|r,s+σ.

We denote by Ar,s the space of holomorphic functions on Dr,s with finite Fourier norm. Endowed with this

norm, Ar,s is a Banach algebra.

Finally, the norm of a vector valued function will be the maximum of the norms of its components.

4. Analytic smoothing

We state in this section the key ingredient of the present work. We first recall the analytic smoothing method

as developed by Jackson-Moser-Zehnder for Hölder functions of Rn: given a Hölder function f ∈ C`(Rn) and a

positive number s ≤ 1, this yields an analytic function on the complex neighborhood Rns whose restriction to

Rn is close to f in the Ck topology, for 1 ≤ k ≤ `.
We then adapt their method to our specific setting of functions defined on An (see Section 4.2) and, in

addition, we derive the new estimate (4.22) for the weighted Fourier norm of the smoothed function.

4.1. Analytic smoothing in Rn. We recall here the result by Jackson, Moser and Zehnder, following the

presentation by [9] and [24].

Proposition 4.1 (Jackson-Moser-Zehnder). Fix an integer n ≥ 1, a real number ` > 0 and let f ∈ C`b(Rn).

Then there is a constant CJ = CJ(`, n) such that for every 0 < s ≤ 1 there exists a function fs, analytic on Rns ,

which satisfies

(4.1)

∣∣∣∣∣∣∂αfs(x)−
∑

β∈Nn:|β|≤b`c−|α|

∂α+βf(Rex)
(Imx)β

β!

∣∣∣∣∣∣ ≤ CJ s
`−|α||f |C`(Rn), ∀x ∈ Rns ,

for all multi-integer α ∈ Nn such that |α| ≤ b`c. More precisely, given any even C∞ function Φ with compact

support in Rn and setting

(4.2) K(ξ) :=
1

(2π)n

∫
Rn

Φ(x)eix·ξdx, ξ ∈ Rns ,

the function

(4.3) fs(x) :=

∫
Rn
K
(x
s
− ξ
)
f(sξ) dξ ,

satisfies the previous requirements (where the constant CJ(`, n) depends on the choice of Φ).

Observe that fs takes real values when its argument is in Rn.
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4.2. Analytic smoothing in An. In the following, the Hölder regularity ` is assumed to satisfy b`c ≥ n + 1

as in the hypotheses of Theorem 1.1.

We now specialize the previous result to our setting and give a more detailed description of the method in

the case of functions of An. In that case, the analytic smoothing is a truncation of the Fourier series of the

initial Hölder function with suitably modified Fourier coefficients (the so-called Jackson polynomials). Our

main concern here is to derive an estimate on the weighted Fourier norm of an s-smoothed C` function over a

complex strip of width s.

To make the whole presentation more explicit and take the anisotropy of the weighted Fourier norm into

account, we first consider functions defined on Rn and Tn separately. This then yields a statement for functions

of An.

• The non-periodic case. Fix an even function Φ : Rn → [0, 1], of class C∞, with support in the ball B2(0, 1)

and let K : Cn → C be its Fourier-Laplace transform:

(4.4) K(y) =
1

(2π)n

∫
Rn

Φ(η)e−iη·ydη.

Since Φ is compactly supported, then K is an entire function . Moreover its restriction to Rn is in the Schwartz

class S(Rn) since Φ is, and this is also the case for the translates y 7→ K(y − z) for y ∈ Rn and fixed z ∈ Cn.

Let f : Rn → R be a C` function with b`c ≥ n + 1, with compact support contained in the ball B∞(0, R0)

for some R0 > 0. Given s ∈ ]0, 1], set for x ∈ Rn:

(4.5) fs(x) =
1

sn

∫
Rn
K
(x− y

s

)
f(y)dy =

∫
Rn
K
(x
s
− y
)
f(sy)dy =

∫
Rn
K(y)f(x− sy)dy.

By Fourier reciprocity:

fs(x) =

∫
Rn

Φ(η) ̂f(x− sy)(η)dη,

with:

̂f(x− sy)(η) =
1

(2π)n

∫
Rn
f(x− sy)e−iy·ηdy =

1

(2π)nsn

∫
Rn
f(u)e−i(x−u)·η/sdu =

e−ix·η/s

sn
f̂
(−η
s

)
.

Therefore, since Φ is even:

(4.6) fs(x) =
1

sn

∫
Rn

Φ(η)f̂
(−η
s

)
e−ix·η/sdη =

∫
Rn

Φ(sη)f̂(−η)e−ix·ηdη =

∫
Rn

Φ(sη)f̂(η)eix·ηdη.

Hence fs is the inverse Fourier-Laplace transform of the “truncation”

η 7→ Φ(sη)f̂(η).

The first term of (4.5) shows that fs extends to Cn and is an entire function. To get our final estimate we go

back to the second term in (4.5), which yields

(4.7) |fs(z)| ≤ ‖f‖C0(Rn)

∫
Rn

∣∣∣K (z
s
− y
)∣∣∣ dy, z ∈ Cn.

By the Schwartz estimate of Lemma A.1, there exists a constant Cn such that∣∣∣K (z
s
− y
)∣∣∣ ≤ Cn eIm(z/s−y)

(1 + |z/s− y|2)n+1
,

so that, for y ∈ Rn, z ∈ Cn and | Im z|2 ≤ s:∣∣∣K (z
s
− y
)∣∣∣ ≤ Cn e

(1 + |Re(z/s− y)|2)n+1
.

Hence:

(4.8) |fs(z)| ≤ ‖f‖C0(Rn) Cne

∫
Rn

dy

(1 + |y|2)n+1
.
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since z/s is fixed and can be eliminated by a simple translation. We finally get the following estimate:

(4.9) |fs|s = sup
z∈Cn:|Im z|2≤s

|fs(z)| ≤ C1(n) ‖f‖C0(Rn) ,

with

C1(n) := Cne

∫
Rn

dy

(1 + |y|2)n+1
<∞.

• The periodic case. Fix now an even function Ψ : Rn → [0, 1], of class C∞, with support in the ball B1(0, 1)

and define the associate kernel K as in (4.4).

Fix a 2πZn-periodic function f ∈ C`(Rn) with ` ≥ n+ 1. Then the Fourier expansion

f(θ) =
∑
k∈Zn

f̂ke
ik·θ, f̂k =

1

(2π)n

∫
Tn
f(ϕ)e−ik·ϕdϕ,

converges normally since, by Lemma A.2 in Appendix A, for k ∈ Zn \ {0}, there exists a universal constant

CF(n, `) satisfying

(4.10)
∣∣∣f̂k∣∣∣ ≤ CF(n, `)

||f ||Cb`c
|k|b`c∞

and b`c ≥ n+ 1 by hypothesis. For s ∈ ]0, 1], the function

fs(θ) =
1

sn

∫
Rn
K
(θ − ϕ

s

)
f(ϕ)dϕ

is well-defined and, by the Fubini interversion theorem:

fs(θ) =
∑
k∈Zn

f̂k

∫
Rn
K(ϕ)eik·(θ−sϕ)dϕ =

∑
k∈Zn

f̂ke
ik·θ
∫
Rn
K(ϕ)e−isk·ϕdϕ.

Hence, since K is the inverse Fourier transform of Ψ, by the Fourier inversion theorem:

(4.11) fs(θ) =
∑
k∈Zn

f̂kΨ(sk) eik·θ, θ ∈ Rn.

As in the non-periodic case, this makes apparent that fs is a continuous truncation of the Fourier expansion of

f with a Ψ-dependent modification of its Fourier coefficients (the so-called Jackson polynomial):

(4.12) (̂fs)k = Ψ(sk)f̂k .

Consequently, the Fourier norm

‖fs‖s =
∑
k∈Zn

∣∣∣(̂fs)k∣∣∣es|k|1
depends only on the harmonics such that |k|1 ≤ 1/s and satisfies

‖fs‖s ≤
∑

|k|1≤1/s

∣∣∣(̂fs)k∣∣∣ es|k|1 ≤ e ∑
|k|1≤1/s

∣∣∣(̂fs)k∣∣∣ ≤ e ∑
k∈Zn

∣∣∣f̂k∣∣∣.
Hence, by (4.10):

(4.13) ‖fs‖s ≤ C2(`)|f |Cb`c

with

(4.14) C2(`) := e

(
1 + CF(n, `)

∑
k∈Zn\{0}

1

|k|[`]∞

)

• Functions on An. We finally gather together the previous two cases. Let Φ ⊗ Ψ : Rn × Rn → [0, 1] be

defined by

Φ⊗Ψ(x, θ) = Φ(x)Ψ(θ),
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and define the kernel

K(y, ϕ) =

∫
R2n

Φ⊗Ψ(x, θ) e−i(x,θ)·(y,ϕ) dxdθ = KΦ(y)KΨ(ϕ) = KΦ ⊗KΨ(y, ϕ)

where KΦ and KΨ are defined as above.

Fix a function f : Rn × Rn → C, 2πZn-periodic with respect to its last n variables, with support in

B2(0, R0)×Rn for some R0 > 0, belonging to C`(R2n) with b`c ≥ n+ 1. For s ∈ ]0, 1] and (x, θ) ∈ Rn×Rn, set

fs(x, θ) =

∫
R2n

K(y, ϕ)f(x− sy, θ − sϕ)dydϕ

=

∫
R2n

K(y, ϕ)
∑
k∈Zn

f̂k(x− sy)eik·(θ−sϕ)dydϕ

with

(4.15) f̂k(u) =
1

(2π)n

∫
Tn
f(u, v)e−ik·vdv.

Note that fk is C`, with support in B2(0, R0), so that the previous study on the non-periodic case applies to

fk.

By Fubini interversion

(4.16)

fs(x, θ) =
∑
k∈Zn

∫
R2n

K(y, ϕ)f̂k(x− sy)eik·(θ−sϕ)dydϕ

=
∑
k∈Zn

(∫
Rn
KΦ(y)f̂k(x− sy)dy

)(∫
Rn
KΨ(ϕ)eik·(θ−sϕ)dϕ

)
=
∑
k∈Zn

(f̂k)s(x)Ψ(sk)eik·θ

where (f̂k)s stands for the analytic smoothing of the Fourier coefficient f̂k. This proves that the Fourier coefficient

(f̂s)k(x) relative to the periodic variable θ reads

(4.17) (f̂s)k(x) = Ψ(sk)(f̂k)s(x), k ∈ Zn.

Expressions (4.16) and (4.17) make clear that the whole smoothing procedure of a function depending both

on action and angle variables consists in constructing a Jackson trigonometric polynomial by smoothing the

Fourier coefficients and by suitably truncating the Fourier series.

Using the definition of Ψ, (f̂s)k = 0 when |k|1 > 1/s and, by (4.17) and (4.9):

(4.18) |(f̂s)k(z)| ≤ |(f̂k)s(z)| ≤ C1(n)
∥∥∥f̂k∥∥∥

C0(Rn)
≤ C1(n)CF(n, `)

|f |Cb`c(Rn)

|k|b`c∞
, k 6= 0, |k|1 ≤ 1/s,

and

(4.19) |(f̂s)0(z)| ≤ C1(n)
∥∥∥f̂0

∥∥∥
C0(Rn)

≤ C1(n) ‖f‖C0(Rn) .

As for the weighted Fourier norm of fs, we finally get:

||fs||s,s = sup|Im z|2≤s
∑
k∈Zn

∣∣∣(f̂s)k(z)
∣∣∣ es|k|1

≤ C1(n) ‖f‖C0(Rn) +
∑

k∈Zn\{0}:
|k|1≤1/s

eC1(n)CF(n, `)
|f |Cb`c(Rn)

|k|b`c∞
≤ CL(n, `)|f |C`(Rn) ,

where

(4.20) CL(n, `) := C1(n)

(
1 + eCF(n, `)

∑
k∈Zn

1

|k|b`c∞

)
< +∞.
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4.3. The main result with an application to normal forms.

4.3.1. Main result. Gathering together the elements of the previous section, we get the following result.

Theorem 4.1 (Analytic smoothing). Fix an integer n ≥ 1, R > 0 and s ∈ ]0, 1]. Let f be a C` function on

B∞(0, 2R)× Tn. Then there exist two constants CA(R, `, n), CB(R, `, n) and an analytic function fs on the set

Ans satisfying

(4.21) ‖f − fs‖Cp(B∞(0,R)×Tn) ≤ CA(R, `, n) s`−p|f |C`(B∞(0,2R)×Tn) for any integer 0 ≤ p ≤ b`c

and

(4.22) ‖fs‖s,s ≤ CB(R, `, n)|f |C`(B∞(0,2R)×Tn).

Moreover, fs is a trigonometric polynomial in the angular variables.

Proof. Fix a function χ ∈ C∞(Rn), with values in [0, 1], equal to 1 on the ball B∞(0, R) and with support in

B∞(0, 2R). Then the product f := χf is C` on An, has compact support in B∞(0, 2R)×Tn and coincides with

f on B∞(0, R)× Tn. Moreover

|f |C`(B∞(0,2R)×Tn) ≤ CK |f |C`(B∞(0,2R)×Tn)

where CK = C|χ|C`(B∞(0,R)×Tn) and C is a universal constant. By the Jackson-Moser-Zehnder theorem applied

to f , there is an analytic function f̄s on Ans satisfying

(4.23)

∣∣∣∣∣∣∣∣∂
αf̄s(I, θ)−

∑
β∈N2n:

|β|≤b`c−|α|

∂α+β f̄(Re(I, θ))
(Im(I, θ))β

β!

∣∣∣∣∣∣∣∣ ≤ CJs
`−|α||f̄ |C`(An),

so that for any p ≤ b`c:

(4.24)
∥∥f̄ − f̄s

∥∥
Cp(An)

≤ CJs
`−p|f̄ |C`(An).

As a consequence, taking the form of χ into account, one gets

(4.25) ‖f − fs ‖Cp(B∞(0,R)×Tn) ≤ CKCJs
`−p|f |C`(B∞(0,2R)×Tn).

Setting CA := CKCJ and, since the analyticity width ρ of the integrable part h is greater than s, the bound

(4.21) follows. The proof of (4.22) is an immediate consequence of the previous paragraphs if one sets CB :=

CL × CK . �

4.3.2. An easy way to derive normal forms for Hölder functions from analytic ones. Let us now explain our

strategy for a general Hölder Hamiltonian, we will then restrict ourselves to the case where h is analytic. Let

(4.26) H(I, θ) := h(I) + f(I, θ)

be C` on B∞(0, 2R) × Tn. Given s ∈ ]0, 1], let Hs be the s-smoothed analytic function given by Theorem 4.1

applied to the function H. By classical constructions (alluded to in the introduction and which will be recalled

in the following), there exist (close to identity) symplectic analytic local diffeomorphisms Ψ defined on domains

D ⊂ An which bring Hs = hs + fs to the normal form Hs ◦Ψ : D → R:

(4.27) Hs ◦Ψ = hs + g + f∗s

where hs is nothing else than the smoothed initial integrable Hamiltonian, g is a resonant part which controls

the fast drift in certain directions and f∗s is a very small remainder – all these functions being analytic on D.

The keypoint in our subsequent constructions is the following very simple equality

(4.28) H ◦Ψ = Hs ◦Ψ + (H −Hs) ◦Ψ = hs + g +
[
f∗s + (H−Hs) ◦Ψ

]
.
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This is a normal form for H, obtained by composition of H with an analytic diffeomorphism, in which the first

three terms are analytic on D and only the last one is C`. So H ◦ Ψ has the same structure and dynamical

interpretation as Hs ◦ Ψ, provided that the C` size of the additional remainder (H −Hs) ◦ Ψ is of the same

order as the size of the initial remainder f∗s . This issue strongly depends on the analytic smoothing method in

use, we will show in the sequel that the Jackson-Moser-Zehnder method is relevant for our purposes. Our study

will be even easier since we assume from the beginning that the integrable part h is analytic.

It turns out that the same smoothing method - and the same simple way to get a normal form from an

analytical one - are also relevant in many other functional classes, the main ones being the Gevrey classes

already used in [18], but also other ultradifferentiable ones. This will be developed in a further work.

5. Estimates of stability

The aim of this section is to prove Theorem 1.1. The proof consists of several steps. Following the discussion

in section 2 of the introduction, we first build an appropriate resonant covering of the phase space for the

integrable Hamiltonian h. Secondly, we study the local dynamics by applying Pöschel’s resonant normal form

(see Appendix B) in each resonant block and we set the dependencies of the ultraviolet cut-off K and analyticity

widths r, s on the perturbative parameter ε. Finally, we exploit the properties of the resonant covering and we

obtain a global result of stability by exploiting the so called ”capture in resonance” argument.

5.1. Construction of the resonant patchwork. In the sequel, we follow ref. [13], in which the choices

of the parameters and the dependencies of the small denominators on the ultraviolet cut-off K are justified

heuristically. For the sake of clarity, in order to have coherent notations we denote by DΛ rather than BΛ the

resonant blocks introduced in Section 2, moreover when possible we will not keep track of constants 15 but

rather indicate their presence in bounds and equalities by using the following symbols respectively: $,l and

m.

We start by setting some parameters, depending on the steepness indices α1, ..,αn−1 of h, that will be useful

throughout this section.

(5.1)

pj :=

{
Πn−2
i=j αi , if j ∈ {1, ..., n− 2}

1 , if j ∈ {n− 1, n}
; qj := npj − j , j ∈ {1, ..., n} ; cj := qj − qj+1 , j ∈ {1, ..., n− 1}

and set

(5.2) a :=
1

2nα1...αn−2
=

1

2np1
, b :=

1

2nα1...αn−1
=

a

αn−1
, R(ε) :$ εb .

With this setting, we fix an action I0 ∈ B∞(0, R/4) and we consider its neighborhood B2(I0, R(ε)).

Since h is steep in B∞(0, R), the norm of the frequency ω := ∂Ih(I) at any point of this set admits a uniform

lower positive bound, that is infI∈B∞(0,R) ||ω(I)|| m 1. Hence, when studying the geography of resonances for

h, for sufficiently small ε and without any loss of generality we can just consider maximal lattices Λ ⊂ ZnK of

dimension j ∈ {0, ..., n − 1}, with K ≥ 1 the ultraviolet cut-off. For a lattice Λ of dimension j ∈ {0, ..., n − 1}
we define its associated resonant zone as

(5.3) ZΛ := {I ∈ B2(I0, R(ε)) : ∀k ∈ Λ one has |k · ω(I)| < δΛ} , δΛ :$
1

|Λ|Kqj
.

and its associated resonant block DΛ as

(5.4) DΛ := ZΛ\
⋃

Λ′: dim Λ′=j+1

ZΛ′ .

Note that DΛ corresponds to that part of the resonant zone ZΛ which does not contain any other resonances

other than the one associated to Λ. In particular, this implies that for the completely non-resonant block

15i.e. of quantities depending only on the fixed parameters of the problem, namely n, h, ` and on the indices of steepness

α1, ...,αn−1.
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associated to Λ = {0} and for any block Λ corresponding to a maximal resonance of dimension j = n − 1 one

has, respectively

(5.5) D0 := B(I0, R(ε))\
⋃

Λ′: dim Λ′=1

ZΛ′ and DΛ = ZΛ .

For any j ∈ {0, ..., n− 1} we set

(5.6) Dj :=
⋃

Λ: dim Λ=j

DΛ , Zj :=
⋃

Λ: dim Λ=j

ZΛ .

It is easy to see from (5.4) that

(5.7) Dj = Zj\Zj+1

so that from the definition of D0 in (5.5) one has the decompositions

(5.8) B2(I0, R(ε)) =

n−1⋃
i=0

Di , B2(I0, R(ε)) =

(
j−1⋃
i=0

Di

)
∪ Zj ∀j = 1, ..., n− 1 .

As we have explained in the introduction (see section 2), a large drift over a short time of any action variable

I ∈ DΛ is only possible along the plane of fast drift I + 〈Λ〉 spanned by the vectors belonging to Λ. Moreover,

the fast motion of the orbit starting at I along I + 〈Λ〉 can take the actions out of the block DΛ. So, we are

interested in understanding what happens when the actions leave DΛ but keep staying in ZΛ. Hence, we are

naturally taken to consider the intersection of a neighborhood of I + 〈Λ〉 with ZΛ. In this spirit, we fix

(5.9) ρ(ε) :=
R(ε)

2n

and, for any 0 < η ≤ ρ(ε) and for any action I ∈ DΛ with Λ 6= {0}, we define the disc associated to I as

(5.10) Dρ
Λ,η(I) :=

( ( ⋃
I′∈I+〈Λ〉

B2(I ′, η)

)
∩ ZΛ ∩B

(
I0, R(ε)− ρ(ε)

) )
I

where the subscript I denotes the connected component of the set containing the action I. Since we are going

to study the fate of all orbits starting at a fixed block DΛ, with Λ 6= {0}, that exit such block in a short time

along the plane of fast drift, we are also led to define the extended resonant block

(5.11) Dρ
Λ,rΛ

:=

( ⋃
I∈DΛ∩B(I0,R(ε)−ρ(ε))

Dρ
Λ,rΛ

(I)

)
⊂ ZΛ ∩B

(
I0, R(ε)− ρ(ε)

)
, rΛ :=

δΛ
M

,

where M was defined in (1.6). In the same way, the extended non-resonant block is defined as

(5.12) Dρ
0 := D0 ∩B(I0, R(ε)− ρ(ε)) .

5.2. The resonant blocks. As we have explained there, Nekhoroshev proved in [20] that, if h is steep, when

any action I ∈ DΛ, with Λ 6= {0}, moves along the plane of fast drift, it must exit the resonant zone ZΛ after

having travelled for a short distance. Indeed, if h is steep with steepness indices α1, ...,αn−1 one can prove that

the diameter of the intersection of a neighborhood of the fast drift plane with the resonant zone is small in the

sense given by the following

Lemma 5.1. For any Λ 6= 0, dim Λ = j ∈ {1, ..., n − 1}, for any I ∈ DΛ ∩ B(I0, R(ε) − ρ(ε)) and for any

I ′ ∈ Dρ
Λ,rΛ

(I) one has

(5.13) |I − I ′|2 ≤ rj , where rj :$
1

Kqj/αj
.
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For a proof of this result we refer to Lemma 2.1 of ref. [13].

We notice that a smaller value of ε, i.e. a higher value of K since the ultraviolet cut-off is always a decreasing

function of ε, leads to a closer maximal distance between any action I belonging to a resonant block and any

action belonging to its disc.

Since we will perform normal forms in the (extended) resonant blocks, we also need an estimate of the small

divisors in these sets, namely we have

Lemma 5.2. For any maximal lattice Λ ∈ ZnK of dimension j ∈ {0, ..., n− 1}, for any k ∈ ZnK\Λ and for any

I ∈ Dρ
Λ,rΛ

one has

(5.14) |〈k, ω(I)〉| ≥ αΛ :$
1

|Λ|Kqj−cj
,

whereas for any action I in the completely non-resonant block D0 and for any k ∈ ZnK one has

(5.15) |〈k, ω(I)〉| ≥ α0 :$
1

Kq1
.

We refer again to [13, Lemma 2.2] for a proof of this result.

Finally, a key ingredient in order to insure stability in the steep case is the fact that, when possibly exiting a

resonant zone along the plane of fast drift, the actions must enter another resonant zone associated to a lattice

of lower dimension. This is the content of

Lemma 5.3. Let Λ,Λ′ two maximal lattices of ZnK having the same dimension j ∈ {1, ..., n− 1}. Then one has

(5.16) closure
(
Dρ

Λ,rΛ

)
∩ ZΛ′ = ∅ .

Once again, the proof of this Lemma can be found in [13] (Lemma 2.3).

With the ingredients of this paragraph, we are able to prove stability.

5.3. Proof of Theorem 1.1. We start by giving the standard estimates of stability in the completely non-

resonant extended block Dρ
0 . Note that the following bounds do not require any geometric assumption on the

integrable part h.

Lemma 5.4 (Non-resonant Stability Estimates). For any sufficiently small ε and for any time t satisfying

(5.17) |t| ≤ T0 :$
1

(1 + a`)| ln ε|`−1 εa(`−1)+1/2
, a :=

1

2np1
,

any initial condition I(0) ∈ Dρ
0 drifts at most as

(5.18) |I(t)− I(0)|2 l− ε
1/2 .

Proof. Our goal is to apply Pöschel’s normal form (see Lemma B.1) to the smoothed Hamiltonian of Theorem

4.1 with analyticity widths r and s.

• Normal form

By monotonicity of the Fourier norm w.r.t. the action variables and (4.22) we immediately get,

(5.19) ||fs||r,s ≤ ||fs||s,s ≤ CB(R, `, n)ε =: ε ,

for any r ≤ s, where we set ε := |f |C`(B∞(0,R)×Tn).

Denote

B%,σ := {(I, θ) ∈ Cn : |I −B∞(0, R/4)|2 < % , θ ∈ Tnσ} ,
since h is analytic, we chose not to regularize it further. So let Hs := h(I) + fs be the corresponding analytic

Hamiltonian defined on Bs,s. By Pöschel’s Lemma B.1 applied in the complex extension, denoted Dρ0,r,s, of the

non-resonant block Dρ
0 , with %′  r, % s, σ  s, if

(5.20) ε l−
α0 r

K
, r l− min

(α0

K
, s
)
, Ks ≥ 6
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are satisfied, then there exists a symplectic diffeomorfism Ψ0 that puts Hs into resonant normal form:

(5.21) Hs ◦Ψ0 = h(I) + g + f∗s , {h, g} = 0, Ψ0 : Dρ0,r/2,s/6 −→ D
ρ
0,r,s .

In particular the resonant and non-resonant part satisfy, respectively,

(5.22) ||g− g0||r/2,s/6 l− ε , ||f
∗
s||r/2,s/6 ≤ e−

Ks
6 ε

where g0 := PΛPKfs and PΛ, PK are the projectors defined in Lemma B.1.

• Setting of the initial parameters

Let us set the following dependences on ε of the ultraviolet cut-off K and of the analyticity widths r, s

(5.23) K :=
(ε0
ε

)a
, s :$

(
ε

ε0

)a ∣∣∣∣∣ln
[(

ε

ε0

)6(1+a`)
]∣∣∣∣∣ , r :$

1

K1+q1
$

(
ε

ε0

)a(1+q1)

=

(
ε

ε0

)1/2

.

where ε0 is a free parameter and ε ≤ ε0 since K ≥ 1.

Remark 5.1. The freedom in the definitions above is subordinated to the fact that, in order for the construction

to be meaningful, the reminder produced by the normal form must be less than or equal to the size of the

additional term (H − Hs) ◦ Ψ0, byproduct of the analytic smoothing. As we are working in finite regularity,

the latter is expected to be polynomial. The reminder of the normal form being of order e−Ks, one must have

Ks ∼ O(| log ε|c) for some c > 0. Since s tunes the size of the remainder yielded by the analytic smoothing,

it has to be polynomial. Hence one is left with two possibilities: either the choice we made in (5.23), or to

set K ∼ ε−a| log ε|c and s ∼ εa. However this second choice would worsen the exponents of stability, since

the thresholds of applicability in the normal form lemma strongly depend on K. Of course, to deal with other

regularity classes, such as the Gevrey one, other choices must be made.

By plugging the choices (5.23) into the three thresholds in (5.20), it is easy to see that there exists an

appropriate choice of ε0 that makes the three conditions to be simultaneously satisfied. Hence, for the Hölder

Hamiltonian

H = h+ f = Hs + f − fs, Hs := h+ fs

we can write

(5.24) H ◦Ψ0 = Hs ◦Ψ0 + (f − fs) ◦Ψ0 = h+ f∗s + (f − fs) ◦Ψ0 .

Note that since we are in a completely non-resonant block, the resonant term g does not appear in the normal

form. Now, the normal form in Lemma B.1 insures that there exists a constant ξ > 1 such that any initial

condition (I(0), θ(0)) ∈ Dρ
0 × Tn is mapped by Ψ0 into (I(0), ϑ(0)) ∈ (Dρ0, r32ξ

)R × Tn. For any time t such

that the normalized flow ΦtH◦Ψ0
: (I(0), ϑ(0)) 7−→ (I(t), ϑ(t)) starting at (Dρ0, r32ξ

)R × Tn does not exit from

(Dρ0,r/2)R × Tn, the evolution of the normalized variables reads (i = 1, ..., n)

|Ii(t)− Ii(0)| ≤
∫ t

0

sup
(I,ϑ)∈(Dρ

0, r
32ξ

)R×Tn

( ∣∣(∂ϑif∗s) ◦ ΦtH◦Ψ0

∣∣+
∣∣{∂ϑi [(f − fs) ◦Ψ0]} ◦ ΦtH◦Ψ0

∣∣ )dt
≤
∫ t

0

(
sup

(I,ϑ)∈(Dρ
0,r/2

)R×Tn
|∂ϑif∗s|+ sup

(I,ϑ)∈(Dρ
0,r/2

)R×Tn
|∂ϑi [(f − fs) ◦Ψ0]|

)
dt

≤ |t|

[
||f∗s||r/2,s/6

s
+ ‖f − fs‖C1(B∞(0,R/2)×Tn) × sup

(I,ϑ)∈(Dρ
0,r/2

)R×Tn
|∂ϑiΨ0|

]
.

(5.25)

The normal form Lemma B.1, together with the choices in (5.23) and the definition of ε in (5.19), assures that

(5.26) ||f∗s||r/2,s/6 ≤ e−Ks/6 ε l− exp

{
ln

[(
ε

ε0

)1+a`
]}

ε l− ε
2+a` ,
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whereas, by Theorem 4.1, we have

(5.27) ‖f − fs‖C1(B∞(0,R/2)×Tn) l− s
`−1ε l−

∣∣∣∣∣ln
[(

ε

ε0

)6(1+a`)
]∣∣∣∣∣
`−1

ε1+a(`−1) l−
∣∣∣ln(ε6(1+a`)

)∣∣∣`−1

ε1+a(`−1) .

Finally, by writing in the usual way |∂ϑiΨ0| = |∂ϑi(Ψ0 − id + id)|, the Cauchy estimates together with the

bounds in B.5 imply (since r ≤ s)

(5.28) sup
(I,ϑ)∈(Dρ

0,r/2
)R×Tn

|∂ϑiΨ0|2 l− 1 + max

{
1

24ξ
,

1

32ξ

r

s

}
l− 1 .

It is easy to see from estimates (5.26), (5.27) and (5.28) that, in order, the remainder from the analytic smoothing

dominates on the one coming from the normal form, namely

||f∗s||r/2,s/6
s

� ‖f − fs‖C1(B∞(0,R/2)×Tn) × sup
(I,ϑ)∈(Dρ

0,r/2
)R×Tn

|∂ϑiΨ0|

so that finally we can write

(5.29) |I(t)− I(0)|2 l− |t|
∣∣∣ln(ε6(1+a`)

)∣∣∣`−1

ε1+a(`−1) .

Hence, over a time

|t| l−
r∣∣ln (ε6(1+a`)
)∣∣`−1

ε1+a(`−1)
l−

1∣∣ln (ε6(1+a`)
)∣∣`−1

ε1/2+a(`−1)

one has |I(t)− I(0)|2 l− r and, by scaling back to the original variables,

|I(t)− I(0)|2 l− r l− ε
1/2 .

�

As for the dynamics in the resonant blocks, we have the following

Lemma 5.5. Consider a maximal lattice Λ ⊂ ZnK of dimension j ∈ {1, ..., n−1}. There exists Tj > 0 such that

for any sufficiently small ε and for any initial condition (I(0), θ(0)) ∈
(
DΛ ∩B

(
I0, R(ε)− (j + 1)ρ(ε)

))
× Tn,

if one sets

TΛ :=Tj ×
rΛ

| ln ε6(1+a`)|`−1 ε1+a(`−1)
, a :=

1

2np1
,(5.30)

and considers the time of escape of the flow generated by H from the extended resonant block

τe := inf

{
t ∈ R : ΦtH

(
DΛ ∩B

(
I0, R(ε)− (j + 1)ρ(ε)

)
× Tn

)
6⊂ Dρ

Λ,rΛ
× Tn

}
,(5.31)

the following dichotomy applies:

(1) If |τe| ≥ TΛ one has

(5.32) |I(t)− I(0)|2 < ρ(ε)

over a time |t| ≤ TΛ;

(2) If |τe| < TΛ there exists i ∈ {0, ..., j − 1} such that

I(τe) ∈ Di ∩
(
B
(
I0, R(ε)− jρ(ε)

))
.
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Proof. We start by considering the case |τe| ≥ TΛ. In a similar way to what we did in the proof of Lemma 5.4,

we apply Pöschel’s Normal Form (see Lemma B.1) to the smoothed Hamiltonian Hs in the complex extension

(Dρ
Λ,rΛ

)rΛ of the real extended resonant block Dρ
Λ,rΛ

, with parameters

(5.33) K :=
(ε0
ε

)a
, s :$

(
ε

ε0

)a ∣∣∣∣∣ln
[(

ε

ε0

)6(1+a`)
]∣∣∣∣∣ , rΛ :$

1

|Λ|Kqj

and with a small divisor estimate given by formula (5.14) in Lemma 5.2, namely

(5.34) αΛ :$
1

|Λ|Kqj−cj
.

As before, we plug (5.33) and (5.34) into Pöschel’s thresholds (B.1) – (B.2) and we derive the conditions

ε l−
αΛrΛ

K
←→

(
ε

ε0

)1−an(pj+pj+1)

l− 1 j ∈ {1, . . . , n− 1}

rΛ l−
αΛ

K
←→

(
ε

ε0

)an(pj−pj+1)

l− 1 j ∈ {1, . . . , n− 1}

Ks ≥ 6 ←→

∣∣∣∣∣ln
[(

ε

ε0

)6(1+a`)
]∣∣∣∣∣ ≥ 6 .

(5.35)

By definition of the parameters pj in (5.1), it is easy to see that the first two conditions are always satisfied by

appropriately choosing ε0, whereas the last condition is trivial.

Therefore, by taking into account the notations in (3.6), there exists a symplectic transformation ΨΛ :

(Dρ
Λ,rΛ

)rΛ/2 × Tns/6 −→ (Dρ
Λ,rΛ

)rΛ × Tns , (I, ϑ) 7−→ (I, θ), that takes H into the resonant normal form

(5.36) H ◦ΨΛ = Hs ◦ΨΛ + (H − Hs) ◦ΨΛ = h+ g + f∗s + (f − fs) ◦ΨΛ

with {h, g} = 0, ||f∗s||r/2,s/6 l− e
−Ks/6 ε.

Now, for any time t such that |t| ≤ TΛ ≤ |τe|, the dynamics on the subspace orthogonal to the plane of fast

drift 〈Λ〉 can be controlled in the usual way by exploiting the smallness of the non-resonant remainder f∗s, as

well as that of (f − fs) ◦ ΨΛ. Namely, for any initial position in the actions I(0) ∈ DΛ, by the first estimate

in (B.5) one has that the associated normalized coordinate satisfies I(0) ∈ (DΛ)RrΛ
32ξ

, where (DΛ)RrΛ
32ξ

represents

the real projection of the complex extension of width rΛ
32ξ around DΛ (not to be confused with the extended

resonant block) and where ξ > 1 is a free parameter that can be suitably adjusted. By taking into account the

fact that Π〈Λ〉⊥(∂ϑg) = 0, one can write∣∣Π〈Λ〉⊥(I(t)− I(0)
)∣∣

2

≤
∫ t

0

sup
(I,ϑ)∈(DΛ)RrΛ

32ξ

×Tn

( ∣∣Π〈Λ〉⊥(∂ϑg + ∂ϑf
∗
s) ◦ ΦtH◦ΨΛ

∣∣
2

+
∣∣Π〈Λ〉⊥{∂ϑ[(f − fs) ◦ΨΛ]} ◦ ΦtH◦ΨΛ

∣∣
2

)
dt

≤
∫ t

0

sup
(I,ϑ)∈(DΛ)RrΛ

32ξ

×Tn

( ∣∣(∂ϑf∗s) ◦ ΦtH◦ΨΛ

∣∣
2

+
∣∣{∂ϑ[(f − fs) ◦ΨΛ]} ◦ ΦtH◦ΨΛ

∣∣
2

)
dt

≤ sup

(I,ϑ)∈
(
DρΛ,rΛ

)R
rΛ
32ξ

×Tn

(
|(∂ϑf∗s)|2 + |{∂ϑ[(f − fs) ◦ΨΛ]}|2

)
|t| ,

(5.37)

where the last inequality follows from the fact that |t| ≤ τe and, since the initial variables are confined in Dρ
Λ,rΛ

,

the normalized ones stay in (Dρ
Λ,rΛ

)RrΛ
32ξ

over the same time.
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Since |t| ≤ TΛ ≤ τe, by the same arguments that were used in estimate (5.25) and estimate (5.37) we obtain∣∣Π〈Λ〉⊥(I(t)− I(0)
)∣∣

2
l− |t|

∣∣∣ln(ε6(1+a`)
)∣∣∣`−1

ε1+a(`−1)

l− Tj ×
rΛ∣∣ln (ε6(1+a`)
)∣∣`−1

ε1+a(`−1)

∣∣∣ln(ε6(1+a`)
)∣∣∣`−1

ε1+a(`−1) =
rΛ

4

(5.38)

by suitably choosing Tj .

Let us decompose the variation of the action variables as

I(t)− I(0) =I(t)− I(t) + I(t)− I(0) + I(0)− I(0)

=I(t)− I(t) + Π〈Λ〉⊥
(
I(t)− I(0)

)
+ Π〈Λ〉

(
I(t)− I(0)

)
+ I(0)− I(0) ,

(5.39)

so that estimate (5.38), together with the size of the normal form, implies that, for |t| ≤ TΛ, the motion

orthogonal to the fast drift plane is bounded by

|I(t)− I(0)−Π〈Λ〉
(
I(t)− I(0)

)
|2 ≤|I(t)− I(t)|2 + |Π〈Λ〉⊥

(
I(t)− I(0)

)
|2 + |I(0)− I(0)|2

≤ rΛ

32ξ
+
rΛ

4
+

rΛ

32ξ
≤ 3

4
rΛ ,

(5.40)

where we have used the fact that ξ > 1. Hence, by (5.40), I(t) ∈ Dρ
Λ,rΛ

since I(0) ∈ DΛ and the orbit lies

entirely in this set for any |t| ≤ TΛ ≤ τe; moreover, the definition in (5.10) implies

I(t) ∈ Dρ

Λ, 34 rΛ
(I(0)) ⊂ Dρ

Λ,rΛ
(I(0)) .

This fact, together with Lemma 5.1, yields

(5.41) |I(t)− I(0)|2 ≤ rj , where rj :$
1

Kqj/αj
, rj m− rΛ .

As it is shown in [13] (formula (38)), a careful choice of the constants leads to

max
j∈{1,...,n−1}

rj < ρ(ε) ,

which concludes the proof of the first claim of this Lemma.

We now consider the second claim. In this case, for any time t such that |t| < |τe| < TΛ we can repeat the

same arguments above and find I(t) ∈ Dρ

Λ, 34 rΛ
(I(0)). Then, by construction, the escape time satisfies

(5.42) I(τe) ∈ closure
(
Dρ

Λ, 34 rΛ
(I(0))

)
.

Again, by Lemma 5.1, this implies |I(t)−I(0)|2 < ρ(ε) for any |t| < τe < TΛ, so that, since I(0) ∈ B2

(
I(0), R(ε)−

(j + 1)ρ(ε)
)

one has

(5.43) I(τe) ∈ B2

(
I(0), R(ε)− jρ(ε)

)
.

Now, we shall prove that I(τe) 6∈ ZΛ. By definition we have I(τe) 6∈ Dρ
Λ,rΛ

and, thanks to (5.11), this means

that there does not exist any action I∗ ∈ DΛ ∩B
(
I0, R(ε)− ρ(ε)

)
such that I(τe) belongs to its disc Dρ

Λ,rΛ
(I∗).

Hence, by (5.10), I(τe) must satisfy at least one of the three following conditions:

(1) 6 ∃I∗ ∈ DΛ ∩B2

(
I0, R(ε)− ρ(ε)

)
: I(τe) ∈

⋃
I′∈I∗+〈Λ〉B2(I ′, rΛ);

(2) I(τe) 6∈ ZΛ;

(3) I(τe) 6∈ B2

(
I0, R(ε)− ρ(ε)

)
.

By taking (5.42) and (5.43) into account, we see that the first and the third possibility cannot occur. Therefore,

there must exist a maximal lattice Λ′ 6= Λ and a resonant zone ZΛ′ such that I(τe) ∈ ZΛ′ . Moreover, Lemma

5.3, insures that dim Λ′ 6= dim Λ so that I(τe) 6∈ Zj . The second decomposition in (5.8) together with (5.43)

and (5.9) implies that I(τe) belongs to a resonant block of lower multiplicity, hence the claim. �
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Remark 5.2. The decompositions in (5.8) are a covering of B(I0, R(ε)) but they are not a partition since, in

general, Di ∩Dj 6= ∅ for j > i+ 1. Hence, nothing prevents I(τe) from belonging to a resonant block of strictly

higher multiplicity than the starting one. If this happens, however, thanks to the construction in (5.8), one is

insured that I(τe) will also belong to another block associated to a lower order resonance. One therefore chooses

the block in which to study the evolution of the actions once they leave the resonant zone they started at. This

is at the core of the resonant trap argument, which is discussed in the sequel.

Proof of Theorem 1.1. Theorem 1.1 follows from Lemmas 5.4 and 5.5. Indeed, for any initial condition in the

action variables I0 ∈ B∞(0, R/4), we consider the ball B2(I0, R(ε)) and the following dichotomy holds:

(1) either I0 belongs to the completely non-resonant domain Dρ
0 , in which case the proof ends here thanks

to Lemma 5.4;

(2) or for some j ∈ {1, ..., n− 1} and some maximal Λ ⊂ ZnK of rank j, I0 ∈ DΛ ∩B
(
I0, R(ε)− (j + 1)ρ(ε)

)
.

In the second case, Lemma 5.5 applies and one has another dichotomy:

(1) either |I(t) − I(0)|2 l− ρ(ε) :$ εb over a time TΛ; in this case the Theorem is proven since, taking into

account the fact that the analyticity width in Lemma 5.4 satisfies r $ ε1/2, one has

(5.44)

T(ε) := T0 :$
1

|(1 + a`) ln ε|`−1 εa(`−1)+1/2
$

r

|(1 + a`) ln ε|`−1 εa(`−1)+1
l−

Tj × rΛ

| ln ε6(1+a`)|`−1εa(`−1)+1
$: TΛ ,

where the last inequality is a consequence of the fact that, by (5.23), (5.33), one can write

r ≤ rΛ ←→ 1

K1+q1
≤ 1

|Λ|Kqj

and that, since |Λ| ≤ Kj , the stricter inequality

1

K1+q1
≤ 1

Kj+qj
←→ 1 + q1 ≥ j + qj ←→ p1 ≥ pj ,

is trivially satisfied by the definition of p1 and pj , j ∈ {1, ..., n − 1}, in (5.1) and by the fact that the

steepness indices are always greater or equal than one.

(2) or the actions enter a resonant block Di ∩
(
B
(
I0, R(ε)− jρ(ε)

))
corresponding to a resonant lattice of

dimension i < j after having travelled a distance ρ(ε) over a time inferior to the time of escape. In this

block, the above arguments can be repeated so that, after having possibly visited at most n− 1 blocks,

overall the actions can travel at most a distance (n−1)ρ(ε) before entering the completely non-resonant

block, in which they are trapped for a time T0 given by Lemma 5.4 and they travel for another length

ρ(ε). Thanks to (5.9), by construction one has |I(t)− I(0)| ≤ nρ(ε) = 1
2R(ε) $ εb.

This is the so-called resonant trap argument and concludes the proof of Theorem 1.1, once one sets

a = a(`− 1) +
1

2
, b = b .

�

Appendix A. Smoothing estimates

Lemma A.1. The derivatives of K satisfy

∀p ∈ N, ∃Cp :
∣∣∂βK(x)

∣∣ ≤ Cp e| Im x|

(1 + |x|2)p
, ∀ |β| ≤ p.

For the proof see [9, Lemma 9].

Lemma A.2. Let f ∈ C`b(An), with ` ≥ 1, and let
∑
k∈Zn f̂k(I)eik·θ be its Fourier series. Then, for any fixed

k ∈ Zn\{0}, there exists a uniform constant CF(n, `) satisfying

(A.1)
∥∥∥f̂k∥∥∥

C0(Rn)
≤ CF(n, `)

‖f‖Cq(An)

|k|q
,
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where q := b`c.

Proof. Fix a multi-index j = (j1, ..., jn) ∈ Nn such that |j|1 ≤ q := b`c, one obviously has

(A.2) ∂jθf(I, θ) =
∑
k∈Zn

(i)|j|kj11 ...k
jn
n f̂k(I)eik·θ .

From

(A.3) ∂jθf(I, θ) :=
∑
k∈Zn

(∂̂jf)k(I)eik·θ ,

and by the unicity of Fourier’s coefficients one also has

(A.4) f̂k(I) :=
(∂̂jf)k(I)

kj11 ...k
jn
n

.

As in expression (A.4) the multi-index j ∈ Zn is arbitrary, for each value of k ∈ Zn\{0} we can choose j so that

(A.5) f̂k(I) =
(∂̂jf)k(I)

(maxi=1,...,n{ki})|j|
.

Moreover, for any k ∈ Zn\{0} one has the trivial inequality

max
i=1,...,n

{|ki|} ≥
|k|
n

.

This, together with (A.5) and the choice |j| = q yields

(A.6) |f̂k(I)| = n`
|(∂̂jf)k(I)|
|k|q

= n`
1/(2π)n|

∫ 2π

0
∂jf(I, θ)eik·θdθ|
|k|q

≤ n` |∂
jf(I, θ)|
|k|q

,

which, once the supremum over the actions is taken, implies the result. �

Appendix B. Normal form

Given a function F in Dr,s, the notations PΛ and PK stand for the projections

PΛF (I, θ) :=
∑

k∈Zn:k∈Λ

Fk(I)eik·θ , PKF (I, θ) :=
∑

k∈Zn:|k|1≤K

Fk(I)eik·θ

Accordingly with our notations, we state here the result of Pöschel [23].

Lemma B.1 (Poschel’s normal form). Let %, σ > 0 and H(I, θ) = h(I) + f(I, θ) be analytic on

DΛ,%,σ := {(I, θ) ∈ Cn : |I −DΛ|2 < % , θ ∈ Tnσ}

where DΛ is (α,K)-nonresonant modulo Λ with respect to the integrable Hamiltonian h. Also, let M denote the

hermitian norm of the hessian of h over DΛ,%,σ.

If, for some %′ > 0, one is insured

(B.1) ||f ||%,σ ≤ ε ≤
1

256ξ

α%′

K
, %′ ≤

(
%,

α

2ξMK

)
for some ξ > 1 and

(B.2) Kσ ≥ 6,

then there exists a real-analytic, symplectic transformation Ψ : DΛ,%′/2,σ/6 −→ DΛ,%,σ taking H into resonant

normal form, that is

(B.3) H ◦Ψ = h + g + f∗ , {h,g} = 0 .
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Moreover, denoting by g0 := PΛPKf the resonant part of f , we have the estimates

(B.4) ||g − g0||%′/2,σ/6 ≤ 64
K

α%′
ε2 , ||f∗||%′/2,σ/6 ≤ e−Kσ/6ε.

Furthermore, Ψ is close to the identity, in the sense that, for any (I, θ) ∈ DΛ,%′/2,σ/6, one has

(B.5)
|ΠIΨ− I|2

ρ′
≤ 23 K

αρ′
ε ≤ 1

32ξ
,

|ΠθΨ− θ|∞
σ

≤ 25K

3αρ′
ε ≤ 1

24ξ

where ΠI ,Πθ denote the projection on the action and angle variables, respectively.
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