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Abstract

This paper deals with a quadrature rule for the numerical evaluation of hypersingular integrals of highly
oscillatory functions on the positive semiaxis. The rule is of product type and consists in approximating
the density function f by a truncated interpolation process based on the zeros of generalized Laguerre
polynomials and an additional point. We prove the stability and the convergence of the rule, giving error
estimates for functions belonging to weighted Sobolev spaces equipped with uniform norm. We also
show how the proposed rule can be used for the numerical solution of hypersingular integral equations.
Numerical tests which confirm the theoretical estimates and comparisons with other existing quadrature
rules are presented.

1 Introduction
We consider the approximation of the following integrals

Hω,γ
p ( f , t) =

∫

=
+∞

0

f (x)eiωx

(x − t)p+1
uγ(x) d x , (1)

where t > 0, p ≥ 0 is an integer, i2 = −1, ω≫ 1, uγ(x) = xγe−
x
2 ,γ≥ 0, is a generalized Laguerre weight and the integral is

understood in the Cauchy principal value sense if p = 0 and in the finite part Hadamard sense if p > 0. Details on the properties
fulfilled by finite part integrals on unbounded intervals can be found in [15]. Among them we recall that integrals (1) can also be
regarded as the p-th derivative of Cauchy principal value integrals, i.e.

Hω,γ
p ( f , t) =

1
p!

d p

d t p

∫

−
+∞

0

f (x)eiωx

(x − t)
uγ(x) d x . (2)

Integrals Hω,γ
p ( f ) are of interests because of their frequent occurrences in many areas of science ranging from image analysis,

optics, electrodynamics, and fluid mechanics. In particular, they appear in boundary element methods and their effectiveness
often depends upon the accuracy of the numerical evaluation of the integrals (1) (see [1, 2, 9, 26, 43] and the references there
in).

A wide literature dealing with numerical methods for the approximation of singular and hypersingular integrals of non
oscillatory functions can be found in both cases of bounded intervals (see, for example, [4, 7, 8, 10, 11, 20, 22, 25, 34, 35, 36,
37, 40, 46])) and unbounded intervals (see, for example, [12, 13, 14, 15, 16, 17, 21, 38]). The same can be said for integrals of
highly oscillatory functions (see, for example, [6, 18, 19, 24, 26, 27, 39, 44]).

Concerning integrals of functions presenting both singularity and oscillation, to our knowledge, most of the papers in literature
are devoted to the case of bounded intervals (see, for instance, [3, 41, 45, 42] and the references therein) and only a very small
numbers of papers deal with the numerical evaluation of (1) with p = 0 [5, 43]. In particular, in [43] the authors propose three
different quadrature rules depending on the position of the singular point t: t = O(1) or t ≫ 1, 0 < t ≪ 1 and t = 0. The
numerical methods proposed in each regime are based on special reformulations and/or decompositions of the integral and
on the application of the Gauss-Laguerre quadrature rules. Two numerical procedures are proposed in [5]. In the first one the
integral (1) is approximated by a s−step asymptotic quadrature rule requiring the evaluation of the function F(x) = f (x)− f (t)

x−t ex

and its s−1 derivatives at the point 0. The second quadrature rule is derived by the first one approximating F (k−1)(x), k = 0, . . . , s,
with an interpolation formula. All the quadrature rules introduced in [5, 43] share the following two characteristics: the function
f has to belong to C k(0,+∞) for some k ≥ 1 and the accuracy of the rule improves when the frequency ω increases.

We propose a quadrature rule of product type based on the truncated Lagrange polynomial interpolating the function f at
generalized Laguerre zeros and the additional point 4m. The stability and convergence of the rule have been proved in weighted
uniform spaces of Sobolev type. This quadrature rule has three main advantages: the procedure is always the same for any
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choice of the point t; no evaluations of the derivatives of the function f are required; the stability and the convergence of the
rule have been proved for a class of functions wider than the one considered in [5, 43]. The use of truncated interpolation
processes is crucial in order to reduce the number of function computations and possible overflow ranges (see, for example,
[10, 28, 29, 33]). Moreover, the rate of convergence is always the same regardless the choices of the values of t and ω. Finally,
with a computational cost of the same order and no more evaluations of the function f , it is possible to perform the simultaneous
approximation of Hω,γ

s ( f , t), s = 0, . . . , p (we recall that in [5, 43] only the case p = 0 has been considered).
The paper is organized as follows. In Section 2 we give some preliminary definitions and results and sufficient conditions for

the existence of the integrals (1). Section 3 contains the description of the quadrature rule, the details for its implementation,
and the results dealing with the stability and the convergence of the rule. Error estimates in uniform norm are also given. In
Section 4 we show how the proposed rule can be employed in the construction of a Nyström method for solving some integral
equations. Comparisons with other method existing in literature and numerical tests showing the performances of the rule are
presented in Section 5. Finally, in Section 6 we give the proofs of the theoretical results.

2 Preliminaries and existence of the integrals Hω,γ
p ( f , t)

We denote by C0(I) the space of all continuous functions on the set I and, with u(x) = (1+ x)δ xγe−
x
2 ,γ,δ ≥ 0, we consider the

following set of functions

Cu =











(

f ∈ C0((0,+∞)) : lim
x→0+

x→+∞

f (x)u(x) = 0

)

, γ > 0,
n

f ∈ C0([0,+∞)) : lim
x→+∞

f (x)u(x) = 0
o

, γ= 0,

equipped with the norm
∥ f ∥Cu

:= ∥ f u∥= sup
x≥0
|( f u)(x)|.

We also consider the following Sobolev-type subspaces of Cu of order 1≤ r ∈ N [30]

Wr(u) =
�

f ∈ Cu : f (r−1) ∈ AC((0,+∞)) and ∥ f (r)ϕru∥< +∞
	

,

where AC((0,+∞)) is the set of all absolutely continuous functions on every closed subset of R+ and ϕ(x) =
p

x . These spaces
equipped with the norm

∥ f ∥Wr (u) := ∥ f ∥Cu
+ ∥ f (r)ϕru∥

are Banach spaces.
In the sequel we will denote by uγ the weight function u with δ = 0 and by uγ,δ the weight function u with δ ≠ 0. Moreover,

C will denote a positive constant having different meanings in different formulas. In particular, we will write C ̸= C(a, b, . . .) to
mean that the positive constant C is independent of the variables a, b, . . ..

We denote by wα(x) = xαe−x , α > −1, the generalized Laguerre weight and by {pm(x) := pm(wα, x)}m the sequence of the
orthonormal generalized Laguerre polynomials. We recall that they satisfy the following three-term recurrence relation















p−1(x) = 0, p0(x) =
1

p

Γ (α+ 1)
,

aν+1pν+1(x) = (x − bν)pν(x)− aνpν−1(x),
aν =

p

ν(ν+α), bν = 2ν+α+ 1.

(3)

Denoting by zk, k = 1, . . . , m, the zeros of pm(wα) and recalling that 0 < z1 < z2 < . . . < zm < 4m, we consider the truncated
version of the Lagrange polynomial interpolating a continuous function f at the knots z1, . . . , zm, 4m. It is defined as follows

Lm+1(wα, f ) :=
j
∑

k=1

f (zk)ℓm+1,k(x), (4)

where

ℓm+1,k(x) = lm,k(x)
(4m− x)
(4m− zk)

, k = 1, . . . , j, (5)

with lm,k the k− th fundamental Lagrange polynomial and, for 0< θ < 1 fixed,

j = min
k=1,...,m

{k : zk ≥ 4θm}. (6)

In [12, Theorem 2.2] the following theorem, dealing with the simultaneous approximation of the function f and its derivatives,
has been proved.

Theorem 2.1. Let 1≤ r ∈ N, p ∈ N and α,γ satisfying

max
§

−1,2γ−
5
2

ª

< α≤ 2γ−
1
2

. (7)

If f ∈Wp+r(uγ), for any 0≤ k ≤ p, we have

∥( f − Lm+1(wα, f ))(k)ϕkuγ∥ ≤ C
�

log m
(
p

m)p+r−k
∥ f ∥Wp+r (uγ) + e−Am∥ f uγ∥

�

,

where C ̸= C(m, f ) and A ̸= A(m, f ).
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It is easy to prove that the above theorem holds true also if the weight uγ is replaced by uγ,δ.
The following theorem establishes the existence of the integral Hω,γ

p ( f , t) for functions belonging to W1(uγ,δ) if p = 0 and to
Wp+1(uγ) if p ≥ 1.

Theorem 2.2. For all f ∈W1(uγ,δ), with γ≥ 0 and δ > 0, and for any t > 0 we have

max
�

1, log−1 t−1
	

|Hω,γ
0 ( f , t)| ≤ C∥ f ∥W1(uγ,δ)

and for all f ∈Wp+1(uγ), p ≥ 1, γ≥ 0, and for any t > 0 we get

t p|Hω,γ
p ( f , t)| ≤ C∥ f ∥Wp+1(uγ),

where C ̸= C( f , t).

3 The quadrature rule
The quadrature rule we propose for approximating the integral (1) is of product type and consists in replacing the function f by
the truncated Lagrange polynomial Lm+1(wα, f ) defined in (4). Thus, we obtain

Hω,γ
p ( f , t) = Hω,γ

p,m( f , t) + eω,γ
p,m( f , t),

where

Hω,γ
p,m( f , t) = Hω,γ

p (Lm+1(wα, f ), t) =
j
∑

k=1

f (zk)

∫

=
+∞

0

ℓm+1,k(x)eiωx

(x − t)p+1
uγ(x) d x =:

j
∑

k=1

f (zk)M
(p)
k (t) (8)

is the product quadrature rule and
eω,γ

p,m( f , t) = Hω,γ
p ( f − Lm+1(wα, f ), t)

is the remainder term. Recalling (5) and that

lm,k(x) = λm,k

m−1
∑

ν=0

pν(zk)pν(x),

we can write

M(p)
k (t) =

1
4m− zk

∫

=
+∞

0

(4m− x)lm,k(x)eiωx

(x − t)p+1
uγ(x) d x =

λm,k

4m− zk

m−1
∑

ν=0

pν(zk)A
(p)
ν
(t)

where

A(p)
ν
(t) :=

∫

=
+∞

0

(4m− x)pν(x)eiωx

(x − t)p+1
uγ(x) d x

= (4m− t)

∫

=
+∞

0

pν(x)eiωx

(x − t)p+1
uγ(x) d x −

∫

=
+∞

0

pν(x)eiωx

(x − t)p
uγ(x) d x

=:

�

(4m− t)M (0)
ν
(t)− dν p = 0,

(4m− t)M (p)
ν
(t)−M (p−1)

ν
(t) p ≥ 1.

The integrals dν =

∫ +∞

0

pν(x)x
γeiωx− x

2 d x ,ν= 0, . . . , m− 1, are exactly computed using, for γ= 0 [23, p. 809, n◦ 5,6]

dν = (−1)ν
√

√ ν!
Γ (α+ 1+ ν)







(b− 1)ν − b−ν−1, α= 0
ν
∑

k=0

�

α+ k− 1
k

�

(b− 1)ν−k

bν−k+1
, α ̸= 0

,

where b = 1
2 − iω, and, for γ ̸= 0 [23, p. 809, n◦ 7]

dν = (−1)ν
√

√ ν!
Γ (α+ 1+ ν)

Γ (γ+ 1)γ(α+ ν+ 1)
ν!γ(α+ 1)

b−γ−1
2F1

�

−ν;γ+ 1;α+ 1;
1
b

�

,

where 2F1 is the hypergeometric function.
Taking into account the recurrence relation (3), a stable recursion scheme can be deduced for the computation of the integrals

{M (p)
ν
(t)}ν=0,...,m. In fact, starting from

M (0)
0 (t) =

1
p

Γ (α+ 1)

�

−eiωt− t
2 Ei

�

t
2 − iωt

�

, γ= 0,
eiωt− t

2 tγ
�

iπ+ γeiγπΓ (γ)Γ
�

−γ,− t
2 + iωt

��

, γ ̸= 0,
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and (see (2))

M (p)
0 (t) =

1
p

d
d t

M (p−1)
0 (t) =

1
p!

d p

d t p
M (0)

0 (t),

where Ei is the exponential integral function, it is easy to deduce that


































M (0)
1 (t) =

1
a1

�

d0 + (t − b0)M
(0)
0 (t)

�

,

M (0)
ν+1(t) =

1
aν+1

�

dν + (t − bν)M (0)
ν
(t)− aνM (0)

ν−1(t)
�

,

M (p)
1 (t) =

1
a1

�

M (p−1)
0 (t) + (t − b0)M

(p)
0 (t)

�

,

M (p)
ν+1(t) =

1
aν+1

�

M (p−1)
ν

(t) + (t − bν)M (p)
ν
(t)− aνM (p)

ν−1(t)
�

.

Denoting by {M (s)
ν,Q(t)}ν=0,...,m and {M (s)

ν,D(t)}ν=0,...,m, s = 0, . . . , p, the above sequences computed in double (epsD) and quadruple
machine precision (epsQ), respectively, we have studied numerically the stability of the above recursion scheme computing the
quantities

S(t) := max
s=0,...,p

max
ν=0,...,500

�

�

�

�

�

M (s)
ν,Q(t)−M (s)

ν,D(t)

M (s)
ν,Q(t)

�

�

�

�

�

for different values of α,γ,ω and t. Choosing α= 0, γ= 2/3, ω= 1000 and p = 0, 1,2 we get the results presented in Table 1.
Since, analogous results have been obtained for many other selections of α,γ,ω and t we can empirically assume the stability of
the scheme.

t 10−12 10−9 10−7 10−3 10−2 10−1 10 102

S(t) epsD epsD epsD epsD epsD epsD epsD epsD

Table 1

The computation of Hω,γ
p ( f , t) requires an overall computational cost of about 4mj+3m(p+1)+m+ j multiplicative operations

and j evaluations of the function f . Since the computation of the sequence {M (p)
ν
(t)}ν=0,...,m requires the computation of all the

sequences {M (s)
ν
(t)}ν=0,...,m, s = 0, . . . , p−1, with an additional computational cost of about (mj+m+ j)p multiplicative operations

and no more evaluations of the function f , it is possible to perform the simultaneous approximation of Hω,γ
s ( f , t), s = 0, . . . , p.

The following theorems give sufficient conditions for the stability and convergence of the quadrature rules Hω,γ
p,m( f , t), p ≥ 0.

Theorem 3.1. Let α,γ satisfying (7) and δ > 0. For any f ∈W1(uγ,δ) and for any t > 0 we get

max{1, log−1 t−1}|Hω,γ
0,m( f , t)| ≤ C∥ f ∥W1(uγ,δ) log m, C ̸= C(m, f , t).

Moreover, if f ∈Wr(uγ,δ) with r ≥ 1 integer, then for any t > 0 we obtain

max{1, log−1 t−1}|eω,γ
0,m( f , t)| ≤ C

∥ f ∥Wr (uγ,δ)

m
r
2

log2 m, C ̸= C(m, f , t). (9)

Theorem 3.2. Let p ≥ 1 be an integer and let α,γ satisfying (7). For any f ∈Wp+1(uγ) and for any t > 0 we get

t p|Hω,γ
p,m( f , t)| ≤ C∥ f ∥Wp+1(uγ) log m, C ̸= C(m, f , t). (10)

Moreover, if f ∈Wp+r(uγ) with r ≥ 1 integer, then for any t > 0 we obtain

t p|eω,γ
p,m( f , t)| ≤ C

∥ f ∥Wp+r (uγ)

m
r
2

log2 m, C ̸= C(m, f , t). (11)

4 Application of the quadrature rule Hω,γ
p,m( f , t) to the resolution of an integral equation

In this section, we show how the above introduced product quadrature rule can be an useful tool for the construction of a Nyström
type method for the numerical solution of integral equations of the following kind

f (t) +

∫

=
+∞

0

f (x)eiωx

(x − t)p+1
uγ(x) d x = g(t), t > 0, (12)

where g is a given function and f is the unknown solution.
Since we have proved the convergence of the quadrature rules Hω,γ

p,m( f , t), p ≥ 0, in the space Cu, with u= uγ,δ if p = 0 and
u= uγ if p ≥ 1, it seems natural to assume that the integral equation (12) admits a unique solution in Cu and, as a first step in
the construction of the Nyström method, we multiply both sides of the equation by the weight function u. Then, replacing the
integral Hω,γ

p ( f , t) by its approximation Hω,γ
p,m( f , t), we get the following finite dimensional equation
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( fmu)(t) + u(t)
j
∑

k=1

( fmu)(zk)
M(p)

k (t)

u(zk)
= (gu)(t). (13)

in the unknown fmu. Finally, collocating the above equation at the quadrature knots zr , r = 1, . . . , j, we get the following linear
system

j
∑

k=1

�

δr,k +
u(zr)
u(zk)

M(p)
k (zr)

�

ak = (gu)(zr), r = 1, . . . , j, (14)

whose unknowns are ak = ( fmu)(zk), k = 1, . . . , j.
If {āk}k=1,..., j is the unique solution of system (14), we construct the solution of the approximating equation (13) as follows

( fmu)(t) = (gu)(t)− u(t)
j
∑

k=1

M(p)
k (t)

u(zk)
āk.

Under suitable assumptions the so called Nyström interpolating functions { fm}m converge to the exact solution f of the integral
equation (12).

The study of the uniqueness of the solution of (12) and of the stability and convergence of the above described Nyström
method is beyond the scope of this work and will be the topic of a forthcoming paper. Here we just show how the introduced
quadrature rule can be used in the context of integral equations.

5 Numerical tests
In this section we will show the numerical results obtained approximating some integrals of the type (1) by the proposed product
quadrature rule. In particular, in the first example we will make also some comparisons with other numerical methods available
in literature [5, 43]. The density functions f considered in Examples 2 and 3 are representatives of the function space Wr(uγ,δ)
where we want to test the method and to verify the sharpness of the error estimates given in Theorems 3.1 and 3.2. Finally, in
the last example we will show the performance of the Nyström method described in Section 4 in solving some integral equations
of the type (12).

In the tables that follows we will report the absolute errors

eω,γ
p,m( f , t) = |Hω,γ

p,m( f , t)−Hω,γ
p ( f , t)|.

In the examples where the exact solution is unknown, we will show the above errors computed with Hω,γ
p ( f , t) replaced by

Hω,γ
p,1024( f , t). In all the numerical tests the value of j has been dynamically detected according to the following criteria

j = min
k=1,...,m

{k : |M(p)
k (t)|< ϵ}, (15)

where ϵ is the epsilon machine of the used precision arithmetic. Recalling the definition of M(p)
k (t) in (8) and that [32]

λm,k ≤ Czαk e−zk (zk − zk−1), the above definition of j is equivalent to (6) in the sense that there exists a θ ∈ (0,1) such that
z j−1 < 4θm< z j with j defined in (15).

The parameter α defining the interpolation process Lm+1(wα, f ) has been always chosen inside the interval defined by (7).
According to Theorems 3.1 and 3.2, this choice is crucial in order to assure the stability and the convergence of the proposed
quadrature scheme, and analogous numerical results are obtained whatever is the selection of α in such interval (see, for example,
Tables 4 and 7).
Finally, concerning the parameter δ appearing in the definition of the weight of the space Wr(uγ,δ), according to Theorems 3.1
and 3.2, it has to be equal to 0 for p > 0 and greater than 0 for p = 0. In the latter case its choice strictly depends on the function
f appearing under the integral sign. For the reader convenience we recall that if, for some r ≥ 1, f belongs to Wr(uγ,δ) with
δ > 0 then it belongs to Wr(uγ), too.

Unless specified otherwise, all the computations have been performed in double-precision arithmetic (ϵD = 2.22044e− 16).

Example 5.1. As first example we consider the following integral

Hω,0
0 ( f , t) =

∫

−
+∞

0

e−x

x − t
eiωx d x = − e−t eiωt Ei(t − iωt), (16)

where the exact solution is known. We have approximated it using the proposed quadrature rule with f (x) = e−
x
2 and, since

γ= 0, according to Theorem 2.1, with α= − 1
2 . We note that f ∈Wr(uγ,δ) for any r ≥ 1 and δ > 0. This example has been also

considered in [43, 5], where all the computations have been performed in quadruple-precision arithmetic (ϵQ = 1.92592e− 34).
Then, in order to make comparisons with the numerical results presented in such papers, the approximations of the integral (16)
presented in Figure 1 and in Tables 2, 3, 5 and 6 have been computed in quadruple-precision arithmetic.

In Figure 1 and in Tables 2 and 3 we present the approximations of the integral (16) with the same choices of ω and t
considered in [43, Fig. 2, p.726], [43, Table 1, p.734] and [43, Table 2, p.734], respectively. One can see that our quadrature
rule provides absolute errors of the same order regardless the choices of the values of t and ω. In particular, taking m= 94 and
j = 51 we always get the machine precision epsQ in quadruple arithmetic. On the contrary, the accuracy of the quadrature rule
proposed in [43] strictly depends on the choice of ω and t. More precisely, it increases as both t and ω increase (see [43, Fig. 2
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on the right, p.726]), but, even when ω increases, approximations with at most 25 exact decimal digits are obtained for small
values of t (see [43, Table 2, p.734]).

Moreover, in Table 4 we report the approximations obtained in double-precision arithmetic for the same integrals considered
in Figure 1. One can see that, also varying the parameter α ∈

�

−1, 1
2

�

, in order to obtain absolute errors of the order of the
machine precision epsD it is sufficient to apply our product rule with m= 32 and j = 21. Analogous results are obtained with
other choices of ω, t and α.

In [5] the authors have also made comparisons with the results presented in [43, Table 2, p.734]. In Table 5 we summarize the
approximations obtained for the integral (16) with t = 0.02 using the quadrature rule Q16,16( f ) proposed in [43], the quadrature
rule QA

16[ f ] proposed in [5, Table 1, p. 180] and our quadrature rule eω,0
0,94( f , t). As one can see, the accuracies of both the rule

QA
16[ f ] and the rule Q16,16( f ) increase as ω increases, but the rule QA

16[ f ] with respect to the rule Q16,16( f ) has the advantage of
providing approximations of the order of epsQ for ω = 80 and ω = 320. As already observed above, the absolute errors eω,0

0,94( f , t)
of our rule are always of the order of epsQ no matter the value of ω is. However, comparing [5, Fig.1 and Fig.3] with Table 6
both the rule QA

16[ f ] and the rule QI
16[ f ] give larger absolute errors with respect to our rule when ω goes from 1 up to 200 and

t = 1 or t = 5.

Figure 1: Example 5.1: Absolute errors eω,0
0,m( f , t) obtained for t = 1 (left) and for t = 5 (right)

e10,0
0,m ( f , t)

m j t = 10−1 t = 10−2 t = 10−3 t = 10−4

8 8 4.78 e− 5 2.91 e− 5 1.19 e− 4 1.99 e− 4
16 16 8.45 e− 9 4.55 e− 9 9.78 e− 9 1.87 e− 8
32 28 1.65 e− 17 1.99 e− 16 5.39 e− 17 1.69 e− 16
64 42 9.03 e− 32 5.41 e− 32 1.14 e− 32 7.47 e− 32
94 51 epsQ epsQ epsQ epsQ

Table 2: Example 5.1 with ω= 10

eω,0
0,m( f , 0.02)

m j ω= 5 ω= 20 ω= 80 320
8 8 4.09 e− 5 2.38 e− 5 7.17 e− 5 6.80 e− 5

16 16 1.18 e− 8 3.06 e− 9 5.31 e− 9 4.43 e− 9
32 28 1.44 e− 16 1.56 e− 16 3.96e− 17 1.72 e− 17
64 42 4.21 e− 32 7.73 e− 32 4.00 e− 32 5.26 e− 32
94 51 epsQ epsQ epsQ epsQ

Table 3: Example 5.1 with t=0.02

Example 5.2. Now we consider the following integrals

H
ω, 3

5
p ( f , t) =

∫

=
+∞

0

1
(x2 + 1)3(x − t)p+1

eiωx x
3
5 d x , p = 0,1,
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eω,0
0,m( f , t), with α= − 1

2

ω= 2 ω= 4 ω= 8 ω= 16
m j t = 1 t = 5 t = 1 t = 5 t = 1 t = 5 t = 1 t = 5
8 8 6.48 e− 5 7.69 e− 5 5.82 e− 5 7.18 e− 5 8.93 e− 5 6.98 e− 5 8.32 e− 5 6.86 e− 5

16 15 1.36 e− 8 2.75 e− 9 5.48 e− 9 3.91 e− 9 2.01 e− 9 4.55 e− 9 2.29 e− 9 4.57 e− 9
32 21 epsD epsD epsD epsD epsD epsD epsD epsD

eω,0
0,m( f , t), with α= − 2

3

ω= 2 ω= 4 ω= 8 ω= 16
m j t = 1 t = 5 t = 1 t = 5 t = 1 t = 5 t = 1 t = 5
8 8 4.97 e− 5 7.93 e− 5 6.40 e− 5 7.18 e− 5 8.80 e− 5 7.04 e− 5 8.31 e− 5 6.97 e− 5

16 16 1.11 e− 8 3.53 e− 9 4.90 e− 9 5.46 e− 9 4.08 e− 9 6.01 e− 9 4.29 e− 9 6.08 e− 9
32 26 epsD epsD epsD epsD epsD epsD epsD epsD

eω,0
0,m( f , t), with α= − 3

4

ω= 2 ω= 4 ω= 8 ω= 16
m j t = 1 t = 5 t = 1 t = 5 t = 1 t = 5 t = 1 t = 5
8 8 4.24 e− 5 7.92 e− 5 6.46 e− 5 7.08 e− 5 8.54 e− 5 6.97 e− 5 8.12 e− 5 6.92 e− 5

16 16 9.86 e− 9 4.01 e− 9 4.72 e− 9 6.11 e− 9 4.83 e− 9 6.62 e− 9 4.96 e− 9 6.69 e− 9
32 26 epsD epsD epsD epsD epsD epsD epsD epsD

Table 4: Example 5.1 with different choices of α.

ω= 5 ω= 20 ω= 80 ω= 320
Q16,16( f ) 7.49 e− 11 5.44 e− 21 2.78 e− 25 3.65 e− 25
QA

16[ f ] 5.53 e− 14 4.32 e− 24 2.56 e− 34 1.49 e− 44
eω,0

0,94( f , 0.02) ( j = 51) 1.23 e− 34 6.84 e− 35 1.62 e− 34 2.75 e− 34

Table 5: Example 5.1 with t = 0.02

eω,0
0,m( f , 1) eω,0

0,m( f , 5)
m j ω= 50 ω= 100 ω= 150 ω= 200 j ω= 50 ω= 100 ω= 150 ω= 200
8 8 8.15 e− 5 8.19 e− 5 8.20 e− 5 8.21 e− 5 8 6.88 e− 5 6.90 e− 5 6.90 e− 5 6.89 e− 5

16 16 2.21 e− 9 2.17 e− 9 2.16 e− 9 2.15 e− 9 16 4.63 e− 9 4.65 e− 9 4.65 e− 9 4.64 e− 9
32 28 6.60 e− 17 6.63 e− 17 6.66 e− 17 6.68 e− 17 29 1.76 e− 16 1.76 e− 16 1.76 e− 16 1.76 e− 16
64 42 6.91 e− 32 6.95 e− 32 6.94 e− 32 6.94 e− 32 42 2.88 e− 32 2.87 e− 32 2.86 e− 32 2.87e− 32
94 51 epsQ epsQ epsQ epsQ 51 epsQ epsQ epsQ epsQ

Table 6: Example 5.1 with t = 1 and t = 5
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where γ = 3
5 and f (x) = e

x
2

(x2+1)3 . According to (7) we choose α= 1
2 , 1

5 ,− 1
10 . Moreover, since f ∈W8(u 3

5 ,δ) for 9
10 < δ ≤

7
5 , by (9)

the order of convergence of the rule H
ω, 3

5
0,m ( f ) is m−4 log2 m and by (11) the proposed quadrature rule H

ω, 3
5

1,m ( f ) converge with

order m−
7
2 log2 m. The corresponding absolute error e

ω, 3
5

p,m ( f , t), p = 0, 1 are reported in Table 7 for different choices of t, ω and
α. As one can see, they agree with the theoretical expectations. In Figure 2 some of the results in Table 7 are graphically shown.

e
ω, 3

5
0,m ( f , t), with α= 1

2
t = 0.01 t = 0.3 t = 7

m j ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000
1.72 e− 4 4.41 e− 4 2.98 e− 4 2.96 e− 4

64 64 1.14 e− 4 3.84 e− 4 5.48 e− 4 4.13 e− 4 3.95 e− 4 3.94 e− 4 4.68 e− 6 1.03 e− 5 1.00 e− 5
128 128 2.11 e− 6 6.21 e− 7 1.46 e− 6 7.49 e− 6 8.83 e− 7 8.63 e− 7 7.38 e− 7 4.62 e− 7 4.64 e− 7
256 256 1.68 e− 9 1.04 e− 9 4.87 e− 11 3.16 e− 9 7.37 e− 9 7.39 e− 9 4.67 e− 10 7.33 e− 10 7.33 e− 10
512 512 1.01 e− 13 5.02 e− 13 1.23 e− 12 2.62 e− 12 1.73 e− 13 8.82 e− 14 3.67 e− 13 4.51 e− 13 4.53 e− 13

e
ω, 3

5
1,m ( f , t), with α= 1

2
t = 0.01 t = 0.3 t = 7

m j ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000
64 64 4.52 e− 2 6.30 e− 2 5.43 e− 1 7.61 e− 3 4.03 e− 2 3.94 e− 1 9.98 e− 5 1.01 e− 3 1.01 e− 2
128 128 1.85 e− 4 1.86 e− 4 1.44 e− 3 6.91 e− 5 1.54 e− 4 8.73 e− 4 1.01 e− 5 4.72 e− 5 4.64 e− 4
256 256 2.69 e− 8 1.27 e− 7 2.24 e− 7 2.26 e− 7 7.40 e− 7 7.39 e− 6 3.42 e− 8 8.06 e− 8 7.33 e− 7
512 512 2.96 e− 10 2.88 e− 10 1.28 e− 9 2.63 e− 11 1.08 e− 10 1.39 e− 10 8.68 e− 12 4.59 e− 11 4.53 e− 10

e
ω, 3

5
0,m ( f , t), with α= 1

5
t = 0.01 t = 0.3 t = 7

m j ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000
64 64 1.65 e− 4 1.58 e− 4 2.50 e− 4 5.40 e− 4 1.03 e− 4 1.03 e− 4 3.50 e− 5 2.51 e− 5 2.52 e− 5
128 128 1.29 e− 6 6.61 e− 8 6.25 e− 8 3.62 e− 6 9.61 e− 7 9.57 e− 8 2.00 e− 6 1.82 e− 6 1.82 e− 6
256 256 3.50 e− 9 3.18 e− 9 1.53 e− 9 1.70 e− 9 2.34 e− 10 3.12 e− 10 2.73 e− 9 2.22 e− 9 2.22 e− 9
512 512 2.61 e− 13 2.35 e− 13 2.13 e− 13 1.05 e− 12 1.12 e− 12 1.10 e− 12 9.27 e− 13 9.46 e− 13 9.46 e− 13

e
ω, 3

5
1,m ( f , t), with α= 1

5
t = 0.01 t = 0.3 t = 7

m j ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000
64 64 2.52 e− 2 2.87 e− 2 2.47 e− 1 6.48 e− 3 1.18 e− 2 1.03 e− 1 1.29 e− 4 2.52 e− 3 2.52 e− 2
128 128 6.40 e− 6 1.08 e− 5 6.26 e− 5 2.87 e− 5 1.15 e− 4 9.59 e− 4 2.08 e− 5 1.83 e− 4 1.82 e− 3
256 256 1.89 e− 7 3.94 e− 7 1.67 e− 6 2.72 e− 8 3.31 e− 8 3.11 e− 7 4.66 e− 7 2.25 e− 7 2.22 e− 6
512 512 5.88 e− 11 6.13 e− 11 2.22 e− 10 4.40 e− 11 1.20 e− 10 1.10 e− 9 1.16 e− 11 9.49 e− 11 9.46 e− 10

e
ω, 3

5
0,m ( f , t), with α= − 1

10
t = 0.01 t = 0.3 t = 7

m j ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000
64 64 1.30 e− 4 3.86 e− 5 8.27 e− 5 5.62 e− 4 1.63 e− 4 1.63 e− 4 6.95 e− 5 6.43 e− 5 6.43 e− 5
128 128 1.54 e− 6 3.17 e− 7 4.43 e− 9 1.35 e− 6 3.48 e− 7 3.33 e− 7 3.56 e− 6 3.50 e− 6 3.50 e− 6
256 256 2.79 e− 9 3.00 e− 9 2.39 e− 9 5.49 e− 9 1.85 e− 9 1.78 e− 9 6.05 e− 9 5.95 e− 9 5.95 e− 9
512 512 1.21 e− 13 6.27 e− 14 8.90 e− 14 3.91 e− 13 8.76 e− 13 8.84 e− 13 1.48 e− 12 1.40 e− 12 1.40 e− 12

e
ω, 3

5
1,m ( f , t), with α= − 1

10
t = 0.01 t = 0.3 t = 7

m j ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000 ω= 10 ω= 100 ω= 1000
64 64 1.17 e− 2 1.03 e− 2 8.14 e− 2 5.97 e− 3 1.81 e− 2 1.62 e− 1 6.80 e− 4 6.44 e− 3 6.44 e− 2
128 128 2.50 e− 5 5.29 e− 5 7.54 e− 5 1.97 e− 6 3.61 e− 5 3.33 e− 4 3.58 e− 5 3.50 e− 4 3.50 e− 3
256 256 2.26 e− 7 4.12 e− 7 2.47 e− 6 5.90 e− 8 2.27 e− 7 1.78 e− 6 7.03 e− 8 5.96 e− 7 5.95 e− 6
512 512 1.88 e− 11 1.72 e− 11 9.04 e− 11 3.58 e− 11 8.88 e− 11 8.84 e− 10 1.44 e− 11 1.40 e− 10 1.40 e− 9

Table 7: Example 5.2 with different choices of α.

Example 5.3. Let us consider the following integrals

H
ω, 1

3
p ( f , t) =

∫

=
+∞

0

|x − 5|
11
2

(x + 1)2(x − t)p+1
eiωx x

1
3 e−

x
2 d x , p = 0,1, 2,

having γ = 1
3 and f (x) = |x−5|

11
2

(x+1)2 ∈W5(u 1
3 ,δ), for any δ ≥ 0. Taking into account (7) we apply the quadrature rules choosing

α = 0. In Table 8 and Figure 3 we display the obtained absolute errors for some values of ω and t. In agreement with the
theoretical expectations (see Theorems 3.1 and 3.2) the convergence orders are m−

5−p
2 log2 m, p = 0, 1, 2, and, when the values

of t are far from the critical point 5, the errors become smaller.
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Figure 2: Example 5.2: Absolute errors e
ω, 3

5
1,m ( f , t) obtained for t = 0.01 (left) and for t = 7 (right)

e
ω, 1

3
0,m ( f , 4.99) e

ω, 1
3

0,m ( f , 10)
m j ω= 100 ω= 500 j ω= 100 ω= 500
64 57 2.34 e− 2 2.35 e− 2 57 1.17 e− 2 1.17 e− 2

128 85 5.08 e− 6 4.86 e− 6 82 6.18 e− 7 5.50 e− 7
256 119 1.37 e− 6 1.37 e− 6 122 1.79 e− 6 1.79 e− 6
512 174 2.71 e− 7 2.71 e− 7 174 1.51 e− 8 1.51 e− 8

e
ω, 1

3
1,m ( f , 4.99) e

ω, 1
3

1,m ( f , 10)
m j ω= 100 ω= 500 j ω= 100 ω= 500

128 87 4.92 e− 4 2.44 e− 3 85 1.56 e− 4 3.11 e− 4
256 124 1.38 e− 4 6.84 e− 4 126 1.79 e− 4 8.93 e− 4
512 179 2.78 e− 5 1.37 e− 4 116 1.54 e− 6 7.53 e− 6

e
ω, 1

3
2,m ( f , 4.99) e

ω, 1
3

2,m ( f , 10)
m j ω= 100 ω= 500 j ω= 100 ω= 500

128 88 2.50 e− 2 6.11 e− 1 88 1.49 e− 2 1.00 e− 1
256 129 7.00 e− 3 1.71 e− 1 129 8.96 e− 3 2.23 e− 1
512 114 1.50 e− 3 3.40 e− 2 137 8.23 e− 5 1.89 e− 3

Table 8: Example 5.3 with t=4.99 and t = 10

Figure 3: Example 5.3: Absolute errors e
ω, 1

3
2,m ( f , t) obtained for t = 4.99 (left) and for t = 10 (right)
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Example 5.4. Finally we consider the following integral equation of the type (12)

f (t) +

∫

=
+∞

0

f (x)
(x − t)p+1

ei100x e−
x
2 d x = g(t), p = 0,1,

where

g(t) =











2
40001

400i
40001

+ t − e(−
1
2+100i)t tEi

�

1
2

t − 100it
�

if p = 0

−1+ x +
1
2

e(−
1
2+100i)t(−2+ (1− 200i)t)Ei

�

1
2

t − 100i
�

if p = 1.

Both have f (t) = t as exact solution. Since γ = 0 we have applied the Nyström method described in Section 4 with α = − 1
2 .

Moreover, since of course f ∈Wr(u0,δ) for any r ≥ 1 and δ ≥ 0, in the case p = 0 we have chosen δ = 1. In Table 9 we report the
absolute errors

ēω,γ
p,m( f , t) = |( f (t)− fm(t))uγ(t)|.

As one can see, solving linear systems of order only 40 the method gives approximations with 14 exact decimal digits for p = 0
and with 13 exact decimal digits for p = 1.

m j ē100,0
0,m ( f , 4.99) ē100,0

1,m ( f , 10)
8 6 2.36e− 3 2.59 e− 1

16 11 4.19e− 5 9.80 e− 4
32 21 1.80e− 9 4.72 e− 13
64 40 9.61e− 16 3.55 e− 14

Table 9: Example 5.4 with t=4.99 and t = 10

Figure 4: Example 5.4: Weighted Nyström interpolating function obtained for ω= 100 and p = 0, 1

6 Proofs
In order to prove Theorem 2.2 we need the following lemmas.
Lemma 6.1. If f ∈ Cuγ,δ , with δ > 0,γ≥ 0 and t > 0, then

�

�

�

�

�

∫

|x−t|≥1
x∈R+

f (x)uγ(x)eiωx

(x − t)
d x

�

�

�

�

�

≤ C∥ f uγ,δ∥,

where C ̸= C( f , t).

Proof. In the case 0< t < 1 we have
�

�

�

�

�

∫

|x−t|≥1
x∈R+

f (x)uγ(x)eiωx

(x − t)
d x

�

�

�

�

�

=

�

�

�

�

�

∫ +∞

t+1

f (x)uγ,δ(x)eiωx

(x − t)(1+ x)δ
d x

�

�

�

�

�

≤ C∥ f uγ,δ∥
∫ +∞

t+1

d x
(x − t)(1+ x)δ

≤ C∥ f uγ,δ∥. (17)

Dolomites Research Notes on Approximation ISSN 2035-6803



De Bonis · Sagaria 59

While, in the case t ≥ 1 it results
�

�

�

�

�

∫

|x−t|≥1
x∈R+

f (x)uγ(x)eiωx

(x − t)
d x

�

�

�

�

�

≤

�

�

�

�

�

∫ t−1

0

f (x)uγ(x)eiωx

(t − x)
d x

�

�

�

�

�

+

�

�

�

�

�

∫ +∞

t+1

f (x)uγ(x)eiωx

(x − t)
d x

�

�

�

�

�

.

Then, taking into account (17) and
�

�

�

�

�

∫ t−1

0

f (x)uγ(x)eiωx

(x − t)
d x

�

�

�

�

�

≤ C∥ f uγ,δ∥
∫ t−1

0

d x
(x − t)

≤ C log t−1∥ f uγ,δ∥ ≤ C∥ f uγ,δ∥,

the lemma easily follows.

Lemma 6.2. If f ∈ Cuγ , γ≥ 0, p ≥ 1 and t > 0, then
�

�

�

�

�

∫

|x−t|≥1
x∈R+

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

≤ C∥ f uγ∥,

where C ̸= C( f , t).

Proof. Let 0< t < 1. Letting x − t = y t we have
�

�

�

�

�

∫

|x−t|≥1
x∈R+

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

=

�

�

�

�

�

∫ +∞

t+1

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

=

�

�

�

�

�

1
t p

∫ +∞

1
t

( f uγ)(t + y t)eiω(t+y t)

y p+1
d y

�

�

�

�

�

≤ C
∥ f uγ∥∞

t p

∫ +∞

1
t

y−p−1 d y

≤ C∥ f uγ∥. (18)

If t ≥ 1 we get
�

�

�

�

�

∫

|x−t|≥1
x∈R+

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

≤

�

�

�

�

�

∫ t−1

0

f (x)uγ(x)eiωx

(t − x)p+1
d x

�

�

�

�

�

+

�

�

�

�

�

∫ +∞

t+1

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

.

Taking into account (18) and
�

�

�

�

�

∫ t−1

0

f (x)uγ(x)eiωx

(t − x)p+1
d x

�

�

�

�

�

≤ C
∥ f uγ∥∞

t p
≤ C∥ f uγ∥,

the lemma follows.

Lemma 6.3. Let γ≥ 0 and p ≥ 0 then, for 0< t ≤ 1, we have
�

�

�

�

�

∫

=
|x−t|>1
x∈R+

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

≤ Cuγ(t),

while, for t > 1, we get
�

�

�

�

�

∫

=
|x−t|>1
x∈R+

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

≤ Cuγ(t)

�

max{1, log t−1}, p = 0
t−p, p ≥ 1

,

where C ̸= C( f , t).

Proof. We first consider the case 0< t < 1. We can write
�

�

�

�

�

∫

=
|x−t|>1
x∈R+

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

=

�

�

�

�

�

∫

=
t+1

0

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

(19)

≤

�

�

�

�

�

∫

=
2t

0

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

+

�

�

�

�

�

∫

=
t+1

2t

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

:= I1(t) + I2(t). (20)
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Since

I1(t)≤

�

�

�

�

�

∫

=
2t

0

uγ(x) cos(ωx)

(x − t)p+1
d x

�

�

�

�

�

+

�

�

�

�

�

∫

=
2t

0

uγ(x) sin(ωx)

(x − t)p+1
d x

�

�

�

�

�

,

denoting by g(x) the function cos(ωx) or sin(ωx), we get
�

�

�

�

�

∫

=
2t

0

uγ(x)g(x)

(x − t)p+1
d x

�

�

�

�

�

≤

�

�

�

�

�

∫ 2t

0

g(x)−
∑p

k=0
g(k)(t)

k! (x − t)k

(x − t)p+1
uγ(x) d x

�

�

�

�

�

+
p
∑

k=0

|g(k)(t)|
k!

�

�

�

�

�

∫

=
2t

0

uγ(x)

(x − t)p−k+1
d x

�

�

�

�

�

.

Proceeding as done in the proof of [12, Lemma 6.1], we obtain
�

�

�

�

�

∫

=
2t

0

uγ(x)g(x)

(x − t)p+1
d x

�

�

�

�

�

≤
∫ 2t

0

|g(p+1)(ξ)|uγ(x)d x +
p
∑

k=0

|g(k)(t)|
k!

∫

=
2t

0

uγ(x)

(x − t)p−k+1
d x

≤ C
∫ 2t

0

xγe−
x
2 d x + C

p
∑

k=0

∫

=
2t

0

uγ(x)

(x − t)p−k+1
d x

≤ C tγ+1 + C
p−1
∑

k=0

tγ−p+k

≤ C tγ + C tγ−p ≤ Cuγ(t)t
−p.

Consequently
I1 ≤ Cuγ(t)t

−p, p ≥ 0. (21)

Moreover, for p = 0 we have

I2(t)≤ C tγ
∫ t+1

2t

d x
x − t

≤ C tγ log t−1 (22)

and for p ≥ 1 we get

I2(t)≤ Cuγ(t)

∫ t+1

2t

d x
(x − t)p+1

≤ C(tγ−p − tγ)≤ C tγ ≤ Cuγ(t)t
−p. (23)

Substituting (22)-(23) and (21) into (19), we get
�

�

�

�

�

∫

=
|x−t|>1
x∈R+

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

≤ Cuγ(t)

�

max{1, log t−1} p = 0
t−p p ≥ 1

The lemma is proved for 0< t < 1. Concerning the case t ≥ 1, we write
�

�

�

�

�

∫

=
|x−t|>1
x∈R+

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

=

�

�

�

�

�

∫

=
t+1

t−1

uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

≤

�

�

�

�

�

∫

=
t+1

t−1

uγ(x) cos(ωx)

(x − t)p+1
d x

�

�

�

�

�

+

�

�

�

�

�

∫

=
t+1

t−1

uγ(x) sin(ωx)

(x − t)p+1
d x

�

�

�

�

�

.

Proceeding also in this case as done in the proof of [12, Lemma 6.1], we obtain
�

�

�

�

�

∫

=
|x−t|>1
x∈R+

uγ(x)g(x)

(x − t)p+1
d x

�

�

�

�

�

≤

�

�

�

�

�

∫ t+1

t−1

g(x)−
∑p

k=0
g(k)(t)

k! (x − t)k

(x − t)p+1
uγ(x) d x

�

�

�

�

�

+
p
∑

k=0

|g(k)(t)|
k!

�

�

�

�

�

∫

=
t+1

t−1

uγ(x)

(x − t)p−k+1
d x

�

�

�

�

�

≤
∫ t+1

t−1

|g(p+1)(ξ)|uγ(x)d x +
p
∑

k=0

|g(k)(t)|
k!

∫

=
t+1

t−1

uγ(x)

(x − t)p−k+1
d x

≤ C
∫ t+1

t−1

xγe−
x
2 d x + C

p
∑

k=0

∫

=
t+1

t−1

uγ(x)

(x − t)p−k+1
d x

≤ Cuγ(t).

Then the lemma is also proved for t ≥ 1.
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Now we can prove Theorem 2.2.

Proof of Theorem 2.2. For p ≥ 0 we have

|Hω,γ
p ( f , t)| ≤

�

�

�

�

�

∫

|x−t|≥1

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

+

�

�

�

�

�

∫

|x−t|<1

f (x)−
∑p

k=0
f (k)(t)

k! (x − t)k

(x − t)p+1
uγ(x)e

iωx d x

�

�

�

�

�

+
p
∑

k=0

| f (k)(t)|
k!

�

�

�

�

�

∫

=
|x−t|<1

uγ(x)eiωx

(x − t)p−k+1
d x

�

�

�

�

�

=: A1(t) + A2(t) + A3(t). (24)

Using Lemmas 6.1 and 6.2 we get

A1(t)≤ C
�

∥ f uγ,δ∥ p = 0
∥ f uγ∥ p ≥ 1

. (25)

In order to estimate A3(t) we use Lemma 6.3 and [16, (17)]

A3(t)≤
p−1
∑

k=0

| f (k)(t)|
k!

�

�

�

�

�

∫

|x−t|<1

uγ(x)eiωx

(x − t)p−k+1
d x

�

�

�

�

�

+
| f (p)(t)|

p!

�

�

�

�

�

∫

|x−t|<1

uγ(x)eiωx

(x − t)
d x

�

�

�

�

�

≤ C
p−1
∑

k=0

| f (k)(t)ϕk(t)uγ(t)|t−p+k− k
2 + | f (p)(t)ϕp(t)uγ(t)|t−

p
2 max{1, log t−1}

≤ C max{t−
p
2 , t−p}

p−1
∑

k=0

∥ f (k)ϕkuγ∥+ C∥ f (p)ϕpuγ∥t−
p
2 max{1, log t−1}

≤ C

¨

max{1, log t−1}∥ f uγ,δ∥ p = 0
max{t−p, t−

p
2 }∥ f ∥Wp(uγ) p ≥ 1

. (26)

It remains to estimate A2(t). For 0< t < 1 we write

A2(t)≤

�

�

�

�

�

∫ 2t

0

f (x)−
∑p

k=0
f (k)(t)

k! (x − t)k

(x − t)p+1
uγ(x)e

iωx d x

�

�

�

�

�

+

�

�

�

�

�

∫ t+1

2t

f (x)uγ(x)eiωx

(x − t)p+1
d x

�

�

�

�

�

+

�

�

�

�

�

p
∑

k=0

f (k)(t)
k!

∫ t+1

2t

uγ(x)eiωx

(x − t)p−k+1
d x

�

�

�

�

�

:= A′2(t) + A′′2(t) + A′′′2 (t).

Using (22)-(23) and [16, (17)] we get

A′′′2 (t)≤ C
�

max{1, log t−1}∥ f uγ,δ∥ p = 0
t−p∥ f ∥Wp(uγ) p ≥ 1

.

Moreover,

A′′2(t)≤ C
�

log t−1∥ f uγ,δ∥ p = 0
t−p∥ f uγ∥ p ≥ 1

.

In order to estimate A′2(t) we use an argument in [16, Proof of Lemma 5.4], obtaining

A′2(t)≤ C















∫ 1

0

Ωϕ( f , y)uγ,δ
y

d y p = 0

t−
p
2

∫ 1

0

Ωϕ( f (p), y)uγϕp

y
d y p ≥ 1

,

where Ωϕ( f , y)u is the main part of the first ϕ−modulus of smoothness (see [16, p. 2527] for the details of the definition).
Summing up, for 0< t < 1, we get

A2(t)≤ C















∫ 1

0

Ωϕ( f , y)uγ,δ
y

d y +max{1, log t−1}∥ f uγ,δ∥, p = 0,

t−
p
2

∫ 1

0

Ωϕ( f (p), y)uγϕp

y
d y + t−p∥ f ∥Wp(uγ), p ≥ 1.

. (27)
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By similar arguments, for t ≥ 1, we obtain

A2(t) =

�

�

�

�

�

∫ t+1

t−1

f (x)−
∑p

k=0
f (k)(t)

k! (x − t)k

(x − t)p+1
uγ(x)e

iωx d x

�

�

�

�

�

≤ C















∫ 1

0

Ωϕ( f , y)uγ,δ
y

d y p = 0

t−
p
2

∫ 1

0

Ωϕ( f (p), y)uγϕp

y
d y p ≥ 1

. (28)

Finally, combining (25), (27)-(28) and (26) with (24), we obtain

max
�

1, log−1 t−1
	

|Hω,γ
0 ( f , t)| ≤ C

∫ 1

0

Ωϕ( f , y)uγ,δ
y

d y + C∥ f uγ,δ∥,

and

t p|Hω,γ
p ( f , t)| ≤ C

∫ 1

0

Ωϕ( f (p), y)uγϕp

y
d y + C∥ f ∥Wp(uγ). (29)

Taking into account that [31, pp. 175-176]

Ωr
ϕ
( f , y)u ≤ C y r∥ f (r)ϕu∥, ∀ f ∈Wr(u), (30)

the thesis follows.

Finally, we prove Theorem 3.2. The proof of Theorem 3.1 is similar.

Proof of Theorem 3.2. We first prove (10). Using (29) we get

t p|Hω,γ
p,m( f , t)|= t p|Hω,γ

p (Lm+1(wα, f ), t)|

≤ C

 

∫ 1

0

Ωϕ(L
(p)
m+1(wα, f ), y)uγϕp

y
d y + ∥Lm+1(wα, f )∥Wp(uγ)

!

≤ C

 

∫ 1

0

Ωϕ(L
(p)
m+1(wα, f ), y)uγϕp

y
d y + ∥Lm+1(wα, f )uγ∥+ ∥[ f − Lm+1(wα, f )](p)ϕpuγ∥+ ∥ f (p)ϕpuγ∥

!

.

Recalling [17, Lemma 6.2]
∫ 1

0

Ωϕ(L
(p)
m+1(wα, f ), y)uγϕp

y
d y ≤ C∥ f ∥Wp+1(uγ) log m,

and [30, (2.6)]
∥Lm+1(wα, f )uγ∥ ≤ C∥ f uγ∥ log m,

and Theorem 2.1, the inequality (10) follows.
Concerning (11), by (29) we get

t p|ep,m( f , t)|= t p|Hp( f − Lm+1(wα, f ), t)|

≤ C

�

∫ 1

0

Ωϕ(( f − Lm+1(wα, f ))(p), y)uγϕp

y
d y + ∥ f − Lm+1(wα, f )∥Wp(uγ)

�

≤ C

 

∫
1p
m

0

Ωϕ(( f − Lm+1(wα), f ))(p), y)uγϕp

y
d y +

∫ 1

1p
m

Ωϕ(( f − Lm+1(wα, f ))(p), y)uγϕp

y
d y + ∥ f − Lm+1(wα, f )∥Wp(uγ)

!

.

Moreover, using [17, Lemma 6.1] we deduce

t p|ep,m( f , t)| ≤ C

 

∫
1p
m

0

Ωr
ϕ
( f (p), y)uγϕp

y
d y + ∥( f − Lm+1(wα, f ))(p)uγϕ

p∥ log m+ ∥( f − Lm+1(wα, f ))uγ∥

!

.

Finally, applying (30) and Theorem 2.1 with k = p and k = 0, the thesis follows.

Dolomites Research Notes on Approximation ISSN 2035-6803



De Bonis · Sagaria 63

References
[1] G. Arfken. Mathematical methods for physicists. edn. Academic Press, Orlando, 3rd, 1985.

[2] G. Bao and W. Sun. A fast algorithm for the electromagnetic scattering form a large cavity. SIAM J. Sci. Comput. 27:553–574, 2005.

[3] M.R. Capobianco and G. Criscuolo. On quadrature for Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math., 156:
471–486, 2003.

[4] M.R. Capobianco and G. Mastroianni and M.G. Russo, Maria Grazia. Pointwise and uniform approximation of the finite Hilbert transform.
Approximation and optimization (Cluj–Napoca 1996)., vol. I: 45–66, Transilvania, Cluj–Napoca, 1997.

[5] R. Chen and D. Yu and J. Chen. Numerical approximations of highly oscillatory Hilbert transforms. Comp. Appl. Math., 39, 2020.

[6] K. Chung and G.A. Evans and J.R. Webster. A method to generate generalized quadrature rules for oscillatory integrals. Appl. Numer. Math.,
34: 85–93 2000.

[7] G. Criscuolo. Numerical evaluation of certain strongly singular integrals. IMA J. Numer. Anal., 34,2: 651–674, 2014.

[8] G. Criscuolo and G. Mastroianni. Convergenza di formule Gaussiane per il calcolo delle derivate di integrali a valor principale secondo
Cauchy. Calcolo, 24, 2: 179–192, 1987.

[9] P.J. Davis and P. Rabinowitz. Methods of numerical integration, 2nd edn. Academic Press, London, 1984.

[10] M.C. De Bonis and B. Della Vecchia and G. Mastroianni. Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros.
J. Comput. Appl. Math., 140, 1-2: 209–229, 2002.

[11] M.C. De Bonis and M.C. G. Mastroianni. Numerical Treatment of a class of systems of Fredholm integral equations on the real line. Math.
Comp., 83, 286: 771–788, 2014.

[12] M.C. De Bonis and D. Occorsio. On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis. Applied
Numerical Mathematics, 114: 132–153, 2017.

[13] M.C. De Bonis and D. Occorsio. Approximation of Hilbert and Hadamard transforms on (0,+∞). Applied Numerical Mathematics, 116:
184–194, 2017.

[14] M.C. De Bonis and D. Occorsio. Numerical methods for hypersingular integrals on the real line, Dolomit. Research Notes, 10: 97–157, 2017.

[15] M.C. De Bonis and D. Occorsio. Numerical computation of hypersingular integrals on the real semiaxis. Applied Mathematics and Computation,
313:367–383, 2017.

[16] M.C. De Bonis and D. Occorsio. Error bounds for a Gauss-type quadrature rule to evaluate hypersingular integrals. Filomat, 32(7):
2525–2543, 2018.

[17] M.C. De Bonis and D. Occorsio. A product integration rule for hypersingular integrals on (0,+∞). Electronic Transactions on Numerical
Analysis, 50: 129–143, 2018.

[18] M.C. De Bonis and P. Pastore. A quadrature rule for integrals of highly oscillatory functions. Rendiconti del circolo matematico di Palermo, II.
82: 1–25, 2010.

[19] V. Dominguéz and I.G. Graham and V.P. Smyshlyaev. Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory
integrals. IMA J. Numer. Anal., 31: 1253–1289, 2011.

[20] M. Diligenti and G. Monegato. Finite-part integrals: their occurrence and computation. Rend. Circolo Mat. di Palermo, 33: 39–61, 1993.

[21] T. Diogo and P. Lima and D. Occorsio. A numerical method for finite-part integrals. Dolomites Research Notes on Approximation, 13: 1–11,
2020.

[22] F. Filbir and D. Occorsio and W. Themistoclakis Approximation of Finite Hilbert and Hadamard transforms by using equally spaced nodes.
Mathematics, 8, 4: doi 10.3390/math804054, 542 , 2020.

[23] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Seventh edition, 2007.

[24] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal.,44:
1026–1048, 2006.

[25] N.I. Ioakimidis. On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives. Math.
Comp. 44: 191–198, 1985.

[26] A. Iserles and S.P. Nørsett. Efficient quadrature of highly-oscillatory integrals using derivatives. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 461:1383–1399, 2005.

[27] D. Levin. Fast integration of rapidly oscillatory functions. J. Comput. Appl.Math., 67: 95–101, 1996.

[28] G. Mastroianni and G. Monegato Truncated quadrature rules over (0,∞) and Nyström type methods. SIAM Jour. Num. Anal. 41, 5 :
1870–1892, 2003.

[29] G. Mastroianni and G. Monegato Some new applications of truncated Gauss-Laguerre quadrature formulas. Numer. Algor. 49: 283–297,
2008.
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