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Abstract: Significant challenges to worldwide sustainable food production continue to arise from
environmental change and consistent population growth. In order to meet increasing demand, fish
production industries are encouraged to maintain high growth densities and to rely on antibiotic
intervention throughout all stages of development. The inappropriate administering of antibiotics
over time introduces selective pressure, allowing the survival of resistant bacterial strains through
adaptive pathways involving transferable nucleotide sequences (i.e., plasmids). This is one of the
essential mechanisms of antibiotic resistance development in food production systems. This review
article focuses on the main international regulations and governing the administering of antibiotics
in finfish husbandry and summarizes recent data regarding the distribution of bacterial resistance in
the finfish aquaculture food production chain. The second part of this review examines promising
alternative approaches to finfish production, sustainable farming techniques, and vaccination that
circumvents excessive antibiotic use, including new animal welfare measures. Then, we reflect
on recent adaptations to increasingly interdisciplinary perspectives in the field and their greater
alignment with the One Health initiative.
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1. Introduction

Recent reports indicate that finfish and seafood consumption can be considered sus-
tainable feeding sources. In a recent FAO Report (2020), it was observed that 156 million
tons were for human consumption; this means roughly 20.5 kg/consumer per year. The
remaining amount (23 million tons) was used for fish oil and fishmeal production [1].
In 2015, the world marine catch decreased by almost 2 million tons from 81.2 million
tons. This decrease was justified by significant fish catching, which has led to reduced
animal densities, causing environmental alterations due to the high impacts of anthropic
activities [2].

Generally, fisheries have strategic importance for food production, human and animal
nutrition, and the employment of millions of people (39 million people in the primary
sector of capture fisheries and 20.5 million people in the aquaculture one) [3].

With the reduction in marine finfish populations and the increase in human con-
sumers, aquaculture farmers worldwide have expanded productive systems from small
fisheries to larger, more intensive ones; many countries (i.e., China, Thailand, India, etc.)
have promoted the building of inland and mariculture husbandries [1,4]. In 2018, most
reports indicated that global fish production had increased from 167 million tons in 2016
to 179 million tons, with 82 million tons being derived from aquaculture farms [1]. The
intensively farmed finfish species present high mortality (50%), starting from the larval
stage and continuing in sea cages. Losses are generally caused by bacterial or viral diseases;
in major cases, bacterial pathologies are directly linked to the high density located in feces
and sediments or to improper vaccination programs [4].
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The high animal density, directly related to the welfare concept, is a crucial aspect because
it provides epidemiological and environmental conditions that lead to possible infectious
disease outbreaks that cause productive and economic losses. In most cases, antibiotics usually
represent the first choice for treatments [5], which can be administered through different routes:
feed, water immersion, or injection [6]. From a zootechnic perspective, it is also relevant to
considerer two possible negative aspects: proper usage and the administering of unapproved
(antibiotics in which usage is restricted only to the human medicine) or illegal molecules [i.e.,
chloramphenicol (banned in the EU member states)].

Comparing aquaculture to the terrestrial farms, based on pharmacological consump-
tion, researchers have highlighted significant differences. Indeed, the World Health Organi-
zation classified aquaculture as an activity with a low environmental impact for antibiotic
usage [7,8]. Directly linked to the above-explained concepts, veterinarians play key roles
in pharmacological management. This consideration is justified because this professional
figure firstly prescribes antibiotic therapies, avoiding the unnecessary administering (as
metaphylactic one) of certain classes—in which usage is restricted to the human medicine:
the so-called Critical Importance Antimicrobials WHO (CIA)—for food-producing animals;
secondly, they must reduce administering to only restricted specific cases. The aim is to
decrease a relevant selective pressure, which promotes resistant and pan-resistant bacterial
strains survival [1]. These strains are named as antibiotic resistance bacteria (ARBs) that can
be considered as “drivers” of antibiotic resistance genes (ARGs) with important repercus-
sions on the environmental, animal, and human health [9]. It has been widely demonstrated
that ARGs can be transferred to human intestinal microbiota and, consequently, to the
ingestion of foods (numerous matrices: meat, dairy products, fish, etc.), which can drive
commensal or pathogenic (Salmonella spp., Vibrio spp.) ARBs with extra chromosomal
resistance forms. Finally, it is important to mention possible drugs residues due to the
improper observation of legal limits [7]. Therefore, the European Regulations No. 470/2009
and No. 37/2010 established the residual limits of pharmacologically active substances in
animal origin foodstuffs.

Furthermore, the aquatic environment (i.e., oceans, lakes, rivers) is also a possible
reservoir of ARGs [1]. Generally, fin fish’s intestinal microbiota is characterized by bacte-
rial populations that are like those ones detected in the aquatic environment. Therefore,
microbiological water quality (influenced by wastewater management, fish industries, and
other anthropic activities, etc.) can represent a critical environmental resistance factor that
allows ARGs diffusion and preservation [1].

2. Antibiotic Usage: Regulations in Aquaculture Farms

A horizontal concept, that involves, at the same time, different cultured animal species,
is represented by the therapeutic administering of antibiotic molecules related to the high
subjects’ densities (per m2 or m3 of surface or water). Due to its crucial aspect, represented
by the antimicrobial resistance (AMR) phenomenon, different nations have organized their
respective legislations to prevent and decrease its diffusion. The WHO data report an
alarmistic scenario: within 10 years, the antibiotic therapeutic efficacy, both from humans
and animals, will be strongly reduced [7].

In this section, authors want to describe the main legislative measures adopted by
different nations. During last 20 years, European and American (USA) public health
institutions have produced lists of authorized molecules [10].

In 2000, the European Union, firstly, in the “White Paper on Food Safety”, identified the
strict correlations between food and environmental safety concepts. From this document,
the European Commission has evolved and, on this issue, has based the new regulations:
EU Reg. No. 178/2002; EU Reg. No. 852/2004; EU Reg. No. 853/2004; EU Reg. No.
625/2017 [11].

The above-mentioned regulations supplement obligatory requirements for producing
countries to follow the Council Directive 96/23/EC for aquaculture products to export
to the EU States [12]. These legislative acts are supported by strict monitoring activities
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regarding usage and trade of veterinary antibiotics performed by law-designed control
figures, i.e., the European Surveillance of Veterinary Antimicrobial Consumption (ES-
VAC) [13]. Indeed, the European Medicines Agency (EMA) banned the administering of
certain molecules (cefuroxime, chloramphenicol, polymyxin B Sulphate, and Nystatin)
to guarantee final consumer health [14]. More recently European agencies, including the
European Commission, established maximum residue limits (MRL) of pharmacologically
active substances in foodstuffs of animal origin (including finfish): EU Reg. No. 470/2009,
and No. 37/2010 (see Table 1).

Table 1. Pharmacologically active substances and their classification regarding maximum residue
limits (MRL) in foodstuffs of animal origin (from EU Reg. No. 37/2010).

Pharmacologically Active
Substance Marker Residue Animal Species MRL*

Benzylpenicillin Benzylpenicillin All other food-producing species. 50 µg/kg
Chlortetracycline Sum of parent drug and its 4-epimer Fin fish (all other food-producing species). 100 µg/kg

Cloxacillin Cloxacillin Fin fish (all other food-producing species). 300 µg/kg
Colistin Colistin Fin fish (all other food-producing species). 150 µg/kg

Danofloxacin Danofloxacin Fin fish (all other food-producing species). 100 µg/kg
Dicloxacillin Dicloxacillin Fin fish (all other food-producing species). 300 µg/kg
Difloxacin Difloxacin Fin fish (all other food-producing species). 300 µg/kg

Enrofloxacin Enrofloxacin Fin fish 100 µg/kg
Erythromycin Erythromycin A Fin fish 200 µg/kg

Florfenicol Sum of florfenicol and its metabolites
measured as florfenicol amine Fin fish 1000 µg/kg

Flumequine Flumequine Fin fish 600 µg/kg
Lincomycin Lincomycin Fin fish (all other food-producing species). 1000 µg/kg

Neomycin (including Framycetin) Neomycin B Fin fish (all other food-producing species). 500 µg/kg
Oxacillin Oxacillin Fin fish (all other food-producing species). 300 µg/kg

Oxolinic acid Oxolinic acid Fin fish (all other food-producing species). 100 µg/kg
Oxytetracycline Sum of parent drug and its 4-epimer Fin fish (all other food-producing species). 100 µg/kg
Paromomycin Paromomycin Fin fish (all other food-producing species). 500 µg/kg
Sarafloxacin Sarafloxacin Salmonidae 30 µg/kg

Spectinomycin Spectinomycin Fin fish (all other food-producing species). 300 µg/kg
Sulfonamides (all substances

belonging to the
Sulfonamides group)

Parent group Fin fish (all other food-producing species). 100 µg/kg

Tetracycline Sum of parent drug and its 4-epimer Fin fish (all other food-producing species). 100 µg/kg
Thiamphenicol Thiamphenicol Fin fish (all other food-producing species). 50 µg/kg

Tilmicosin Tilmicosin Fin fish (all other food-producing species). 50 µg/kg
Trimethoprim Trimethoprim Fin fish (all other food-producing species). 50 µg/kg

Tylosin Tylosin Fin fish (all other food-producing species). 100 µg/kg

*MRL: Maximum residue limit. It represents the length of time necessary to assure the absence or below-defined
values of drug molecules in animals’ tissues. Target tissue: muscle (related to “muscle and skin”, as reported by
art.14(7) EU Reg. No. 470/2009). Therapeutic classification: Anti-infectious agents/antibiotics.

Moreover, the Food and Drug Administration (FDA) and the United States Department
of Agriculture (USDA) worked on fish drugs, reporting a list of antibiotics that can be
used in aquaculture [5]. As described above by Tables 1 and 2, comparing developed
countries legislations, the European limit values of active substances are expressed as
µg/kg and mg/kg in the American one. Furthermore, in European legislation (i.e., EU
Reg. No. 37/2010), more detailed and species-specific (including finfish and shellfish) limit
values concerning a wide range of xenobiotic molecules than the North American ones are
reported.
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Table 2. FDA-approved aquaculture drugs.

Antimicrobials/Chemical
Molecules Use Dose

Withdrawal Time and
Other Limitations
(Useful for MRL*)

Chloramine-T

For the control of mortality in:
Freshwater-reared salmonids
infected by Flavobacterium spp.

Walleye due to
Flavobacterium columnare.

12–20 mg/L (administered as a
static bath every day for

three treatments).
0 day

Formalin (37%)

The use of formalin is possible
to be expanded as a

parasiticide for all finfish and
penaeid shrimp and as a
fungicide to the eggs of

all finfish

Administered in tanks and
raceways for up 1 h (µL/L):
Salmon and trout→ up to

170 µL/L with a temperature
above 10 ◦C/50 ◦F, or→ up to
250 µL/L with a temperature
below 10 ◦C/50 ◦F. All other

finfish→ up to 250 µL/L.

0 day

Hydrogen peroxide (35%)

For the control of mortality in
finfish’s eggs and other losses

caused by Flavobacterium
branchiophilum and

F. columnare.

Freshwater-reared finfish eggs:
500 to 1000 mg/L for 15 min in a

continuous flow system
(consecutive or alternate days)

until hatch.
Freshwater-reared salmonids:

100 mg/L for 30 min or
50–100 mg/L for 60 min once per

day on alternate days for three
treatments in a continuous flow.

0 day

Oxytetraycline hydrochloride
For the marking of skeletal

tissues in finfish
fry and fingerlings.

200–700 mg/2 L of water for 2 to
6 h. 0 day

Florfenicol

For control mortality caused
by Edwardsiela ictaluri (enteric

septicemia) and
Flavobacterium columnare.

10 mg/kg of body weight for
10 consecutive days.

12 days (under
veterinarian prescription)

Oxytetracycline dehydrate

Control Aeromonas liquifaciens
and Pseusomonas spp. disease

(they cause hemorrhagic
septicemia), especially in
Oncorhynchus spp. and

Salmo spp.

10 mg/kg of body weight for
10 consecutive days.

21 days to catfish and
30 days to lobster

Sulfadimethoxine/ormetoprim Control of E. ictulari 50 mg/kg of body weight for
5 days. 3 days.

*MRL: Maximum residue limit. It represents the length of time necessary to assure the absence or below-defined
values of drug molecules in animals’ tissues.

In the developing countries, there is a wide differentiation, which depends on their
respective governmental agencies. This last sentence should not be considered redundant,
because a clear legislation on antibiotic usage in veterinary medicine, more specifically on
the aquaculture sector, is not yet well structured.

For the above-mentioned reasons, and in order to export finfish products, develop-
ing countries’ legislators adopted similar parameters to those reported in the European
Union and USA laws, i.e., the Brazil [15], Vietnam [16–18], Chile [19], China [20–23], India
(MPEDA) [23], the Philippines [1], and Thailand [24].

In China, Thailand, Vietnam, Brazil, Chile, Bangladesh, Norway, the Philippines,
and India, governmental authorities have listed the authorized antibiotic compounds and
banned other molecules for usage in the aquaculture sector [16,17,20,24–26]. In Asia, there
are differences between geographic regions, depending on the antimicrobial usage (any
farmers that still administer chloramphenicol that is banned in the aquaculture zootechnic)
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and local food safety regulatory agencies. However, this last issue has been justified by low
pharma-surveillance programs, poor “Food Safety Legislation”, and inadequate monitoring
systems’ control of drug usage [27]. These legal and surveillance gaps have contributed to
the ARBs and ARGs in the aquatic environment [28–30].

To contrast the AMR phenomenon, there are multiple examples of collaboration be-
tween different legislative institutions that have improved the antimicrobial management.
For instance, the FDA continues to detect nitrofurans and chloramphenicol in collabora-
tion with Malaysian aquaculture producers, and, consequently, this country has banned
them [31]. China realized innovative and specific “Applicative Guidelines”, which specify
sulfonamides, tetracycline, and enrofloxacin usages, which were adopted in other Asian
countries, i.e., Vietnam [23].

In conclusion, it is possible to affirm that the pleomorphic AMR phenomenon cannot
be reduced by geographical limits, and the respective legislations difficulty could be or-
ganized with the same restrictions [11]. However, due to the environmental implications,
which pose at-risk human and animals health, it is mandatory to align lists of antibiotic
molecules that can be used for finfish disease treatments. Therefore, sanitary authorities
in the international community should make an effort to contribute to a global reduc-
tion in their tons of consumption of finfish production, starting from the sharing of data
and enforcing innovative pharmaco-surveillance systems. It implies that the realization
of integrated tracing processes, which have origins from the pharma industries, arrive
at the administering step in aquaculture farms and, consequently, involve the aquatic
environment.

3. Aquatic Environment and Antibiotic Resistance Circulation

Infectious disease caused by ARBs are estimated to cause 10 million deaths worldwide
by 2050 [32]. This issue is a horizontal problem involving humans, animals, plants, foods,
and environments; due to these reasons, the One Health approach is essential to overcome
this developing threat [33].

Previous studies have identified the aquatic environments (which include oceans,
lakes, and rivers) as potential transmission routes and ARGs and ARBs reservoirs [10,24,33].
Water and, in particular, wastewater management are crucial steps in the so called
“water-cycle” as vectors of antibiotic resistance forms. Indeed, it has been repeatedly re-
ported that ARGs and ARBs detection in water samples collected from treatment plants
and in numerous cases the public sanitary authorities (in accordance with specific national
legislation cut-offs) have found high residual titers of antibiotic molecules (i.e., quinolones,
tetracyclines, carbapenems, aminoglycosides, etc.) [34].

For this purpose, the usage of specific filters for wastewaters management could
be useful for their contributions to the reduction in the environmental diffusion of mi-
croorganisms’ loads (bacteria, virus, etc.) [35]. Many research studies have analyzed the
anthropic impact generated by hospitals, farms, domestic environments, and food indus-
tries by evaluating 79 wastewater samples in different geographic areas, identifying a
limited AMR cluster encoding resistance against macrolides, quinolones, aminoglycosides
(more than 30% of screened samples) in developed countries (Europe, North America, and
Oceania). However, in developing continents (Asia, Africa, and South America) ARGs
were mainly reported to encode resistance against sulfonamides and phenicols (especially
chloramphenicol (40% of samples)) [34].

Animal origin manures, largely used in the agricultural sector, can hide notable risks
for humans. It has been widely demonstrated that their fertilization usage is a reasonable
source of further ARGs environmental diffusion. These substances are responsible for aquifers
contaminations becoming an environmental concern and providing tangible evidence, where
terrestrial and aquatic productive realties are strictly influenced [36]. Hatosy and Martiny [37]
evidenced that the 28% of detected ARGs in marine water samples were transferred by
freshwater and wastewaters flows. These findings also provide scientific evidence that the
coastal runoff from terrestrial sources is one of the ARGs mechanisms of diffusion.
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The selective pressures, caused by different anthropic activities, have further repercus-
sions on mariculture farms, as demonstrated by Miranda et al. [38]. They discovered, in
different Chilean salmonid farms, high circulation of tetracycline and quinolones ARGs.
Authors justified these findings by the large antibiotic administering reported by public
health institutions: an amount 363.4 antimicrobial tons were used by farmers [38]. To
improve knowledge about this phenomenon, many researchers have studied other pos-
sible ARGs and ARBs reservoirs. Muziasari et al. [39] focused on the role of sediment
and fish feces collected from mariculture and inland farms in the Baltic Sea. They ob-
served ARGs presence in intestinal contents from rainbow trout (Oncorhynchus mykiss)
specimens collected in different aquaculture systems. They discovered different resistance
determinant amounts using the real time PCR assay: tetracycline and, in particular, tet
genes (tetM: 6.25 10−2 copies); aminoglycosides target genes erm (ermB 3.13 10−1 copies);
and sulfonamides, such as sul (sul3 3.13 10−1 copies). Furthermore, similar patterns were
amplified from sediment samples. The phylogenetic analysis allowed us to demonstrate
the same genomic source. These findings highlighted and enforced a fundamental con-
cept concerning the antibiotic resistance phenomenon in which animal and environmental
microbiomes are strictly connected to each other through horizontal gene transmissions.

From these considerations, the so-called One Health approach results are mandatory.
The aquatic environment, characterized by various bacterial strains, can be considered as
possible drivers of resistant forms. The aquatic creatures, including finfish ones, can be
considered as entropic systems, where the intestinal microbial populations meet environ-
mental ones involved in a fascinating “antibiotic resistant genes trade”. In this articulated
“ARGs life-cycle”, final human consumers microbiomes could also be involved by the fish
food commensal strains, harboring resistance genes; they can transmit them to the human
intestinal bacterial species. These conditions are realistically responsible for the emergence
of multidrug-resistant (MDR) or pan-resistant pathogenic or commensal microorganisms’
spreading [40].

In Asia, public sanitary authorities reported that fraudulent antimicrobial administer-
ing by farmers (in the order of tons) have conducted the selection of MDR microorganisms
(Escherichia coli) isolated from aquaculture finfish. Phylogenetic analysis also demonstrated
that other species belonging to the family Enterobacteriaceae, isolated from river water sam-
ples, presented the same phenotypic and genotypic resistance pattern and same codifying
sequences [1].

Although antimicrobial molecules are administered in inland farms (closed ecosys-
tems), the water’s turnover, performed by filter systems, represents a further potential
source for environmental antibiotic diffusion, having critical repercussions on final con-
sumers’ health [41]. Therefore, water’s microbiological quality is a crucial element that
is influenced by different parameters and factors, i.e., temperature, salt content, space
distance between coasts and catching areas (especially influenced by anthropic activities),
natural presence of bacteria in the water environment, nutrition for fish, farming systems,
catching methods, and technological aspects [1]. These parameters influence animal welfare
(in accordance with the “Animal Health Law” EU Reg. No. 429/2016) and immunity, since
stressed animals are more susceptible to infection and, in turn, require more application
of antibiotic therapy. These molecules are especially used at larval stages, when farmers
should register high mortality rates. To avoid this problem, they (farmers) often improperly
administer antimicrobials, contributing to the ARBs and ARGs enforcement and diffusion.

From an ecological point of view, Reverter et al. [41] studied the effects and possible
correlations between water temperature on aquatic animal mortality related to MDR mi-
croorganisms. They evaluated these aspects on bred aquatic animals (finfish), artificially
infected with specific fish pathogens (i.e., Vibrio spp.). Researchers found a statistical
significant correlation between high water temperature (simulating “global warming” phe-
nomenon) and infected treated finfish. Warm water resulted responsible for high AMR
diffusion. At the same time, they also discovered calculating multiple antibiotic resis-
tance (MAR) indices through the phylogenetic analysis and metagenomic evaluations,
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a further statistical correlation to the bacteria isolated in human pathogenic specimens
reservoirs. These findings were justified by the high human activities’ impact (agrochemical
substances, toxic metals, abattoirs, and wastewaters managements) [42,43]. Furthermore,
based on chemical characteristics, any molecules (including antibiotics) released in the
marine environments are low bio-degradable and, for this reason, have been named as
“pseudo-persistent” [44]. In polluted coastal areas, any researchers discovered a high di-
rect correlation between heavy metal residue titers (as lead, cadmium, and mercury) and
the horizontal ARGs transmission (more specifically observed for tetracycline molecules:
tet genes) [45].

In conclusion, human-impacted aquatic areas (i.e., oceans, lakes, rivers, etc.) are
responsible for the maintenance and diffusion of MDR bacteria, which have been defined
as strains resistant to at least three antibiotic classes. For these reasons, they represent
a public health issue [1]. In this way, the environment involves the role of one of the
main reservoirs regarding MRB, and it represents “le fil rouge” between antibiotic residues
(due to agricultural runoffs, sewage discharges, and leaching from nearby farms) and
public health [46].

4. Global Antibiotic Administering in the Aquaculture Sector

The global antibiotic consumption is considered a dynamic value due to its annual
variability. In 2017, scientists estimated that a total amount of 10,259 antibiotic tons were
administered to food-producing animals [1]. The continent of Asia represents the largest
producer and consumer (93.8%) of such molecules, larger than Africa (2.3%), and Europe
(1.8%). Four countries present the highest consumption levels: China (57.9%), India (11.3%),
Indonesia (8.6%), and Vietnam (5%) [11], as illustrated in Table 3.

EFSA and FDA have proposed a common aim that indicates an antibiotic usage
reduction of 30% by 2030 [1]. Conversely to this purpose, there is an opposite trend
reported in the BRICS countries, Brazil, Russia, India, China, and South Africa, where
scientists estimate an increasing antibiotic consumption for terrestrial food-producing
animals. The estimated total amounts could exceed human use [47]. This prospect for the
next future has been also confirmed by Schar et al. [48] (Brazil (94%), Saudi Arabia (77%),
Australia (61%), Russia (59%), and Indonesia (55%); these percentages are strictly correlated
to the respective national usages) (See Table 3).

Table 3. Antibiotics and their distribution in finfish aquaculture from different geographical regions.

Continents Countries Antibiotic Classes

Asia-Pacific: 9623 tons

China: 5.572 tons [49]

Tetracyclines: 3065 tons
Quinolones: 1393 tons
Beta-lactams: 836 tons

Sulfonamides
(co-administered with

phenicols): 278 tons

India: 1.087 tons [48]
Tetracyclines: 706 tons
Beta-lactams: 195 tons
Quinolones: 186 tons

Indonesia: 827 tons [48]
Tetracyclines: 645 tons
Beta-lactams: 182 tons

Vietnam: 481 tons [48]
Tetracyclines: 370 tons

Quinolones: 62 tons
Beta-lactams: 49 tons

Africa: 236 tons [48]
Egypt: 110 tons

Tetracyclines: 86 tons
Beta-lactams: 13 tons
Quinolones: 11 tons

South Africa: 126 tons
Tetracyclines: 107 tons
Sulfonamides: 19 tons
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Table 3. Cont.

Continents Countries Antibiotic Classes

Europe: 185 tons

Turkey: 75 tons [50]

Tetracyclines: 39 tons
Beta-lactams: 16 tons
Quinolones: 8 tons

Sulfonamides: 7 tons
Phenicols (Chloramphenicol):

5 tons

Norway: 45 tons [51]
Tetracyclines: 30 tons
Sulfonamides: 10 tons

Quinolones: 5 tons

Scotland: 32 tons [51]
Tetracyclines: 28 tons
Beta-lactams: 4 tons

Italy: 13 tons [51]
Tetracyclines: 7 tons
Beta-lactams: 4 tons
Sulfonamides: 2 tons

The International Pharma Agencies report that global animal antimicrobial admin-
istering and consumption, and more specifically for the aquaculture sector, involve the
following finfish species: 8.3% catfish (Ameiurus melas), 3.4% tilapia (Tilapia spp.), 2.7%
shrimp (Penaeus spp.), 0.8% trout (Oncorhynchus mykiss), and 0.7% salmon (Salmo salar) [48].

Concerning the global antibiotic consumption volumes, innovative digital tracing
systems will involve fundamental roles in the pharma-surveillance programs. Indeed, it is
difficult to provide global monitoring with standardized data due to the multiple variables
that can influence the results (i.e., legal antimicrobial administering, anthropic environ-
mental impact, pollution, microbiological water quality, etc.) [52]. All these mentioned
affirmations are examples of future challenges that cannot be postponed anymore.

Generally, the most frequently prescribed and detected antimicrobials are the following
antibiotic classes: quinolones, tetracyclines, sulfonamides, and amphenicols [11,27].

Among the quinolone class, enrofloxacin, nalidixic acid, and ofloxacin are widely
administered due to their chemical characteristics that permit to these molecules to be stable
in water and sediment [52], resulting in them being easy to manage in the aquaculture [53].
There are also two different scenarios: in the developed countries, Lulijwa and coworkers
found that 55% of global major aquaculture-producing countries have used enrofloxacin
and less frequently ciprofloxacin and norfloxacin [11]. Indeed, since 2015 in China, the
administering of norfloxacin has been banned for aquaculture [23].

Tetracyclines represent another important antibiotic class widely used in aquaculture
farms due to their low costs in association with their high efficacy as a broad spectrum for
treatment and prevention of infectious disease [10,54]. The WHO reported that doxycycline,
oxytetracycline, and chlortetracycline have been administered for a long time in finfish
farms. Due to the increasing antimicrobial resistance patterns, the WHO has suggested
a further restriction of these molecules for veterinary usage [55,56]. More specifically, in
Asia, oxytetracycline is the most commonly allowed-by-law and administered molecule
in the aquaculture farms, and several studies have detected residues in water samples in
numerous countries. Oxytetracycline residues have also been detected in the European
water and sediment specimens, although, since 2006, it has been banned by all EU member
states [57,58]. These considerations are justified by chemical characteristics, which confer
a higher environmental resistance to oxytetracycline than the other molecules (belonging
to the same antibiotic class) [59,60]. Regarding the tetracyclines, scientists estimated the
following persistence periods: 21–25 min in aquaculture water, 2 days in freshwater, 12 days
in seawater, 150 days in marine sediment (depending on chemical and environmental
parameters as pH, temperature, salinity, and light) [61,62].

The sulfonamides class is largely administered in the finfish farms, and, in particu-
lar, veterinarians have prescribed sulfamethoxazole or the combined form sulfamethoxa-
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zole/trimethoprim. Generally, these molecules represent the third most prevalent antibiotic
used in aquaculture after tetracyclines and quinolones [27]. They are largely used due to
their low costs, high water solubility, and due to the high floating characteristics, allow-
ing easy transport and distribution in the aquatic environments and adsorbed by finfish
through the gills [63].

5. ARBs Isolation and ARGs Detection from Aquaculture Finfish Samples

The AMR phenomenon has been generally defined as the failure of growth’s inhibi-
tion or the killing capacity of an antimicrobial molecule beyond the normal susceptible
bacteria [32,64].

The finfish aquaculture zootechnic sector has been characterized by a wide range of
farming techniques as the embankment ponds or the watershed ones (as observed in the
catfish (Clarias spp., Ictalurus spp., and Pangasius spp.) culture) [65], mariculture systems
(i.e., for Salmo spp., Sparus spp., [66], intensive or semi-intensive inland pond systems for
Tilapia spp. [65]), and other animals finfish species, etc.

In the above-mentioned systems the high animal densities have induced the necessity
of antibiotic administering for therapeutic purposes. This last-explained concept was associ-
ated with possible inappropriate usages and has selected resistant pathogens or commensal
bacterial strains. More in detail, tetracyclines, beta-lactams, quinolones, and sulfonamides
antibiotic classes have been largely prescribed by veterinarians. Therefore, biomolecular
diagnostic procedures have coupled the next generation sequencing to the bacterial whole
genome analysis. This last cited method has permitted us to discover new oligonucleotide
resistance determinants [63]. Oligonucleotide sequences are the main actors involved in
the ARGs circulation and are, consequently, responsible for the presence of vector bacteria
(not usually resulting in pathogens for humans) while constituting crucial environmental
reservoirs for the human and animal host microbiota [64]. For these reasons, animal origin
foodstuffs have acquired more attention from scientists. The reasons were firstly related to
possible residual concentration, but more specifically the main concern is represented by
the possibility of horizontal resistance genes transmission between alimentary commen-
sal and opportunistic strains with the human microbiota. Indeed, microorganisms have
elaborated numerous mechanisms to disseminate the ability to survive by mobile genetic
elements, such as integrons, plasmids, insertion sequences, transposons, and gene cas-
settes [64,67], and the inappropriate antibiotic usage has produced a selective pressure and
the consequential survival of resistant microorganisms (engendering multiple resistances).

Every year, bacterial genome sequencing allows the identification of emerging and re-
emerging ARGs, and the most frequent examples are amplified from aquaculture seafood
products, i.e., sul (sulfonamides resistance genes), tet (tetracyclines resistance genes), aa
(aminoglycosides resistance genes), and bla (β-lactams resistance genes) [68–71]. Indeed,
molecular biology, through the sequencing assays, constantly discovers different mutations
among ARGs. There are numerous cases in which there is no matching between discovered
phenotypic resistances results with the genotypic ones. This sentence offers explanations
based on the concept of nucleotide sequences’ mutations that produce different DNA
transcriptions (improper enzymes’ actions), or it is possibly correlated to an intrinsic resis-
tance, which is typical of certain bacterial families against specific antibiotic molecules or
classes. The scientific community, during these years, has investigated the AMR diffusion
in various finfish species, especially in aquaculture systems, and the respective numerous
genera of pathogenic and opportunistic bacteria that are generally implicated in seafood-
borne diseases are Vibrio spp. (i.e., V. parahaemolyticus, V, vulnificus), Listeria monocytogenes,
Clostridium botulinum, Aeromonas spp., Salmonella spp., Escherichia coli, Campylobacter jejuni,
Shigella spp., Yersinia eneterocolitica, Bacillus cereus [41], Pseudomonas spp. [72], and Ente-
rococcus faecium [73] (see Table 4). As previously mentioned, quinolones, tetracyclines,
amphenicol, and sulfonamides are major antimicrobial classes used in aquaculture on a
global scale [72].
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Table 4. AMR* and MDR* of bacterial strains isolated from aquaculture finfish sample tissues.

Country Finfish Samples n. Isolated Bacterial Strains Phenotypic AMR*/MDR* References

Brazil

n. 101
Oreochromis niloticus

Salmonella spp.
(46 isolates)

Amoxicillin/Clavulanic acid (87.7%)
Tetracycline (82.5%)
Sulfonamide (57.9%)

Chloramphenicol (26.3%)
56:1% of Salmonella spp. isolates

were MDR:
Beta-lactam (blaCTX gene 66.7%)
Tetracycline (tetA gene 54.4%)

Chloramphenicol (floR gene 50.9%)
Sulfonamide (sul2 gene 49.1%)

[74]

n. 50
Cyprinus carpio

n. 50
Oreochromis niloticus

Enterococcus faecalis
(79 isolates)

Tetracycline (57.7% tetL and tetM)
Erythromycin (31.01% msrC) [75]

China

n. 50 fish samples:
Aristichthys nobilis
Carassius auratus

Ctenopharyngodon idellus
Parabramis pekinensis

Vibrio cholerae
(370 isolates)

MDR:
Streptomycin (62.2%) 230

Ampicillin (60.3%) 223
Rifampicin (53.8%) 199

[76]

n. 17
Acipenser spp.

Streptococcus iniae
(18 isolates)

Tetracycline (35.6% tetA-02)
Beta-lactams (25.3% blaTEM)

Aminoglycosides (22.1% aadA1)
[77]

n. 75
Carassius auratus

Aeromonas hydrophila
(n. 28 isolates)

MDR:
Penicillin (100%)

Ampicillin (100%)
Amoxicillin (96.4%)
Piperacillin (92.9%)
Cefalexin (78.6%)
Doxitard (75%)

Teicoplanin (67.9%)

[78]

India

n. 25
Oreochromis niloticus

Pseudomonas entomophila
Aeromonas hydrophila

MDR:
Bacitracin (100%)
Ampicillin (70%)

Cephalothin (60%)
Cafazolin (50%)
All resistant to:

Amoxicillin
Ampicillin

[79]

n. 97
Mugil cephalus

Listeria monocytogenes
(n. 21 isolates)

69% of Listeria isolates were MDR to:
Ampicillin
Penicillin

Erythromycin
Tetracycline
Clindamycin

[80]

Armenia n. 25
Oncorhyncus mykiss

Pseudomonas spp.:
P. anguilliseptica

P. fluorescens
P. stutzeri
P.putida

P. aeruginosa
P. algaligenes

Resistance percentages:
Piperacillin (45.6%)
Pefloxacin (33.3%)

Ciprofloxacin (3.2%)
All susceptible to:
Chloramphenicol

[72]

Italy

n. 300 fish samples:
n. 100 Dicentrarchus labrax

n. 100 Umbrina cirrose
n. 100 Sparus aurata

Vibrio spp.
Aeromonas spp.
Shewanella spp.

Photobacterium spp.

Resistance percentages:
Tetracycline (11.54%) (147/1274)
Trimethoprim/Sulfadiazine (7%)

(89/1274)

[81]
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Table 4. Cont.

Country Finfish Samples n. Isolated Bacterial Strains Phenotypic AMR*/MDR* References

Vietnam
n. 50

Ictalurus spp.

Pseudomonas spp.
(n. 116 isolates)

Ampicillin (99.1%)
Sulfamethoxazole (93.1%)
Chloramphenicol (88.8%)

Nitrofurantoin (90.5%)
Nalidixic acid (90.5%)

Norfloxacin (9.5%)
Ciprofloxacin (8.6%)
Tetracycline (30.2%)
Doxycycline (25%)

[82]

Aeromonas spp.
(n. 92 isolates)

Ampicillin (93.5%)
Sulfamethoxazole (60.9%
Chloramphenicol (31.5%)

Nitrofurantoin (25%)
Nalidixic acid (52.2%)
Ciprofloxacin (7.6%)
Norfloxacin (4.4%)

Vietnam
Scotland
Denmark
Norway
France

Bangladesh
Thailand
Indonesia
Ecuador

n. 44 fish samples:
n. 12 Pangasiodon

hypophthalmus
11 Salmo salar

10 Crassostrea gigas
11 Penaeus mongodon

Escherichia coli (n. 60)
Enterococcus spp. (n.69)
Pseudomonas spp. (n. 26)

Staphylococcus aureus (n. 9)
(246 isolates)

MDR strains:
n. 7 E. coli

resistant to:
Chloramphenicol

Ciprofloxacin
Ampicillin

Nalidixic acid
Sulfamethoxazole

Trimethoprim
n. 3 Enterococcus faecalis

resistant to:
Chloramphenicol

Gentamicine
Tetracycline

n. 4 Staphylococcus aureus
resistant to:

Chloramphenicol
Kanamycin
Tetracycline

[83]

Côte d’Ivoire n. 480
Oreochromis niloticus

n. 1696 strains:
Escherichia coli (15.9%)
Pseudomonas aeruginosa

(10.4%)
Bacillus cereus (14.9%)

Enterococcus faecalis (14.2%)
Citrobacter freundii (13.5%)

Resistance percentages:
Amoxicillin/Clavulanic Acid (5.8%)

Piperacillin and Penicillin (8.7%)
Gentamycin (7.2%)

[84]

Iran n. 240
Trota iridea

n. 86
Listeria spp. isolates

Tetracycline (62.79%)
Enrofloxacin (56.97%)
Ciprofloxacin (38.37%)

Penicillin (36.04%)
Ampicillin (34.88%)

[85]

*AMR: Antimicrobial resistance. *MDR: Multidrug resistance.

5.1. Quinolones

Quinolone resistances are characterized by the involvement of DNA gyrase and topoiso-
merase IV, which are bacterial enzymes and quinolones target proteins. These two enzymes
are encoded, respectively, by the gyrA and gyrB genes for DNA gyrase, and by the parC and
parE genes for topoisomerase IV [38]. Chromosomal mutations in topoisomerases genes
decrease drug accumulation and possible resistance driven by mobile elements, such as
plasmid-mediated quinolone resistance (PMQR) (Qnr proteins, aac(6)-lb-cr aminoglycoside
acetyltransferases and QepA and OqxAB efflux pumps), causing the constitutive or the
acquired resistance to these antibiotic molecules. Increased mutations in DNA gyrase and
topoisomerase IV, and in quinolone-resistant fish pathogens (Yersinia ruckeri, Flavobacterium
psychrophilum, and V. anguillarum), are linked to the extensive administering of these antimi-
crobic classes worldwide [86–88]. Their wide usage was justified to reduce the hatching
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losses caused by Vibrio spp. infectious outbreaks. The wide detections of modified plasmids
have been discovered from aquaculture finfish fillets [89]. The detected bacterial pathogens
were A. hydrophila, V. anguillarum, and V. parahaemolyticus, which showed mutations in
the quinolone resistance codifying sequences in specific gene regions belonging to gyrA
and/or parC [90,91].

Quinolone resistance genes included in the so-called PMQR are: six qnr genes (qnrA,
qnrB, qnrC, qnrD, qnrS, and qnrVC) encoding gyrase-protection repetitive peptides; oqxAB,
qepA, and qaqBIII encoding efflux pumps; and aac(60)-Ib-cr encoding an aminoglycoside
and quinolone inactivating acetyl-transferase [92]. The majority of PMQRs detection was
largely amplified from finfish products worldwide; in China Yan et al. [93] found qepA
and aac-(6′)-Ib genes as dominant among PMQR genes in aquatic environments and the
possibility of co-emergence of resistance to β-lactams; Jiang and coworkers [94] detected
qnrB, qnrS, and qnrD, with aac(6′)-Ib-cr in gut samples of farmed fish. Dobiasova et al. [95]
found qnrS2, aac(6)-Ib-cr or qnrB17 genes in Aeromonas spp. isolated from tropical freshwater
ornamental fish and coldwater ornamental (koi) carps. In Egypt, scientists reported the
occurrence of qnr and aac(6)-Ib-cr resistance from fish farm water sample [1].

In Chile, genes qnrA, qnrB, and qnrS were detected both in the chromosomes of ma-
rine bacteria and the same genes in human pathogenic ones [96]. Furthermore, it has
been demonstrated that the same plasmid plays an important role for different classes.
Indeed, gene cassettes can be considered as multiple ARGs drivers, which conduce to
the phenotypical expression of resistance against quinolones, β-lactams, and aminogly-
cosides [92,93]. Indeed, qnr genes are loaded with β-lactamase determinants on the same
plasmids. Khajanchi and coworkers [97] considered aquaculture and the aquatic environ-
ment as possible sources of aac(6)-Ib-cr and qnrB2 and Enterobacteriaceae as hosts. They also
detected Aeromonas spp. as a vector for qnrS2. Hence, Gram-negative hosts may a be
reservoir of plasmid-mediated Qnr-like determinants that seem closely relate to the species
V. splendidus [98].

From an environmental perspective, there is a strict correlation between remarkable
anthropic activities as polluted water areas and quinolones ARGs diffusion [99]. Indeed,
in Asia (especially in China), fish farmers normally use biofertilizers to improve produc-
tion [100]. There is a real possibility that these organic molecules are vectors of antibiotic
resistance genes. Zhao et al. [101] examined biofertilizers normally used in Chinese shrimp
aquaculture systems and studied the correlation between fluoroquinolone resistance genes’
diffusion and biofertilizers. In this research project, they also screened the PMQR gene
that includes: qnrA, qnrB, qnrC, qnrD, qnrS, qepA, oqxA, oqxB, and aaa(6′)-Ib genes. They
screened 20 biofertilizer samples collected from shrimp farms and isolated 20 bacterial
strains that were vectors of PMQR genes: 10 Escherichia coli, 9 Enterococcus faecalis, and 1
Enterococcus faecium. About 30% of biofertilizers samples presented qnrB, qnrD, and qepA
resistance genes. This study was the first one which discovered the ARGs environmental
repercussions due to the usage of contaminated manures on seafood farming systems. Sim-
ilar patterns were also observed in terrestrial mammals, i.e., domestic swine and chicken
manure (widely used in agriculture) [101]. Nowadays, there are not available data regard-
ing finfishes, and it could be interesting to perform further investigations about possible
statistical correlations between farming environments and possible agricultural implica-
tions. Therefore, these studies have confirmed ARGs diffusion and circulation in different
environments through the fecal bacteria detected in common biofertilizer molecules. From
these data, it can be seen that quinolones have presented reasonable risks due to the increase
of their therapeutic failure. Their inclusion in the Critically Important Antimicrobials list
has attracted more attention from pharma surveillance organizations.

5.2. Tetracyclines

Tetracyclines action consists of reversibly binding the 70S ribosome of cells blocking
protein synthesis [1]. They are largely used in human and animal treatment as broad-
spectrum antimicrobials. For the first time in Japan, it was observed that their improper
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administering conducted to the discovery of high nucleotide similarities of tetracycline
genes between isolated bacteria from finfish aquaculture and from human clinical facilities.
The phylogenetic analysis confirmed the same origin [3].

Evolution has selected different strategical and survival pathways and, in particu-
lar, four strategies: efflux pumps activation, ribosomal protection inducing a limit to the
access, ribosomal RNA mutations avoiding tetracycline molecules binding, and tetracy-
cline inactivation through enzymes [102,103]. In finfish aquaculture products, tet group
responsible for proton-dependent efflux pumps encoding was mainly associated with
tetracycline resistance [104]. Tet genes have been detected in several bacterial strains iso-
lated from different animal species located in various geographical regions. There are
multiple examples: tetB, tetM, tetW were firstly isolated in the intestine and rearing water
of red seabream (Pagrus major) [105]; tetA, tetB, tetE, tetH, tetl, tet34, tet35 and 10 others had
unknown tet genes isolated from Chilean salmon (Salmo salar) farms [106]; furthermore,
Higuera-Llanten and coworkers [107] also detected the presence of tet34, tet35, tetA, tetB,
tetE, tetH, tetL, and tetM genes in the same matrixes. Among seafoods (including finfish
and crustaceans), Concha et al. [108] discovered tetX gene in Epilithonimonas strains from
rainbow trout (Oncorhynchus mykiss) and Han et al. [109] amplified, in shrimp samples, that
the tetB gene was carried in a single copy plasmid, named pTetB-VA1, comprising 5162-bp.
The whole genome analysis revealed that this plasmid consists of 9 ORFs (overlapping
open reading frames) encoding tetracycline-resistant repressor proteins, transcriptional
regulatory proteins, and transposases and showed a 99% sequence identity to other tet gene
plasmids (pIS04-68 and pAQU2). Furthermore, in terms of tet genes, with special regard to
tetE, Agersø et al. [110] discovered tetE horizontal transmission between Aeromonas spp.
and Escherichia coli strains, isolated from aquaculture Danish farms. TetA gene diffusion
has been demonstrated to be realized through plasmids and transposons named Tn1721
and those that are Tn1721-like. Another similar example is represented by Tn5706, which
is involved in tetH dissemination (amplified from Moraxella spp. and Acinetobacter spp.
strains isolated from salmon farms) [111]. Due to the expanding of the AMR phenomenon
among different bacterial strains, tet genes have been widely amplified from Enterobacte-
riaceae [112,113], Photobacterium spp., Vibrio spp., Alteromonas spp., Pseudomonas spp., and
other marine commensal bacteria. Consequently, the possibility of transferring ARGs from
marine microbiota to the human one is considered reasonable. Indeed, many biomolecular
investigations have highlighted the possible cross-species ARGs transmission through the
foodstuffs ingestion [102,114].

The wide oligonucleotide diversities, as described above, are expressions of the mass
administering of tetracycline. Any mammalian zootechnic sectors (i.e., domestic swine)
have improperly used this antibiotic class, inducing multiplication and genetic transmis-
sions to the next generations of bacterial isolates (from pathogen to commensal strains, and
vice versa).

5.3. Sulfonamides

In aquaculture, sulfonamides are commonly co-administered with trimethoprim,
ormethoprim, and florfenicol [115]. The dihydropteroate synthase (DHPS) enzyme, in
the folic acid pathway, represents the biochemical target reaction [114]. Sulfonamide’s
resistance mechanisms derive from mutations in the chromosomal folP gene that provides
varying degrees of trade-off between resistance and efficient folate synthesis, decreasing
DHPS affinity for the antimicrobial molecule [114].

Among the discovered ARGs, four different sul gene determinants have been de-
scribed to encode antibiotic resistance. Sul1 gene has been founded in class 1 integrons
and linked to other resistance genes [116]; sul2 is associated with non-conjugative plasmids
of the IncQ group and to large transmissible plasmids, such as pBP1 [117]. Sul3 is char-
acterized in the Escherichia coli conjugative plasmid pVP440; sul4 gene has been recently
mobilized and phylogenetic inference pinpoints its putative origin as part of the folate
synthesis cluster in the Chloroflexi phylum [118]. All described ARGs have a common action,



Antibiotics 2022, 11, 1574 14 of 24

which is represented by the reduction in strategical bacterial structural expression. The
transmembrane architectures are widely involved in the cyto-chemical interaction between
strains and antibiotic molecules.

The genome and proteome analyses revealed that a gene cluster, containing a flavin-
dependent monooxygenase and a flavin reductase, is highly upregulated in response to
sulfonamides action, as reported by Kim et al. [119]. Indeed, the biochemical analysis
showed that the two-components (belonging to the monooxygenase system) were key
enzymes for the initial sulfonamides cleavage. It was observed that the co-expression
of the two-component system in Escherichia coli conferred decreased susceptibility to sul-
famethoxazole, indicating that the genes encoding drug inactivating enzymes are potential
resistance determinants. Comparative genomic analysis revealed that this cluster gene,
containing sulfonamide monooxygenase (renamed as sulX) and flavin reductase (sulR), is
highly conserved in genomic islands. These ones are shared among sulfonamide-degrading
Actinobacteria, all of which also contained sul1-carrying class 1 integrons [119].

Sulfonamide’s ARGs distribution has been widely found in numerous fish and envi-
ronmental specimens, i.e., Muziasari and coworkers [120] discovered sul1, sul2, and intI1
genes detection in all analyzed samples and the dfrA1 gene in most samples in aquatic
farm sediment in the Baltic Sea [39]. Domínguez et al. [121] detected sul1, sul2, class 1
integron-integrase gene intI1, dfrA1, dfrA12, and dfrA14 from a salmon farm in Chile and
revealed the occurrence of transferable integrons and sul and dfr genes among sulfonamide-
and/or trimethoprim-resistant bacteria, as amplified from Actinobacter spp., Bacillus spp.,
Proteus spp., and Pseudomanas spp. isolates [88].

ARGs for sulfonamides resistance were also discovered in many commensal bacterial
strains in Japanese mariculture areas [122], in Vietnamese freshwater farms [108], China
Hainan, Guangdong, Tianjin, Hangzhou, Yantai, and Taihu Lake [113,123–125].

These last considerations highlight that environmental stimuli can be responsible for
increased or reduced ARGs transcriptions. The deduction leads to the consideration that
in the AMR phenomenon, “the environment” plays a crucial role, while human and animal
health are only “direct consequences”.

5.4. Thiamphenicol and Florfenicol

Thiamphenicol and florfenicol belong to the amphenicol antibiotic class and have
been largely administered in aquaculture farms. Due to the possible chemical residual
persistence in finfish muscular tissues, various studies have demonstrated possible sanitary
implications on humans, animals, and environments [48,126].

Focusing on risk-based approach (in accordance with the EU Reg. No. 852/2004 and
No. 37/2010), the European agencies EFSA and EMA published maximum residue limits
and respective daily intakes for final human consumers [48].

Veterinary practitioners normally treat infectious disease (caused by, i.e.,
Vibrio spp., etc.) and relative possible septicemia cases using the above-mentioned
molecules [127]. These have pharma-dynamic synergic effects (binding the 50S riboso-
mal subunit) if they were coupled with other antibiotic classes as tetracyclines. Both
molecules have become widely prescribed because they have broad spectrum effects and
low costs [128].

Amphenicol illegal administering has induced an intense evolutive pressure, deter-
mining the spreading of resistant strains harboring florfenicol-resistance genes (FRGs).
These FRGs are plasmid determinants and have presented high genetic trades (through
horizontal transmission) across different bacterial phyla, identifying strong correlations (p
values < 0.05), as observed by Zeng et al. [127].

Among amplified FRGs, cat, cfr, cml, fexA, fexB, florB, and optrA have been discovered
from animal origin food matrices (including finfish ones). Their biochemical actions are
involved in several pathways, i.e., protein synthesis inhibition, exporter ability, methyl-
transferase activation, efflux pumps, etc. [129,130].
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From a microbiological perspective applied to the veterinary clinical aspects, ampheni-
col administering has demonstrated biochemical repercussions on intestinal microbiota. It
induces shifts among bacterial biodiversity acting as strong stressor [127].

This last consideration finds explanations from cyto-chemical interactions directly
associated with the consequential expression of transmissible oligonucleotide sequences.
Among the above-mentioned amphenicol-resistant determinants, the metagenomic tech-
nology, coupled with next generation sequencing, has identified multiple mutations on
open reading frames regions, which encode resistant mechanisms, i.e., efflux pumps, new
binding epitopes, etc. [126].

Innovative biomolecular technologies, combining thiamphenicol and florfenicol ad-
ministering, has permitted us to reduce their respective dosages but preserve their thera-
peutic efficacy [131].

The notable ARGs heterogeneity and their extreme variabilities pose the basis for
further diagnostic and One Health clinical challenges. Aminophenols, as with other previ-
ously mentioned antibiotic classes, are widely used in the aquaculture zootechnic sector.
Therefore, it is mandatory to preserve their therapeutic actions.

6. Antibiotic Substitutions
6.1. Vaccination

FAO reports numerous administered vaccines against different bacterial or viral dis-
eases among finfish species. The most frequently used provide seroconversion against Vibrio
salmonicida, Vibrio anguillarum, Photobacterium damselae, Aeromonas salmonicida,
Yersinia ruckeri, etc. [3].

Conversely, there are few vaccines for viral diseases, in which usage is highly rec-
ommended in marine finfish farms [132]. In the aquaculture farms, vaccines can be ad-
ministered through different methods: injection, in bath, or through the orofecal route [3].
Injection, through the intraperitoneal route, provides powerful and durable protection, but,
on the other hand, this procedure influences animal welfare, inducing a relevant stress
condition. It is commonly used for Salmo salar finfish species but is not applicable for other
species, i.e., Pangasius spp. and Tilapia spp. Conversely, oral administering reduces stress
(due to animal handling), since animals receive immunization through food ingestion.
The main difference between these two above-mentioned methods is represented by the
need for large amounts of antigens in the ingestion method to obtain an adequate immu-
nity [133]. There are contrasting opinions on vaccines’ efficacy regarding finfish farms.
Usually, after vaccination, fish farmers must administer antibiotics to control infectious
disease outbreaks [134]. This condition is related to an incomplete understanding of the
vaccination type and the immune system’s reaction to the “antigenic stimuli”. It is improper
to compare fish immune reactions with the generated response in mammalians [135].

However, in any species, such as farmed Atlantic salmons, vaccination represents an
important preventive tool [3]. Farmed salmonids (Salmo salar) receive immune protection
through the injection of a pentavalent vaccine against vibriosis, furunculosis, piscrickettsio-
sis, infectious pancreatic necrosis, and infection salmon anemia. The vaccine has permitted
a reduced usage of antibiotics [135]. In tilapia’s farms, the mucosal administering route
replaces the injective method. In this fish species, evidence supports a competent immune
stimulation of the antigen-presenting cells (similarly to mammalians). In this way, fish
farmers reduce antibiotic administering [136].

A new frontier is represented by nano-material vaccines, which use virus-like particles,
immune-stimulating complexes, liposomes, polymeric, etc. These molecules drive antigens
and can drive protective responses in fish. Furthermore, nanoparticles permit antigens’
release, and, for this reason, booster vaccinations are not necessary [137], but live attenuated
vaccines’ employment in aquaculture is not allowed by the European Commission. Their
usage has not yet been allowed due to the wide gap of knowledge concerning possible
implications on human consumers [138].
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6.2. Structural Improvements

Innovative production systems have become popular among fish farmers, i.e., catfish
aquaculture in the USA [65]. New fish farming systems that provide more space and
efficient wastewater management allow an avoidance of the large usage of antibiotic
molecules [6].

Therefore, in the USA, fish farmers introduced an innovative system called “spilt-pond”
to optimize fish’s sanitary conditions and productive levels. This new system is realized
through the division of the traditional ponds in two areas: an algal growth basin and a fish
holding area. In this way, the growth of production is allowed by the high animals’ density
in the same period of production, and the reduction in antimicrobial use is due to the
continuous water filtration [139]. Conversely, in Malaysia and other Asian-Pacific regions,
fish are farmed by using pond culture, ex-mining pools, cement tanks, and freshwater pen
culture systems. In these structures, there is low water filtration. Animal catabolites and
feces remain for all productive cycles, producing a functional substrate for any bacterial
species (i.e., Enterobacteriaceae) proliferation. Furthermore, in such countries of this
continent (China, Vietnam, Philippines, India, etc.), the usage of antibiotics in aquaculture
is not well regulated by national law [6]. Therefore, a new approach to the aquaculture
systems of production is required. Indeed, Brunton et al. [140] generated a mapping system
obtained through the stakeholders’ collaboration. Correlating ecological aspects to the
new above-mentioned fish farms realities. It identifies hotspots and risk points related to
antibiotic usage in the aquaculture food chain. The platform provides a quantitative risk
analysis at different steps of production. Therefore, these maps allow us to understand the
molecules’ flows, ARGs, and ARB. In this way, it is possible to monitor antibiotic resistance
factors. From these elaborated data, food safety authorities may program control activities
through surveillance measures.

6.3. Probiotics

Probiotics have different effects on fish farming issues, i.e., they reduce animal mortal-
ity (especially at the larval stage) [141–143], improve animal welfare through the immune
system’s stimulation, and reduce the antibiotic therapies’ necessity. Fish farmers introduce
these bacteria through the finfish diet, as supplementary feed [3]. Bacillus spp. Is largely
used in numerous fish farms realities for its probiotic properties. This genus can mitigate
pathogenic microorganisms’ growth and can eliminate ARB [143]. These capacities are
related to the bioactive peptides’ synthesis (bacteriocin) [144], but there are also nonpep-
tidic molecules, i.e., phospholipids, polyketides, etc., that are classified as bacteriocin [145].
Bacillus spp. produces CAMT2; this molecule is a recent example of bacteriocin that inhibits
the proliferation of different bacterial strains, i.e., Vibrio spp., Staphylococcus aureus, and
Listeria monocytogenes [146]. Another interesting microbiological aspect of this genus is
represented by bacterial competition. It includes competition for energy (obtained from sub-
strates), nutrients, and adhesion sites [5]. Indeed, Bacillus spp. Can rapidly colonize organic
substrates with strong adhesion capacities (due to hydrophobic and steric forces) [147].
Therefore, pathogenic bacteria find an inadequate micro-environment that results in hos-
tility to their proliferation. Furthermore, Bacillus spp. also stimulates fish’s cell-mediated
immune response. Indeed, bacterial pathogens decrease their virulence because the animal
host presents a resistant and competent immune system [148].

Healthy animals require few antibiotic therapies, leading to the reduction in antibiotic
consumption in the next ten years [3]. Thanks to these preventive measures, different
finfish species (i.e., parrotfish) have become resistant to Vibrio alginolyticus infection. These
considerations are strictly related to the concept that powerful immune systems reduce
pathogen bacterial proliferation [60].

7. Conclusions

The AMR is a real public health issue [3]. This review aims to provide a current sce-
nario about the circulation of ARGs in bacterial isolates, usually identified from aquaculture
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food industry chains. The authors also want to highlight that the AMR phenomenon is a
dynamic concept, differing in time and regional areas among years. In this case, a particular
and not limited ecosystem represents the main challenge. Oceans’, lakes’, rivers’ health
requires periodical screenings.

Molecular biology has a key role in studying bacterial genomic mutations and ARGs
horizontal transmission flows. In the future, marine currents’ studies will also have a crucial
role filling any gaps of knowledge. They will allow the estimation of any geographical areas
where ARGs will be widely diffused and improve the introduction of efficient corrective
measures. In this way, a new concept of “Environmental Medicine” will produce factual
results based on a holistic point of view.

Vaccination programs, probiotics’ administering, and structural improvements are
three examples that represent valid alternative measures to reduce antibiotic usage.

These measures will produce satisfactory results if all nations of the world adopt them
according to their ecosystems’ peculiarities.

These efforts are necessary due to the growing demand for animal origin finfish
proteins and the increasing global demographic. However, these physiological necessities
must be satisfied involving sustainable and innovative production systems.
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