
MPRA
Munich Personal RePEc Archive

On Robust Asymmetric Equilibria in
Asymmetric R&D-Driven Growth
Economies

Giordani, Paolo E. and Zamparelli, Luca

Department of Economics and Business, LUISS ”Guido

Carli” University, Department of Economc Theory,

University of Rome ’La Sapienza’

September 2009

Online at http://mpra.ub.uni-muenchen.de/17171/

MPRA Paper No. 17171, posted 07. September 2009 / 23:42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- LUISS Libera Università Internazionale degli Studi Sociali Guido...

https://core.ac.uk/display/54546087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/17171/


On Robust Asymmetric Equilibria in Asymmetric

R&D-Driven Growth Economies

Paolo E. Giordani� Luca Zamparelliy

September 2009

Abstract

In an R&D-driven growth model with asymmetric fundamentals the steady

state equilibrium R&D investments are industry-speci�c and they are such that

R&D returns are equalized across industries. Return equalization, however,

makes investors indi¤erent as to where to target research and, hence, the prob-

lem of allocation of R&D investments across industries is indeterminate. Agents�

indi¤erence creates an ambiguous investment scenario. We assume that agents

hold "ambiguous" beliefs on the per-industry pro�tability of their R&D invest-

ments. Investors�aversion towards ambiguity (in the sense of Gilboa-Schmeidler,

1989) eliminates the indeterminacy of the R&D investment problem. In particu-

lar, we prove that the asymmetric return-equalizing equilibrium is robust against

a however small degree of investors�aversion to ambiguity.
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1 Introduction

R&D driven growth models focus on the role of technical progress as the main source

of economic growth. In this class of models, unlike the standard neoclassical growth

model, technical change is said to be �endogenous�as it is the outcome of R&D in-

vestment decisions taken by pro�t maximizing �rms. In the neoclassical model, where

a perfectly competitive environment is assumed, the endogenous determination of the

rate of technical change was problematic because of the di¢ culty of accounting for

the cost of innovation. In fact, when the level of technology is considered as an input

in production, the aggregate production function exhibits increasing returns to scale,

which implies that total output is not su¢ cient to pay factors of production according

to their marginal productivities.

Since the early 80s economists began to adopt Dixit-Stiglitz technology (or pref-

erences) in order to develop general equilibrium models based on monopolistic com-

petition and increasing returns.1 Krugman (1979, 1980) provided the �rst application

in the �eld of international trade. Shortly afterwards, macroeconomics (Akerlof and

Yellen 1985a, 1985b; Blanchard and Kiyotaki 1987) and economic geography (Krugman

1991a, 1991b) followed. The introduction of monopolistic competition proved to be fun-

damental in economic growth theory as well, as it allowed creating the rents necessary

to justify a costly research activity thus making endogenous technical change possible.

Romer (1987, 1990) produced the seminal contributions by modeling technical change

as the increasing number of available goods (horizontal innovation). Anant, Dinopou-

los and Segerstrom (1990), Grossman and Helpman (1991), Aghion and Howitt (1992)

followed by developing models where innovation is aimed at improving the quality, or

the productivity, of existing goods (vertical innovation).

Both models of horizontal and vertical innovation typically share a common three-

sector structure. The research sector produces innovations -or designs, or ideas- which

are sold to the intermediate goods sector. Intermediate goods are imperfect substitutes,

and each of them is associated to a speci�c design protected by an in�nitely-lived patent

granting its owner the right to be the sole producer of that good: this sector is, in turn,

monopolistic. Finally, intermediate goods and labor are hired to produce the �nal good

in a competitive environment.2 In such a framework, monopolistic competition in the

1The so-called Dixit-Stiglitz preferences have been developed independently by Spence (1976) and

Dixit and Stiglitz (1977). Ethier (1982) provided the �rst "Dixit-Stiglitz" representation of technology.
2In fact, some R&D driven models are based on a two-sector structure where the intermediate
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intermediate sector is the key to the feasibility of innovation: pro�ts earned in that

sector �nance innovation by paying for the cost of patents.

Dixit-Stiglitz technology in the �nal good sector can be described as Y = L1��
PN

j=1 (Ajxj)
�,

where � 2 (0; 1), L is labor, xj is the quantity of intermediate good of industry j, and
Aj is an industry-speci�c productivity parameter. In the horizontal innovation case

Aj = A, and innovation consists of increasing the number N of existing intermedi-

ate goods. Since the marginal products of intermediate goods are independent of one

another, the amount of resources (in fact a measure of capital) employed in the inter-

mediate sector may escape the law of decreasing returns, provided it is spread across

an increasing number of industries. In turn, increasing variety is a way of introducing

increasing returns in capital and labor. On the other hand, when innovation is verti-

cal, the number N is �xed and innovation consists of improving the industry speci�c

parameters Ajs.

R&D driven growth models typically focus on symmetric equilibria. Symmetry is to

be understood in a twofold way. In the �rst place, it means equal size of intermediate

goods industries. This notion of symmetry is common to both horizontal and vertical

innovation models, and it is guaranteed by the symmetry of the economy�s fundamentals

across industries. In the �nal good production function, the cross partial elasticity

of substitution between any two intermediate goods is the same: �i;j = 1=(1 � �).
Furthermore, it is assumed that technology in the intermediate goods sector and -

in the vertical innovation case - in the R&D sectors is the same for each industry.

Symmetry in both cost and demand conditions, the fundamentals of the economy,

ensures that equilibrium in the intermediate goods sector is symmetric, i.e. xi = x; 8
i:

Secondly, symmetric equilibrium indicates equal R&D investment in each industry.

This notion of symmetry applies to vertical innovation models only, as a horizontal

innovation amounts to the creation of an altogether di¤erent industry. In this case,

however, symmetric fundamentals are not su¢ cient to justify the focus on symmetric

outcomes. The main structural di¤erence between models of horizontal and vertical

innovation consists of the permanent versus temporary nature of monopolistic pro�ts.

sector disappears and where innovation occurs in the �nal (consumption) goods sector (see for example

Grossman and Helpman 1991, and the model we develop in Section 2). The di¤erence in the structure,

however, is more formal than substantial. In the two-sector models �nal consumption goods are

aggregated into an utility index; the two structures can be reconciled by interpreting the utility index

as �nal good production function, and consumption goods as intermediate inputs.
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While in both models each monopolistic �rm is granted an in�nitely-lived patent, the

monopolistic position of a �rm introducing a vertical innovation has a temporary nature

as it only lasts until the next improvement in the same industry occurs. This distinctive

feature of the vertical innovation literature, usually referred to as �creative destruction�

(Schumpeter, 1942 [1975]), is responsible for the role of expectations on future R&D

investment decisions in determining the amount and the distribution across industries

of current R&D investment. Since investors anticipate that their monopolistic position

will only last up to the next innovation in their product line, their incentive to invest

in R&D in a particular industry is negatively a¤ected by the future amount of R&D

investment expected in that industry. In turn, in order to focus on symmetric R&D

investment, the additional assumption of symmetric expectations needs to be made.

Only under the joint hypothesis of symmetric expectations and symmetric fundamen-

tals, investors are indi¤erent as to which industry they target, and hence the model

may focus on a symmetric solution to the allocation of R&D e¤orts. Grossman and

Helpman (1991, p.47) recognize the centrality of the assumption of symmetric expected

R&D investments in order to justify the selection of the symmetric equilibrium: with

the assumption that �the pro�t �ows are the same for all industries [...] an entrepreneur

will be indi¤erent as to the industry in which she devotes her R&D e¤orts provided

that she expects her prospective leadership position to last equally long in each one.

We focus hereafter on the symmetric equilibrium in which all products are targeted

to the same aggregate extent. In such an equilibrium the individual entrepreneur in-

deed expects pro�t �ows of equal duration in every industry and so is indi¤erent as

to the choice of industry�. Indeed, Cozzi (2005, 2007) shows the existence of multiple

asymmetric equilibria triggered by self-ful�lling asymmetric expectations.

Both notions of symmetric equilibrium in innovation-driven growth have been criti-

cized. On the one hand, Park (2007) questions the soundness of symmetric equilibrium

in the intermediate goods sector of horizontal innovation models. He claims that sym-

metric technology in the production of intermediate goods is inconsistent with the

assumption that intermediate goods are imperfect substitutes as inputs in the �nal

good production function. He argues that goods produced with identical technology

are, in fact, the very same good and, at the same time, he denies that intermediate

goods can be di¤erentiated thanks to the di¤erent design they are associated to. In

turn, symmetric Dixit-Stiglitz technology cannot be legitimately used to represent the

concept of variety. If, on the contrary, asymmetric technology in the intermediate

goods sector is assumed, the model becomes unable to yield balanced growth.
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On the other hand, the role of symmetric expected R&D e¤orts in the character-

ization of the symmetric equilibrium has also been questioned. Indeed, expecting the

same amount of future R&D e¤orts across industries is not a su¢ cient condition for

investors to choose a symmetric allocation of current R&D e¤orts: equal future prof-

itability leaves the investor indi¤erent as to which industry to select when deciding

R&D e¤orts across industries. As a result, under the assumption of symmetric expec-

tations the allocation problem of R&D e¤orts is indeterminate. This indeterminacy

in the distribution of R&D investment may generate multiple asymmetric equilibria,

analogous to those identi�ed by Cozzi (2005, 2007), each characterized by a di¤erent

balanced growth path.

In two recent papers Giordani and Zamparelli (2008) and Cozzi et Al. (2007) tackle

the weakness of symmetric equilibrium respectively in the intermediate good sector and

in the R&D sector. Giordani and Zamparelli (2008) develop an R&D growth model

with asymmetric technology and demand conditions, where the resulting steady state

equilibrium of the intermediate sector is asymmetric. They do not address, however, the

problem raised by Park (2007), since their analysis is carried out within the vertical

innovation framework. Cozzi et Al. (2007) solve the indeterminacy of equilibrium

in the R&D sector. They prove that the symmetric equilibrium is the only rational

expectations equilibrium robust to a however small "degree" of investors�ambiguity

aversion in the evaluation of R&D returns.

The balanced growth path equilibrium in Giordani and Zamparelli (2008) is char-

acterized by an asymmetric con�guration of R&D investments capable of equalizing

R&D returns across industries. Notice however that, as in the standard symmetric

case, equalization of returns leaves the agent indi¤erent as to which industry to invest

in. As a result, the asymmetric equilibrium is not uniquely pinned down. In this paper

we make the focus on the asymmetric equilibrium compelling. Our basic idea is that

the agents�indi¤erence - arising from the equalization of R&D returns across industries

- gives them in principle the possibility of adopting a whatever (even randomly chosen)

investment strategy. This makes these agents highly uncertain about the con�guration

of future R&D investment, since that con�guration is the result of a decision problem

analogous to the one they are currently facing.

We assume that the agent�s beliefs on the future (per industry) distribution of

R&D investments are characterized by uncertainty (or ambiguity), in the sense that

information about that distribution is too imprecise to be represented by a (single addi-

tive) probability measure. The traditional distinction between �risk�and �uncertainty�
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traces back to Frank Knight (1921), and states that risk is associated with ventures

in which an objective probability distribution of all possible events is known, while

uncertainty characterizes choice settings in which that probability distribution is not

available to the decision-maker. As is well known, the axiomatization of the subjective

expected utility (SEU) model, provided among others by Savage (1954), contributed to

undermine any meaningful distinction between risk and uncertainty. In recent years a

number of attempts have been made to extend the SEU model in order to substantiate

that distinction.3 Here we follow the maxmin expected utility (MMEU) theory axiom-

atized by Gilboa and Schmeidler (1989). In representing subjective beliefs, it suggests

to replace the standard single (additive) prior with a closed and convex set of (additive)

priors. The choice among alternative acts is determined by a maximin strategy. For

each act the agent �rst computes the expected utilities with respect to each single prior

in the set and picks up the minimal value. Finally she compares all these values and

singles out the act associated with the highest (minimal) expected utility. According

to this model, the agent is said to be uncertainty (or ambiguity) averse if the given set

of priors is not a singleton. In particular, we use the �"�contamination of con�dence�
argument, recently axiomatized by Nishimura and Ozaki (2006). In our framework

the decision maker is assumed to maximize her expected pay-o¤ with respect to the

R&D investment decision, while singling out the worst choice scenario, that is, the

minimizing probability distribution over the future con�guration of R&D investments.

We show that a however small degree of uncertainty in the expectations of the future

investment�s allocation (an �"�contamination of con�dence�) eliminates agents�indif-
ference and makes the con�guration where R&D returns are equalized across industries

arise as the unique equilibrium.

Giordani and Zamparelli (2008) have proved that, in R&D driven growth economies

with asymmetric fundamentals, a costless tax/subsidy scheme reallocating resources to-

wards industries with more productive fundamentals raises the long-run growth rate

and the social welfare of the economy. Since their results are based on the R&D

return-equalizing equilibrium discussed above, establishing the robustness of such an

equilibrium against the introduction of uncertainty in agents�beliefs improves the con-

�dence in the policy implications of the standard asymmetric model.

The rest of the paper is organized as follows. In Section 2 we introduce the model.

In Section 3 we explain the core of our argument, enunciate and prove our main result.

3Seminal contributions in this respect are Bewley (1986) and Schmeidler (1989).
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In Section 4 we conclude with some remarks.

2 The Model

In this section we build a vertical innovation (or "quality ladder") growth model with

asymmetric fundamentals.4 Let us assume a continuum of industries producing �nal

goods indexed by ! 2 [0; 1]. In each industry �rms are distinguished by the quality
index j of the goods they supply, with the quality of their goods being increasing in

the integer j. At time t = 0 in each industry some �rm knows how to produce a j = 0

quality product and no other �rm can o¤er a better one. In order to develop higher

quality versions of any product �rms engage in R&D races. The winner of an R&D race

becomes the sole producer of a good whose quality is one step ahead of the previous

quality leader.

There exists a �xed number of dynastic households (normalized to one) whose

members grow at constant rate n > 0. Each member shares the same intertemporally

additively separable utility log u(t) and is endowed with a unit of labor she supplies

inelastically. Therefore each household chooses her optimal consumption path by max-

imizing the discounted utility

U �
1Z
0

L(0)e�(��n)t log u(t)dt (1)

where L(0) � 1 is the initial population and � > n is the common rate of time

preferences.

The instantaneous utility function is a logarithmic Cobb-Douglas. We let the utility

weights (�(!)) vary across industries, so as to represent a possible heterogeneity of

consumers�preferences among the set of commodities. As the �(!)�s represent the

relative weights of the goods in the utility function, we can normalize them in such a

way that
R 1
0
�(!)d! = 1. If we de�ne �(!) as the size of quality improvements (the

so-called "quality jump"), assumed to be industry-speci�c to allow for asymmetry in

the technical evolution of each line, jmax(!; t) as the highest quality reached by product

4The model developed in this section is in many respects similar to the one in Giordani and

Zamparelli (2008), the main substantial di¤erence being that here we adopt the "TEG speci�cation" to

capture the increasing complexity of the innovation process, in contrast with the "PEG speci�cation"

adopted in that paper (see below for details).
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! at time t, and d(j; !; t) as the consumption of product ! of quality j at time t, then

the instantaneous utility function can be written as

log u(t) �
1Z
0

�(!) log

jmax(!;t)X
j=0

�j(!)d(j; !; t)d!; (2)

and the static maximization problem can be represented as

max
d

1Z
0

�(!) log

jmax(!;t)X
j=0

�j(!)d(j; !; t)d! (3)

s:t: E(t) =

1Z
0

24jmax(!;t)X
j=0

p(j; !; t)d(j; !; t)

35 d!
where p(j; !; t) denotes the price of product ! of quality j at time t, and E(t) is the

total expenditure at time t.

At each point in time consumers maximize static utility by spreading their expen-

diture across industries proportionally to the utility contribution of each product line

(�(!)), and by only purchasing in each line the product with the lowest price per

unit of quality. As usual in quality-ladder models with Bertrand competition in the

manufacturing sector, this product is the one indexed by jmax(!; t). As a result, the

individual static demand functions are

d(j; !; t) =

8<:
�(!)E(t)

p(j; !; t)
for j = jmax(!; t)

0 otherwise
(4)

Moreover, since the only jmax(!; t) quality product is actually purchased, in what

follows it will be
jmax(!;t)X
j=0

�j(!) = �j
max(!;t)(!):

Substituting (4) into (2) and (2) into (1) we get the intertemporal maximum problem

as

max
E
U =

1Z
0

e�(��n)t[logE(t) +

1Z
0

�(!)[log�(!) + log [�(!)]j
max(!;t)

� log p(j; !; t)]d!]dt
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s.t.

1Z
0

e�
R t
0 [r(s)�n]dsE(t)dt � W (0);

where r(s) is the instantaneous interest rate at time s and W (0) is the present value

of the stream of incomes plus the value of initial wealth at time t = 0. The solution to

this problem obeys the di¤erential equation

_E(t)

E(t)
= r(t)� �: (5)

Each good is produced by only employing labor through a constant return to scale

technology: in order to produce one unit of good ! �rms hire l! units of labor re-

gardless of quality. The Bertrand competition assumption implies that the quality

leader monopolizes her relative market and that the limit price she can charge is

p [jmax(!; t); !; t] = �(!)wl!: Thus the pro�t �ows in each industry are

�(!; t) =
�(!)� 1
�(!)

�(!)E(t)L(t):

Firms can engage in R&D to develop better versions of the existing products in or-

der to displace the current monopolists. We assume free entry and perfect competition

in each R&D race. Firms employ labor and produce, through a constant returns tech-

nology, a Poisson arrival rate of innovation in the product line they target. The R&D

technology is industry-speci�c. In particular, any �rm hiring lk units of labor in indus-

try ! at time t acquires the instantaneous probability of innovating A(!)lk=X(!; t),

where X(!; t) is the R&D di¢ culty index. Since independent Poisson processes are

additive, the speci�cation of the innovation process implies that the industry-wide

instantaneous probability of innovation (or research intensity) is

A(!)LI(!; t)

X(!; t)
� i(!; t) (6)

where LI(!; t) =
P

k lk(!; t)dk. As R&D proceeds, its di¢ culty index X(!; t) is sup-

posed to increase over time in order to rule out the "scale e¤ect" (Jones, 1995), that is,

to rule out explosive growth in the presence of a growing population. With reference to

Segerstrom (1998), we model the increasing complexity hypothesis according to what
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is usually called �TEG speci�cation�:5

_X(!; t)

X(!; t)
= �i(!; t);

where � is a positive constant.

Whenever a �rm succeeds in innovating, it acquires the uncertain stream of pro�t

�ows that accrues to a monopolist, that is, the stock market valuation of the �rm,

v(!; t). Thus, the problem faced by an R&D �rm is that of choosing the amount of

labor input in order to maximize its expected pro�ts6

max
lk

�
v(!; t)A(!)

X(!; t)
lk � lk

�
:

The problem above provides a �nite, positive solution for lk only when the arbitrage

equation

v(!; t)A(!)

X(!; t)
= 1

is satis�ed. E¢ cient �nancial markets require that the stock market valuation of the

�rm yields an expected rate of return equal to the riskless interest rate r(t). The �rm�s

market valuation is

v(!; t) =
�(!; t)

r(t) + A(!)LI(!;t)
X(!;t)

�
�
v(!;t)
v(!;t)

;

that is, the present value of pro�ts discounted at the obsolescence-adjusted interest

rate (see Grossman and Helpman, 1991). Finally, the R&D equilibrium condition is

�(!; t)A(!)

X(!; t)
h
r(t) + A(!)LI(!;t)

X(!;t)
�

�
v(!;t)
v(!;t)

i = 1: (7)

Since in each industry the market demands, D(!; t) = [�(!)E(t)L(t)] =�(!)l!, re-

quire D(!; t)l! units of labor in order to be produced, the total employment in the

manufacturing sector is
1Z
0

�(!)E(t)L(t)

�(!)
d!:

5The acronym TEG stands for �Temporary e¤ects on growth�of policy measures such as subsidies

and taxes. Useful surveys on the scale e¤ect problem and the way it has been solved are Dinopoulos

and Thompson (1999) and Jones (1999 and 2003).
6We consider labor as numerarie and normalize the wage rate to 1.

10



As a result, the labor market-clearing condition implies

L(t) =

1Z
0

�(!)E(t)L(t)

�(!)
d! +

1Z
0

LI(!; t)d!: (8)

where
R 1
0
LI(!; t)d! is the total employment in the research sector.

We now focus on the steady state equilibrium, where all variables grow at constant

rates. Along the steady state _E(t)=E(t) = 0 and hence, from the Euler equation,

r(t) = �: Moreover, from the de�nition of v(!; t) it follows that its steady state growth

rate is
�
v(!; t)=v(!; t) = n. By solving the system made up of (7) and (8), we obtain

the steady-state values of expenditure E�, and of current and expected R&D e¤orts

L�I(!; t) - which coincide in the rational expectations equilibrium - as

E� =
�
n
�+ 1� ��

�
n
�� �

� R 1
0
�(!)
�(!)

d! + 1

and

L�I(!; t) = L(t)
�(!)� �(!)

�(!)�
�
n
�� �

� R 1
0
�(!)
�(!)

d! + 1
: (9)

Notice that the steady state research investments are industry-speci�c and that, by

construction, they equalize R&D returns across industries.

3 The Robustness of the Return-Equalizing Equi-

librium

The equalization of R&D returns leaves the investor indi¤erent as to how to allocate

resources across industries. As we have argued in the Introduction, this indi¤erence

justi�es the assumption we make in this section, that is, the investors�aversion against

uncertainty. We characterize the agents�R&D investment strategy, and we show that

the return-equalizing equilibrium is robust against uncertainty aversion.

Importantly, our assumption on the agents�attitude towards uncertainty does not

concern any fundamental of the economy and is to be interpreted as a way of treating

the extrinsic uncertainty (Cass and Shell, 1983) associated to the future con�guration

of R&D investments across industries. Moreover, uncertainty does not a¤ect expec-

tations on the aggregate amount of research. In fact, we introduce uncertainty to

eliminate indeterminacy arising from situations where agents are indi¤erent among a
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set of choices. This is not the case for the total amount of research: if agents expect

the equilibrium aggregate amount of research, their choice between consumption and

savings, which are channelled to the research sector, is uniquely determined and con-

�rms their expectations; there is no indi¤erence, which is the source of the uncertainty

in the agents�beliefs.

Assume that the investor is (1 � p)100% sure to face in the future the return-

equalizing con�guration of R&D investment, and that with a however small prob-

ability p any other possible con�guration can occur. We can call this situation a

�p�contamination of con�dence�.7 Aversion to ambiguity in this context implies that
with probability p the agent expects the worst con�guration of future R&D investment,

that is, the one which minimizes her expected returns.8 Since the minimizing con�gu-

ration is a function of the agent�s investment choice, this choice can then be formalized

as the result of a �two-player zero-sum game�characterized by

� the minimizing behavior of a �malevolent Nature�, which selects the worst pos-
sible con�guration of future R&D e¤orts and

� the maximizing behavior of the agent, who selects the best possible con�guration
of current R&D e¤orts.

We denote with lm(t) + 
(!; t) the agent�s investment in industry ! at time t, and

with LeI(t)+"(!; t) the aggregate expected research in industry !, at time t. lm and L
e
I

are, respectively, the agent�s average investment per industry and the average expected

research per industry. "(�) and 
(�) represent deviations from the averages satisfying

1Z
0

"(!; t)d! = 0;

1Z
0


(!; t)d! = 0; "(!; t) > �LeI(t); 
(!; t) > �lm(t):

The presence of the two functions 
(�) and "(�) is intended to allow for asymmetry

across industries both in the agent�s investment and in expected research.

We can now state the R&D investment problem as

7To avoid confusion let us remark that in the literature this situation is usually called

"�contamination (which is also the phrase used in the Introduction). However, as we will see, in
our context " stands for the extension of the state space.

8See the representation theorem (theorem 1) in Nishimura and Ozaki (2006) for an axiomatization

of the choice behavior assumed here.
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max

(:)

2664min"(:)
1Z
0

[lm(t) + 
(!; t)]
�
pA(!)v(!;t)

X(!)
+ (1� p)q(t)

�
d!

3775
s.t. (i), (ii)

1Z
0


(!; t)d! =

1Z
0

"(!; t)d! = 0; (iii) "(!; t) > �LeI(t); (iv) 
(!; t) > �lm(t)

where

v(!; t) � �(!; t)

r(t) + (1� �) A(!)
X(!;t)

[LeI(t) + "(!; t)]
;

and where q(t) is de�ned as the expected R&D return which, with probability 1 � p,
is constant across industries.

In Appendix A we solve the maxmin problem above via the calculus of variations

and characterize the agent�s investment strategy as

lm(t) + 
(!; t) = lm(t)
�(!; t)R 1

0
�(!; t)d!

8! 2 [0; 1]; (10)

and the distribution of expected R&D investments as

LeI(t)+"(!; t) =
�(!; t)R 1

0
�(!; t)d!

0@LeI(t) + r(t)

(1� �)

1Z
0

X(!; t)

A(!)
d!

1A� r(t)

(1� �)
X(!; t)

A(!)
8! 2 [0; 1]:

(11)

We can now turn to the steady state and enunciate the following

Proposition 1 For a however small probability (p) of deviation ("(!)) from the return-
equalizing expectations on the future R&D investment, decision makers adopting a

maxmin strategy to solve their investment allocation problem choose a steady state in-

vestment strategy which equalizes R&D returns across industries. The values of these

investments coincide with those in (9).

Proof. See Appendix B.
We have shown that, even under "(�) and p however small, the return-equalizing

equilibrium arises as the unique optimal investment allocation. That is to say, even

though the agent is �almost sure�(p ! 0) to face in the future the return-equalizing

con�guration of R&D investment (which would leave her in a position of indi¤erence in

her current allocation problem), the mere possibility of a slightly di¤erent future con�g-

uration (as captured by "(!)) makes her strictly prefer to choose the return-equalizing

13



R&D investment strategy. This occurs because, whenever the agent evaluates any dif-

ferent allocation of her current investments, she will always be induced to expect the

worst con�guration of future investments inside the "-generated set.

4 Concluding Remarks

The fact that R&D investment decisions are taken under conditions of severe un-

certainty about their returns has long been recognized in the economics literature

(see among others Rosenberg (1994) and Freeman and Soete (1997)): innovations are

"unique" events, and the process aimed at producing them is an uncertain and largely

unpredictable economic activity. The concept of "Knightian uncertainty" (as opposed

to "risk") appears to be essential in any attempt to analyze the evolution of the in-

novation process in modern economies. Recent studies on ambiguity (and ambiguity

attitude) have tried to give an "operational" meaning to Knightian uncertainty. We

have adopted the multiple-prior approach pioneered by Gilboa and Schmeidler (1989).

In particular, in a vertical innovation growth model with asymmetric fundamentals we

have explored the relationship between ambiguity and extrinsic uncertainty, that is,

uncertainty not related to the economy�s fundamentals but lying in the current evalua-

tion of R&D investments to be carried out by future investors.9 We have shown that a

however small degree of ambiguity aversion eliminates the indeterminacy in the R&D

investment allocation problem. As a result, and in contrast with horizontal innovation

growth models, the family of vertical innovation models can be meaningfully extended

to more realistic asymmetric frameworks where the return-equalizing equilibrium is

univocally identi�ed as the unique robust rational expectations equilibrium.
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A The Maxmin Problem

max

(�)

24min
"(�)

1Z
0

[lm(t) + 
(!; t)] v(!; t)
A(!)

X(!; t)
d!

35
s.t.

1Z
0


(!; t)d! =

1Z
0

"(!; t)d! = 0; "(!; t) > �LeI(t); 
(!; t) > �lm(t):

where

v(!; t) � �(!; t)

r(t)� _v(!;t)
v(!;t)

+ A(!)
X(!;t)

[LeI(t) + "(!; t)]
:

Under TEG speci�cation

_X(!; t)

X(!; t)
= �

A(!)

X(!; t)
[LeI(t) + "(!; t)] :

Moreover, as by di¤erentiating (7) with respect to time, we obtain _v(!; t)=v(!; t) =
_X(!; t)=X(!; t), then

v(!; t) � �(!; t)

r(t) + (1� �) A(!)
X(!;t)

[LeI(t) + "(!; t)]
:

17



From the de�nition of probability p the return from any investment is industry speci�c

(v(!; t)A(!)=X(!; t)) with probability p, while it is constant across industries with

probability (1 � p) (let us de�ne this constant value as q(t)). Then the problem is

equivalent to

max

(:)

2664min"(:)
1Z
0

[lm(t) + 
(!; t)]

0@p A(!)�(!;t)

X(!)

�
r(t)+(1��)

A(!)
X(!;t) [L

e
I(t)+"(!;t)]

� + (1� p)q(t)
1A d!

3775 =

= (1� p)q(t) + pmax

(:)

2664min"(:)
1Z
0

[lm(t) + 
(!; t)]
A(!)�(!;t)

X(!)

�
r(t)+(1��)

A(!)
X(!;t) [L

e
I(t)+"(!;t)]

�d!
3775 ;

which admits the same solution as

max

(:)

2664min"(:)
1Z
0

[lm(t) + 
(!; t)]
A(!)�(!;t)

X(!)

�
r(t)+(1��)

A(!)
X(!;t) [L

e
I(t)+"(!;t)]

�d!
3775 :

Notice that this is valid for a however small probability p: Given these conditions, we

�rst solve for the minimization problem

min
"(�)

1Z
0

[lm(t) + 
(!; t)]�(!; t)
X(!;t)
A(!)

r(t) + (1� �)(LeI(t) + "(!; t))
d!

s.t.

1Z
0

"(!; t)d! = 0:

We set e(!; t) =
R !
0
"(s; t)ds; then e0(!; t) = "(!; t) 8! 2 [0; 1] and the minimization

problem (Pmin) can be expressed as

min
e0(�)

1Z
0

G(e0)d!

s.t. e(0) = 0; e(1) = 0

where

G(e0) =
[lm(t) + 
(!; t)]�(!; t)

X(!;t)
A(!)

r(t) + (1� �)(LeI(t) + "(!; t))
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This is the simplest problem of calculus of variations. Since under the conditions

speci�ed above G(e0) 2 C2, we can apply the Euler theorem stating that, if G(e; e0; !) 2
C2 and e� is optimal and C1, then e� must necessarily solve

Ge �
d

d!
Ge0 = 0 (12)

As in our caseG does not depend on e, Ge = 0, and hence (12) becomes (d=d!)Ge0 =

0, implying that

Ge0 � G" = � �(!;t)[lm(t)+
(!;t)]�
X(!;t)
A(!)

r(t)+(1��)(LeI(t)+"(!;t))
�2

be constant with respect to !. Hence

�(!; t) [lm(t) + 
(!; t)]h
X(!;t)
A(!)

r(t) + (1� �)(LeI(t) + "(!; t))
i2 = k1

where k1 is a real constant. Now we solve the expression above for "(!; t) and obtain

the reaction function of "Nature" to the agent�s decision as

"(!; t) =

s
�(!; t) [lm(t) + 
(!; t)]

k1(1� �)
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t): (13)

We can now plug it into the maximization problem (Pmax) and solve for 
:

max

(:)

1Z
0

[lm(t) + 
(!; t)]
�(!; t)r

�(!; t) [lm(t) + 
(!; t)] (1� �)
k1

d!

sub

1Z
0


(!; t)d! = 0:

Rearranging, this problem becomes

max

(:)

1Z
0

[lm(t) + 
(!; t)]
1
2 (�(!; t)k1=(1� �))

1
2 d!

sub

1Z
0


(!; t)d! = 0:
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Again, we solve Pmax as a problem of calculus of variations. By setting c(!; t) =R !
0

(s; t)ds, so that c0(!; t) = 
(!; t), Pmax becomes

max
c0

1Z
0

F (c0)d!

sub c(0) = 0; c(1) = 0

where F (c0) � F (
) = [lm(t)+
(!; t)]
1
2 [�(!; t)k1]

1
2 . With the same reasoning as before,

the Euler theorem, Fc �
d

d!
Fc0 = 0, implies

Fc0 � F
 = �
(�(!; t)k1)

1
2

2[lm + 
(!; t)]
1
2

= �k2

where k2 2 R+. From F
 we can derive the expression for 
(!; t) as


(!; t) =
�(!; t)k1
4k22

� lm: (14)

Plugging it into (13), we obtain

"(!; t) =

vuut�(!; t)
h
lm(t) +

�(!;t)k1
4k22

� lm(t)
i

k1
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t) = (15)

=
�(!; t)

2k2
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t):

Now we can use the two conditions imposed by the constraints

1Z
0


(!; t)d! = 0 ()
1Z
0

�
�(!; t)k1
4k22

� lm(t)
�
d! = 0;

1Z
0

"(!; t)d! = 0 ()
1Z
0

�
�(!; t)

2(1� �)k2
� X(!; t)

A(!)(1� �)r(t)� L
e
I(t)

�
d! = 0

to �nd the constants

k1 =
4k22(1� �)lm(t)R 1

0
�(!; t)d!

(16)

and

k2 =

R 1
0
�(!; t)d!

2(1� �)
h
r(t)
(1��)

R 1
0
X(!;t)
A(!)

d! + LeI(t)
i : (17)
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Substituting (17) into (16), we obtain

k1 =
lm(t)

R 1
0
�(!; t)d!

(1� �)
�
r(t)

(1� �)
1R
0

X(!; t)

A(!)
d! + LeI(t)

�2 : (18)

Finally we can plug (17) and (18) into (14) and (15) in order to obtain the optimal

pair 
�(!; t), "�(!; t) as


�(!; t) =
�(!; t)k1
4k22

� lm(t) = lm(t)
"

�(!; t)R 1
0
�(!; t)d!

� 1
#

and

"�(!; t) =
�(!; t)

1R
0

�(!; t)d!

24 r(t)

(1� �)

1Z
0

X(!; t)

A(!)
d! + LeI(t)

35� r(t)

(1� �)
X(!; t)

A(!)
� LeI(t) =

= LeI(t)

26664 �(!; t)
1R
0

�(!; t)d!

� 1

37775+ �(!; t)
1R
0

�(!; t)d!

r(t)

(1� �)

1Z
0

X(!; t)

A(!)
d! � r(t)

(1� �)
X(!; t)

A(!)

from which we can easily obtain expressions (10) and (11).

B Characterization of the Steady State and Proof

of Proposition 1

Expressions (10) and (11) prove to be relevant as soon as we turn to the steady-state

equilibrium. Then
_X(!; t)

X(!; t)
� �i(!) = n

and, as _E(t)=E(t) = 0, it is r(t) = �. It is easy to show, by substituting for LeI(t) +

"(!; t) (as given in (11)) into v(!; t); that the R&D returns (v(!; t)A(!)=X(!)) are
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equalized across industries. In fact

A(!)v(!)

X(!)
=

�(!; t)A(!)

X(!; t)�+
A(!)LeI(t) + "(!; t)

X(!; t)
(1� �)

=

= �(!;t)

X(!;t)
A(!)

�+(1��)

0BB@ �(!;t)
1R
0

�(!;t)d!

 
LeI(t)+

�
(1��)

1R
0

X(!;t)
A(!)

d!

!
� �
(1��)

X(!;t)
A(!)

1CCA
=

= �(!;t)

�

n
�(LeI(t)+"(!;t))+(1��)

0BB@ �(!;t)
1R
0

�(!;t)d!

 
LeI(t)+

�
(1��)

�

n
LeI(t)

!
� �
(1��)

�

n
(LeI(t)+"(!;t))

1CCA
:

Substituting for the steady state value of X(!; t) =
�

n
A (LeI(t) + "(!; t))) we �nally

obtain

A(!)v(!)

X(!)
=

�(!; t)

(1� �) �(!; t)
1R
0

�(!; t)d!

LeI(t) +
��

n

�(!; t)
1R
0

�(!; t)d!

LeI(t)

=

=

�
LeI(t)

EL(t)

�
1� �+ ��

n

���1
:

Now, by using the arbitrage equation for any industry (equation (7)), we can solve for

LeI(t) and obtain

LeI(t) =
EL(t)

�
1� �(!)

�(!)

�
�
n
�+ 1� � ;

or, in per capita terms,

lem =
E
�
1� �(!)

�(!)

�
�
n
�+ 1� � (19)

Dividing the market-clearing condition

L(t) =

1Z
0

�(!)EL(t)

�(!)
d! + L(t)

1Z
0

[lm + 
(!; t)] d!:

by L(t), we can write

1 = E

1Z
0

�(!)

�(!)
d! + lm (20)

22



Given the absence of uncertainty on aggregate, and average, expected amount of re-

search, then lem(t) = lm(t): The steady-state resource (20) and arbitrage (19) equations

allow us to �nd the equilibrium values of lm and E as

E =
�
n
�+ 1� ��

�
n
�� �

� R 1
0
�(!)
�(!)

d! + 1

and

lm =
1�

R 1
0
�(!)
�(!)

d!�
�
n
�� �

� R 1
0
�(!)
�(!)

d! + 1
:

The proof of proposition 1 is now straightforward. By plugging the mean value lm
into expression (10) we obtain

lm+
(!; t) = lm
�(!; t)

1R
0

�(!; t)d!

=

1�
1R
0

�(!)

�(!)
d!��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

:

�(!)� �(!)
�(!)

1�
1R
0

�(!)

�(!)
d!

=

�(!)� �(!)
�(!)��

n
�� �

� 1R
0

�(!)

�(!)
d! + 1

Since by de�nition L�I(!; t) � L(t) [lm + 
(!; t)], steady state R&D investments coin-
cide with those given in (9).
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