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INTRODUCTION 

 

1. Natural Killer cells 

Natural Killer (NK) cells are large granular lymphocytes of innate immune system involved 

in many processes in the immune response, including direct recognition of infected, tumor 

and damaged cells and play an important role in determining the outcome of adaptive 

immune responses through cytokine and chemokine secretion and the direct interaction with 

other immune cells. 

Despite NK cells derive from the common CD34
+
 hematopoietic progenitor cell (HPC), as 

T and B lymphocytes, they are distinct from those cells because of their different 

morphologic, phenotypic and functional features, and pass through some stage before the 

complete maturation. The NK-cell precursor (NKP) is generated from HPC and develop into 

immature NK cell and then into mature NK cells, acquiring the expression of NK-cell-

specific markers. In addition to the maturation process, NK cells are “educated” and 

“licensed” to prevent the formation of autoreactive NK cells through mechanisms still not 

completely known. Thus, licensed and educated NK cells have a mature phenotype, are fully 

responsive to activating receptors triggering and are tolerant to self. (Huntington et al., 

2007). Increasing evidence show the importance of both bone marrow (BM) and lymph 

nodes (LN) for NK cell development and maturation (Freud and Caligiuri, 2006; Caligiuri, 

2008), thanks to soluble factors present in that microenvironment, even if the necessary 

factors and molecular mechanisms underlying this process are still unknown. 

BM has a crucial role  in driving NK cell functional maturation thanks to stromal cell 

production of cytokines, such as interleukin 15 (IL-15) that promotes the HPC 

differentiation in cytolytic NK cells (Mrozek et al., 1996) and NK cell expansion due to the 

effect of IL-15 in combination with c-kit ligand, also known as stem cell factor (SCF) and 

flt3 ligand. Moreover, IL-15 plays a pivotal role also in peripheral organ NK cell 

homeostasis thanks to IL-15 expression on monocytes, macrophages and dendritic cells 

(DC), that could be trans-presented to NK cells (Koka et al., 2003). The current theory of 

IL-15 trans-presentation proposes that intracellular IL-15 binds to a high affinity IL-15R 

(i.e. IL-15Rα) that is shuttled to the cell surface where it stimulates IL-15 signaling 

components on NK cells through the IL-15R complex containing the β and γ subunits 

(Dubois et al., 2002). Transcription and expression of both IL-15 and IL-15Rα within the 

same cell seems to be important for trans-presentation, and, while the expression of IL-
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15Rα is ubiquitous, IL-15 expression is stringently controlled (Blauvelt et al., 1996). 

Moreover, increasing evidence supports the crucial role of IL-15 trans-presentation as main 

mechanism underlying the effect of IL-15 (Stonier and Schluns, 2010). Other cytokines, 

such as IL-12, IL-18, IFN-α (Vivier et al., 2011) and IL-2, are important for NK cell 

survival and for their full acquisition of effector functions, and their role will be discussed 

below. 

Mature NK cell localization and phenotype  

Mature human NK cells are circulating cells in blood, where they represent 5-15% of 

peripheral blood lymphocytes in adult healthy individuals and can be detected at variable 

levels in lymphoid organs and in peripheral tissues such as  lungs, liver, gut and deciduas 

(Cerwenka and Lanier, 2001; Shi et al., 2011; Gregoire et al., 2007). 

Human NK cells are surface phenotypically characterized as CD3
-
CD56

+
CD16

+/- 
cells 

(Caligiuri, 2008) and depending on the level of CD56 surface expression they can be 

classified in two different of NK cell subsets: the CD56
dim

 and the CD56
bright

, also 

expressing high and low levels of CD16, respectively. These two subsets also differ 

functionally, in fact CD56
dim 

NK cells are mainly cytotoxic and are more represented in 

blood (90% of peripheral NK cells) while those CD56
bright

 are specialized cytokine 

producers and are more abundant in LN (85% of total LN NK cells) (Cooper et al., 2001; De 

et al., 2011). Some evidence suggest that these two different subpopulations only represent 

two stages of NK cells differentiation, where CD56
bright  

NK cells are precursor or 

“developmental intermediates” of CD56
dim 

ones (Freud and Caligiuri, 2010) but it is also 

true that these different subsets could be either terminally differentiated and have crucial 

functions in humans.  

Furthermore, considering the surface expression of CD16, NK cells could be further divided 

in three different subsets based on the expression levels of both CD56 and CD16: (i.e: 

CD56
low

CD16
high

, CD56
low

CD16
low

 and CD56
high

CD16
-
). Stabile and colleagues have 

recently shown that the CD56
low

CD16
low

 NK cell subset is capable to either produce high 

levels of IFN-γ and to possess a strong cytotoxic potential (Stabile et al., 2015). 

Regulation of NK cell activity 

NK cells sense target cells through a panel of activating and inhibitory receptors expressed 

on their surface and their functions are regulated through the resulting integration of the 

opposing signals transduced by their engagement. Thus, the amount of activating and 

inhibitory receptors on NK cells and the amount of ligands on target cells, as well as the 
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qualitative differences in the signals transduced, determine the extent of the NK cell 

response and the lysis of “abnormal” cells (Lanier, 2005). In the classical model of NK cell 

activation, NK cells are defined to respond to target cells with a reduced expression of MHC 

class I molecules typical of virus-infected or transformed cells, a concept termed the 

’Missing-self’ hypothesis (Karre et al., 1986). In physiological conditions a balance between 

activating and inhibitory signals is crucial to  avoid an accidental NK cell stimulation, but in 

condition of cellular stress, due to infection or malignant transformation, a loss of inhibitory 

signals and/or upregulation of ligands for activating receptors (“Induced self”) lead to NK 

cell activation.  

Moreover, NK cell activation can be triggered by several pro-inflammatory cytokines. IL-2 

produced during infection by CD4
+
T cells, together with IL-12, IL-15, IL-18 and IFN-α 

released by DCs, promote the proliferation of NK cells and “prime” their cytolitic activity 

and IFN-γ release. Also, IL-15 presented by DC in trans through surface IL-15Rα is crucial 

for NK cell development, survival and effector functions as mentioned before. Pre-activation 

of NK cells by the cytokine combination of IL-12/IL-15/IL-18 triggers the high-affinity IL-

2Rα (CD25) up-regulation on NK cells, usually absent on resting mature human NK cells, 

and thus their responsiveness to IL-2. In this way, these cytokines improve and prolong the 

cytolitic and cytokine producing potential of NK cells (Leong et al., 2014). 

Upon activation, NK cells are ready to initiate their effector functions, such as the release of 

cytoplasmic granules containing cytotoxic proteins, such as perforin and granzymes, by 

exocytosis into the synapse at the NK-target interface (Krzewski and Strominger, 2008) and 

secretion of both cytokines and chemokines. 

NK cell-mediated functions 

NK cell-mediated functions include cytotoxicity and release of a wide variety of soluble 

factors.  

Cytotoxicity consists in a rapid response after NK cell activation with the release of pre-

formed granules containing perforin and granzymes leading to target cell lysis (Orange, 

2008; Trapani et al., 2000). This mechanism could be activated through the engagement of 

activating receptors or with a process named Antibody Dependent Cellular Cytotoxicity 

(ADCC) based on the recognition of IgG-opsonized targets by the low-affinity receptor for 

IgG, FcgRIIIA (CD16) (Trinchieri and Valiante, 1993). Moreover, NK cells can induce 

apoptosis in target cells through a perforin-indipendent mechanism mediated by death 
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receptors including Fas and TNF-related apoptosis-inducing ligand (TRAIL) (Takeda et al., 

2005; Smyth et al., 2005). 

For what concerning the release of soluble factors, it is widely described NK cell production 

of regulatory cytokines, such as IFN-γ and TGF-β, haematopoietic factors such as TNF-α, 

GM-CSF, IL-3 (Newman and Riley, 2007), and also IL-5, IL-8, IL-13, together with some 

chemokines such as CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES (Robertson, 2002; 

Loza et al., 2002; Dorner et al., 2004). Of note, IFN-γ plays an important role in activating 

both innate and adaptive immunity, stimulating macrophages, Th1 immune response and 

CD8
+
 priming, as well as in initiating anti-viral responses and tumor immunosurveillance.  

 

1.1 NK cell receptors and their ligands 

Inhibitory receptors 

Inhibitory NK cell receptors recognize the presence of MHC class I molecules on target 

cells (Bryceson and Long, 2008). These receptors contain in their cytoplasmic tails 

immunoreceptor tyrosine-based inhibitory motifs (ITIM), able to recruit tyrosine 

phosphatases SHP-1 and SHP-2 that in turn dephosphorylate some signaling molecules 

crucial for the activation cascade (Campbell et al., 1996). This recognition mode prevents 

NK cell cytotoxic lysis of normal self cells expressing MHC class I molecules. This class of 

receptors includes the killer cell immunoglobulin-like receptors (KIR) family specific for the 

recognition of allotypes HLA-B and HLA-C, the leukocyte immunoglobulin-like receptors 

(LIR) family, and CD94/NKG2 lectin-like receptor family that binds HLA-E (Long, 2008).  

Activating receptors 

Activating NK cell receptors are divided in three groups: receptors associated with 

immunoreceptor tyrosine-based activation motif (ITAM)-containing subunits, such as 

FcγRIIIA (CD16) that mediates the ADCC and natural cytotoxicity receptors (NCR); the 

DAP10-associated receptor NKG2D; other receptors with different signaling pathways, such 

as 2B4 that has both activatory and inhibitory properties, DNAM-1 and CD2. 

NKG2D is a homodimeric C-type lectin-like NK receptor that is also expressed on CD8
+
 αβ 

T cells, γδ T cells, and Natural Killer T cells (NKT) in humans. NKG2D has charged 

residues in its transmembrane (TM) domain that mediates the interaction with 

complementary-charged aminoacids in the signal-transducing adaptor proteins: DAP10 in 

humans (Wu et al., 1999) and either DAP10 or DAP12 in mice (Gilfillan et al., 2002; 

Diefenbach et al., 2002). In the human system, NKG2D recognizes two families of ligands: 
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MHC class I chain-related protein A/B (MICA/B) and the UL16-binding proteins (ULBP1-

6) generally absent on normal cells but expressed on transformed, infected and damaged or 

stressed cells. In 2005, Gasser and collegues reported that the DNA damage response 

pathway (DDR) represented a major signaling pathway implicated in the induction and 

upregulation of NKG2DL expression (Gasser et al., 2005). DDR, also called as genotoxic 

stress response, is related to a complex series of cellular stress-induced pathways that detect 

DNA damage and that are involved in the maintenance of genome integrity and avoidance 

of mutated DNA duplication (Sancar et al., 2004). Several studies show that NKG2DL 

expression can be regulated at both transcriptional, post-transcriptional and post-

translational level, through protein modifications, trafficking and release as soluble forms in 

the extracellular space (Raulet et al., 2013). In fact, in addition to being displayed on the cell 

surface, NKG2D ligands can also be shed or excreted from cells. In some cases, the ligands 

are cleaved from the plasma membrane by proteinases, or are found associated with 

membrane vesicles that are excreted from cells, such as exosomes (Chitadze et al., 2013). 

DNAM-1 (CD226) is an Ig-like glycoprotein formed of an extracellular Ig-like domain, a 

transmembrane region and a cytoplasmic tail containing three putative phoshorylation sites 

crucial for signaling cascade. The engagement of this receptor results in an increased NK 

cell-mediated cytotoxicity and IFN-γ production. DNAM-1 recognizes the polio virus 

receptor, PVR (CD155) and nectin-2 (CD112) (Bottino et al., 2003). These ligands are 

frequently overexpressed on human tumor cells including multiple myeloma derived plasma 

cells (Soriani et al., 2009a). Similarly to NKG2DL, it has been shown that also DNAM-1 

ligands expression can be induced/upregulated through a mechanism involving the 

activation of DDR in different cellular models (Cerboni et al., 2014).  In NK cells, DNAM-1 

can be detected in a complex containing LFA-1 (CD11a/CD18), and the ligation of LFA-1 

causes Fyn-dependent phosphorylation of tyrosine residues in the cytoplasmic domain of 

DNAM-1 that are necessary for DNAM-1-dependent NK cell functions (Shibuya et al., 

1999). Of note, NK cells also express CD96 (also called Tactile) capable of recognizing 

CD155 thus promoting  NK cell adhesion and activation (Fuchs et al., 2004). It should be 

considered that recently TIGIT a new inhibitory receptor expressed  by T and NK cells binds 

to PVR and inhibits NK cell cytotoxicity  directly through its ITIM domain (Stanietsky et 

al., 2009). 

NCRs are potent activating receptors and in human this family comprises of NKp30, NKp44 

and NKp46, NKp80; they are structurally formed of one or two Ig-like extracellular domains 
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with charged residues in their transmembrane regions necessary for the association with 

ITAM-bearing signaling molecular adaptors, such as FcεRI-γ and CD3-ζ for NKp30 and 

NKp46, or DAP12 for NKp44 (Bryceson and Long, 2008; Moretta et al., 2006). Their 

engagement leads to induction of cytotoxicity and cytokine production. Nowadays the 

identity of NCRs ligands still remains poorly defined. 

NKp30 is expressed both on resting and activated human NK cells. Two ligands for this 

receptor have been characterized to date: B7-H6 detectable on the cell surface of 

transformed cells (Brandt et al., 2009) and the nuclear factor HLA-B-associated transcript 3 

(BAT3 also known as BAG-6) released by tumor cells (Pogge von et al., 2007) or by 

immature DCs and associated to exosomes (Simhadri et al., 2008). NKp46 has been 

described to bind viral structural motifs (Arnon et al., 2004). Recently, a novel isoform, of 

the mixed-leukemia-5 (MLL5) nuclear protein was proposed as a cancer cell-expressed 

ligand for NKp44 (Baychelier et al., 2013). NKp44 is found on activating NK cells and is 

constitutively expressed on specialized subsets of NK cells in the deciduas (Cantoni et al., 

1999).  

Other receptors 

Moreover, in addition to activating and inhibitory receptors, NK cells express many other 

receptors such as Toll-like receptors, that will be discussed later, cytokine and chemokine 

receptors, including CCR2, CCR5, CX3CR1, and CXCR3, together with receptors for 

adhesion molecules, for example LFA-1 and LFA-2, to enhance the adhesion to target cells. 
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Figure 1. NK cell interaction with target cell. From Chan at al., 2014. NK cell repertoire of both 

activating and inhibitory receptors with their ligands expressed on target cells. The main receptors 

are shown. 

 

 

1.2 Toll-like receptors 

Toll-like receptors (TLR) have long been known for their ability to initiate immune 

responses upon exposure to conserved microbial components named “pathogen-associated 

molecular pattern molecules” (PAMPs). More recently, this family of pattern recognition 

receptors (PRR) has been attributed a critical role in the elicitation of anticancer immune 

responses.  

TLR represent a conserved family of pattern-recognition receptors (PRRs) best known for 

their ability to detect PAMPs. Currently 10 members of functional TLRs have been 

identified, but only nine of these have been well characterized in human (O'Neill et al., 

2013). Some of these receptors are expressed on the cell surface and recognize microbial 

membrane components. In particular TLR4, the first mammalian TLR identified, senses 

mainly but not only lipopolysaccharide (LPS) in complex with MD2 (Park et al., 2009); 

TLR5 binds to bacterial flagellin (Hayashi et al., 2001); TLR2 recognizes a wide range of 
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microbial lipopeptides and other non-lipopeptidic PAMPs derived from bacteria, fungi, 

parasites and viruses. TLR2 forms heterodimers with both TLR1 (Jin et al., 2007) and TLR6 

(Kang et al., 2009) recognizing triacylated and diacylated lipopetides respectively. Another 

member of this family, TLR10 heterodimerizes with TLR2 probably because of its similarity 

to TLR1. Other TLRs, localized in intracellular compartements, such as endosomes, 

lysosomes and endoplasmic reticulum (ER), are able to sense nucleic acid associated to viral 

or bacterial infection and require the internalization of their ligands. In particular, TLR9 

binds unmethylated CpG-rich DNA motifs usually associated to virus and bacteria DNA but 

almost rare in mammalian cells (Hemmi et al., 2000); TLR3 recognizes double-stranded (ds) 

viral RNA (Liu et al., 2008), while TLR7/TLR8 sense single-stranded (ss) RNA from virus 

and bacteria (Heil et al., 2004). 

Several TLRs have been recently shown to sense also endogenous danger signals which are 

released in response to tissue damage known as “damage-associated molecular patterns” 

(DAMPs), produced mainly during cell death and injury or transformation. They include 

several heat shock proteins (i.e: Hsp60, Hsp70), uric acid, the non-histone chromatin 

binding protein high mobility group 1 (HMGB1), surfactant protein A all of which function 

as TLR2 or TLR4 agonists. Moreover, degraded components of extracellular matrix which 

mainly activate TLR4 (Kawai and Akira, 2010; Harris and Raucci, 2006) and mitochondrial 

DNA have been shown to bind also TLR9.  

Interestingly recent reports demonstrate a possible interaction between TLRs and some 

molecules expressed either on the exosome surface or inside these vesicles as demonstrated 

for TLR2 able to bind palmytoilated proteins associated to exosomes (Chow et al., 2014a) or 

as in the case of TLR8 recognition of exosomal microRNAs (Fabbri et al., 2012). This 

concept will be fully explained later. 

The release of specific DAMPs by death cells has been proposed to constitute the essence of 

immunogenic cell death (ICD), a peculiar type of apoptosis that activates adaptive immune 

responses. To date, only few inducers of ICD have been identified: specific 

chemotherapeutic agents (i.e: doxorubicin), the endoplasmic reticulum calreticulin, ATP, 

Hsp70 and HMGB1. Importanly, Hsp70 and HMGB1 appear to exert immunostimulatory 

functions by activating TLR4 on the surface of antigen-presenting cells.  

In summary TLRs appear to play a prominent role not only in the orchestration of innate 

immune responses against infectious pathogens but also in anti-cancer immunity, be it 

spontaneous or elicited by (chemo)therapeutic interventions. 
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TLR signaling 

TLRs are structurally formed by an N-terminal domain enriched in leucine repeat mediating 

the recognition of their ligands, a transmembrane domain (TM) and a cytosolic signaling 

tail, known as Toll/IL-1R (TIR) that recruit the signaling adaptors MyD88 and TRIF, and 

also the sorting adaptors TIRAP and TRAM (Kawai and Akira, 2010), leading to 

downstream activation of NF-kB, IRFs (IRF3 and IRF7), MAPK, p38 and ERKs pathways 

(Kawasaki and Kawai, 2014), that results in the production of several chemokines and 

cytokines. TLRs differ in their signal transduction pathways depending on either their 

cellular localization and the type of adaptor molecules involved. In particular, these different 

signaling pathways can be classified as MyD88- or TRIF-dependent suited to elicit different 

responses. For instance, the triggering of cell surface TLRs (i.e: TLR1, 2, 4, 5, 6) induce 

mainly inflammatory cytokine production, through the usage of the adaptor molecule 

MyD88 leading to the activation of NF-kB and MAPKs through the IL-1 receptor-associated 

kinases (IRAK)1,2,4, that form an activated complex with TRAF6 leading to the activation 

of the kinase TAK1. This kinase activates some MAPKs, such as Erk1,2, p38 and Jnk, 

which in turn activate downstream transcription factors CREB and AP1. TAK1 also 

phosphorylates the IKK complex determining NF-kB activation (Figure 2). On the contrary, 

TLR3 and TLR4, through the usage of TRIF adaptor, and the engagment of TRAF3 can 

either induce two different pathways leading to NF-kB activation or IRF3 activation leading 

to proinflammatory or type I interferon production, respectively as represented in Figure 2. 

Endosomal TLRs, TLR7/8 and TLR9, require the adaptor MyD88 to activate IRF7 and to 

induce type I interferon production, and are potentially able to stimulate the NF-kB pathway 

associated to inflammatory cytokine production  by using the TRAF6 adaptor (Kawai and 

Akira, 2008) A schematic representation of signaling transduction pathways activated by 

TLRs are shown in Figure 2 . 
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Figure 2. Toll-like receptor family and signaling. From O’Neill et al., 2013. TLRs can be 

classified on the basis of their cellular localization, so TLR5, TLR11, TLR4, and the heterodimers of 

TLR2–TLR1 or TLR2–TLR6 are expressed on the cell surface, whereas TLR3, TLR7–TLR8, TLR9 

and TLR13 are localized to the endosomes. The engagement of these receptors leads to the activation 

of different signaling pathways as indicated, determining the final activation of some transcription 

factors and the induction of pro-inflammatory cytokines or type I interferons.  

 

Role of TLR in NK cell mediated functions 

NK cells express TLR1 (He et al., 2013), TLR2 (Marcenaro et al., 2008), TLR3 (Schmidt et 

al., 2004), TLR5 (Chalifour et al., 2004), TLR7/8 (Hart et al., 2005) and TLR9 (Sivori et al., 

2004) independently from their activation state and the TLR triggering occurs in both resting 

and cytokine activated NK cells. Many evidence demonstrate the involvement of different 

TLRs in stimulating NK cell-mediated functions alone or in combination with suboptimal 

doses of cytokines such as IL-12 (Chalifour et al., 2004; Marcenaro et al., 2008; Sivori et al., 

2004; Hart et al., 2005). For example, TLR3 triggering in highly purified human NK cells 

leads to enhanced NK cell-mediated cytotoxicity, up-regulation of activation marker CD69, 

and production of several cytokines like IL-6, IL-8 and IFN-γ (Schmidt et al., 2004). 

Moreover, He and colleagues have recenltly demonstrated in both human and mouse model 

that some microRNAs, in particular miR-15b and miR-122, in combination with low doses 
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of IL-12, are able to activate the NF-kB pathway with the induction of CD69 expression, 

IFN-γ production and expression of the degranulation marker CD107, through a mechanism 

mediated by TLR1 (He et al., 2013). It has also been reported that PSK a TLR2 agonist can 

activate human NK cells to secrete IFN-γ and exert enhanced cytolytic activity in sensitive 

K562 target cells and trastuzumab-coated breast cancer cells (Lu et al., 2011). 

 

2. Extracellular vesicles and exosomes: general features 

Cellular cross-talk is a crucial event in multicellular organisms, where cells communicate 

through direct cell-cell contact or through secreted molecules, such as chemokines and 

cytokines, proteins, ormons, lipids and nucleic acids. Currently, increasing evidence 

describe the extracellular vesicle release as an additional mechanism for intercellular 

communication (Bobrie et al., 2011) that provide an autocrine, paracrine and endocrine 

signals to target cells thanks to vesicle ability to move through body fluids.  

A wide range of extracellular vesicles have been described to date and their classification 

depends on their size and on the cellular compartment they derive from. In fact, extracellular 

vesicles are called microvesicles or ectosomes, when are shed from the plasma membrane 

and have a size of 100-1000 nm, apoptotic bodies, generated during apoptotic cell death 

with size falling in the range of 100-5000 nm, and exosomes (Bobrie et al., 2011).  

Exosomes are nano-sized (30-100 nm) couple-shaped (the round-shaped and the couple-

shaped morphology seems to be dependent only on exosome dehydratation during the 

procedure necessary for ultrastructural analysis (Robbins and Morelli, 2014)) membrane-

bound vesicles secreted from most types of living cells into extracellular environment, under 

both normal and pathologic conditions. Exosomes were firstly described in 1987 and at the 

beginning they were considered as a mechanism to eliminate unneeded cellular proteins and 

organelles during the maturation of reticulocytes (Johnstone et al., 1987; Vidal and Stahl, 

1993), but during the last two decades these vesicles have become a central topic in current 

research. 

2.1  Biogenesis, molecular sorting and secretion of exosomes 

Exosomes are formed in the late endosomal compartment for inward budding of 

multivescicular bodies (MVBs) and then released through the fusion of this compartment 

with plasma membrane. Many evidence show two possible “destiny” for multivescicular 

endosomes (MVEs) depending on their cholesterol composition: cholesterol-poor population 

are addressed for degradation and cholesterol-rich vesicles are committed to secretion 
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(Mobius et al., 2002). The formation of MVEs directed to secretion, as well as exosomes 

cargo sorting, seems to be dependent on various mechanisms including endosomal sorting 

complex required for transport (ESCRT) machinery, lipid-raft microdomains and 

tetraspanins enriched domains (Raposo and Stoorvogel, 2013). The ESCRT machinery is 

important for protein sorting and for intraluminal vesicles (ILVs) formation. Moreover, it 

has been observed that some post-translational protein modifications, such as 

monoubiquitylation, glycosylation, oxidation and phosphorylation, seem to be signals for 

this sorting machinery, even if the real mechanism underlying this process remains elusive 

(Moreno-Gonzalo et al., 2014). Briefly, ESCRT0 is recruited by the presence of 

Phosphatidyl-inositol 3-phosphate (PI3P) on endosomal membrane that binds ubiquitylated 

proteins; this binding allows the recruitment of both ESCRTI and II components initiating 

the reverse budding of MVB membrane. Then, ESCRTII engages ESCRTIII which 

promotes exosome cleavage; during this process many proteins of this complex, such as 

tumor susceptibility gene 101 protein (Tsg101) and ALG2-interacting protein X (Alix), are 

recovered in exosomes (Robbins and Morelli, 2014). An alternative pathway for exosome 

biogenesis involves lipid-raft affinity of tetraspanins (Trajkovic et al., 2008) or protein 

interactions with Hsp70 and transferrin receptor (TfR) (Hemler, 2001). Furthermore, 

ceramides are thought to induce aggregation of lipid microdomains into larger ones and this 

event seems to be important for generation of ILVs that are addressed for secretion as 

exosomes rather than for lysosomal degradation. 

Nowadays, the mechanism underlying exosomes release from parent cells is still not 

completely clear but it seems to be a very rapid process. Some evidence propose two 

different mechanisms of exosome secretion: constitutive, via the Trans-Golgi Network 

(TGN), and inducible, depending on the cell type and the activation state of the cell (Thery 

et al., 2009).  

Constitutive secretion from the Golgi 

Proteins destinated to the cell surface or to be secreted into the extracellular space can be 

routed from the TGN by an ubiquitary constitutive pathway that does not require a specific 

stimulus, albeit controlled according to cell activity (intracellular signalling, cell growth, 

differentiation, etc.). Some members of small GTPases Rab family, as  Rab11, Rab8 and 

Rab13, or heterotrimeric G-protein and protein kinase D (PDK1-2) have been identified in 

the regulation of vesicle trafficking from TGN to the plasma membrane (Record et al., 
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2011). During this constitutive secretion, exosomes are transported within vesicles 

containing only one or two exosomes, and appeared not to transit via MVB. 

Inducible secretion from MVB 

Inducible secretion pathway is regulated by different activation processes. For example, 

modification of intracellular levels of Ca
2+

 in mast cells and in the human erythroleukemia 

cell line K562 (Savina et al., 2003) or K
+
- induced depolarization in neurons are both 

stimuli for exosome secretion. Cross-linking of IgE receptor in mast cells or CD3 in T cells 

produce exosome-induced secretion.  

The involvement of several members of the small Rab GTPase associated with the endocytic 

system might occur also in this scenario (Thery et al., 2009; Hsu et al., 2010; Ostrowski et 

al., 2010). For example, Rab27 isoform has been shown to be important in MVE docking at 

the plasma membrane (Ostrowski et al., 2010).  

Moreover, it has been described that stress conditions, such as senescence (Lehmann et al., 

2008), radiation and other events inducing DNA damage, lead to tumor suppressor-activated 

pathway 6 (TSAP6)-dependent increase of exosome secretion. In this study, TSAP6 is 

shown to colocalize with TGN compartment and its absence produces a reduction in 

exosome formation and secretion while its p53-induced up-regulation causes an 

enhancement in exosome release (Lespagnol et al., 2008).  

Finally, very little is known about the fusion of MVB with plasma membrane, and it is just 

described the contribution of soluble N-ethylmaleimide–sensitive factor attachment proteins 

(SNAREs) in this process. The mechanisms implicated in exosomes formation and secretion 

are illustrated in Figure 3. 
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Figure 3. Exosome formation and secretion (Adapted from Bobrie et al., 2011). Cellular 

machinery for exosome formation in early endosome, maturation in the late endosomal compartment 

and secretion. In the first step of exosome formation, ESCRT complex, tetraspanins, LBPA and 

ceramide are involved; in regard to the vescicular trafficking Rab proteins play a crucial role, while 

for what concerning exosome release in extracellular space, the contribution of SNARE proteins 

seems to be necessary. 

 

2.2   Molecular composition of exosomes 

The structure of exosomes consists of a lipid bilayer membrane, enriched in cholesterol, 

sphingomyelin and ceramide (Simpson et al., 2008) and contains a typical pattern of 

proteins, lipids and nucleic acids derived from their parental cell, thanks to the sorting 

process of these molecules.  

In regard to the proteins contained in exosomes, they are mainly derived from cellular 

cytosol and plasma membrane and usually not from nucleus, mitochondria or endoplasmic 

reticulum (Mears et al., 2004). In particular, exosomes abundantly express on their surface 

some proteins belonging to the tetraspanin family (CD9, CD63 and CD81) and some 

adhesion molecules, including integrins, involved in the exosome internalization into target 

cells, as for example, the inter cellular adhesion molecule 1 (ICAM-1), the leukocyte 

function-associated antigen-1 (LFA-1). In addition, they contain some proteins involved in 
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exosome biogenesis and secretion (Rab GTPases, Alix, Tsg101), molecular chaperones as 

heat-shock proteins (Hsp70 and Hsp90), transmembrane molecules, metabolic enzymes 

(peroxidases, fatty acid syntase, glyceraldeide-3-phosphate dehydrogenase, pyruvate 

kinase), cytoskeleton and motility proteins (tubulin, actins, myosin, etc.) and also proteins 

implicated in signal transduction (kinases, RhoA, GTPase Hras, etc.).  The relative 

abundance of some molecules might also depends on the exosomes source, as in the case of 

MHC class I and II  and costimulatory molecules (i.e: CD86) associated to exosomes 

derived from antigen-presenting cells (APCs) (Tran et al., 2015; Record et al., 2011).  

As mentioned above, exosomal membrane contains a large amount of lipids that reflects 

lipid raft composition with an enrichment in sphingomyelins, that could be hydrolysed into 

ceramide by sphingomyelinases in cholesterol, in particular in B-cell-derived exosomes, in 

phosphatidylserine, only in DC-derived exosomes (Subra et al., 2007) and in lyso-

phosphatidilcholine in mast cell-derived exosomes (Laulagnier et al., 2004). Moreover, 

lipids present in exosomes are described to be enriched in saturated fatty acid compared to 

those of parental cells (Luketic et al., 2007). 

Regarding RNA cargo, the first study showing the presence of mRNA and microRNA in 

exosomes was published in 2007 (Valadi et al., 2007) and nowadays it is well known that 

these RNAs are functional and able to modulate recipient cell protein production (Record et 

al., 2011). Moreover exosomes, as vehicles for RNAs, can protect these nucleic acids and 

deliver them to specific target cells. Interestingly, some mRNAs and microRNAs could be 

exclusively present in exosomes and not in parental cells. The description of exosome 

microRNA cargo will be depicted more in depth in the following paragraph.  

2.3 Exosomes as vehicle of miRNA 

As mentioned above, exosomes have been reported to contain significant amount of 

microRNA (miRNA) and their transport gives them protection against circulating RNAases 

and allows their delivery to target cells.  

MiRNAs are small (19-25 nucleotides) non-coding single-stranded RNAs transcribed in 

nucleus by polymerase II into primary miRNAs (pri-miRNAs) and then cleaved by a 

complex composed of two RNAses III, Drosha and Pasha, into precursor miRNAs (pre-

miRNAs). Exportin-5 transfers pre-miRNAs in cytoplasm where they are processed in a 

series of steps mediated by exonuclease Dicer into mature miRNAs. Their role, when they 

are incorporated into the RNA-induced silencing complex (RISC), is to regulate gene 
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expression impairing mRNA translation through the binding of specific target mRNAs 

leading to a repression of translation or mRNA degradation. 

As described before, exosomes exhibit a typical miRNA signature that is more similar to 

exosomes derived from different cell types than to their parental cells, suggesting a specific 

mechanism for miRNA sorting in exosomes (Mittelbrunn et al., 2011). The loading into 

exosomes has been proposed to be dependent on the binding of a specific miRNA motif to 

the heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and this process seems 

to be regulated by sumoylation of hnRNPA2B1 (Villarroya-Beltri et al., 2013).  

Moreover, an alternative mechanism is linked to the amount of a single miRNA in parental 

cells where the overexpression of cellular miRNAs facilitates their loading in the exosomal 

cargo (Squadrito et al., 2014). For example, B lymphocytes express miR-155 and the 

expression level of this miRNA is enhanced in monoclonal B-cell lymphocytosis (MBL) and 

chronic lymphocytic leukemia (CLL) patients compared to healthy individuals, therefore 

circulating exosomes, isolated from MBL and CLL patients, contain high level of miR-155 

(Ferrajoli et al., 2013).  

Many evidences show the presence of specific miRNAs in exosomes derived from different 

cells of immune system or not, as miR-150 contained in exosomes secreted from T cell, B 

cell (de et al., 2013) and macrophage, where the level of this miRNA directly correlate with 

the efficiency of human microvascular endothelial cell line HMEC-I migration in 

atherosclerosis patients compared to healthy donors (Zhang et al., 2010). Macrophage-

derived exosomes contain also miR-223 and miR-191, and it has been observed the ability 

of miR-223 to induce complete macrophage maturation in recipient monocytes (Ismail et al., 

2013). 

The miRNA delivery to recipient cells through exosomes allows the modulation of a large 

variety of different functions in target cells. For example, mesenchymal stromal cells 

produce functional exosomal miRNAs, such as miR-133b able to induce neurite growth 

when is delivered in neurons and astrocytes (Xin et al., 2012).  

For what concerning pregnancy, human placental cell-derived exosomes and also exosomes 

contained in breast milk carry immunomodulatory miRNAs, such as miRNA cluster located 

in chromosome 19 (C19MC) that is enriched in embryonic stem cells and placenta 

(Bullerdiek and Flor, 2012), or miR-155 in breast milk-derived exosomes (Melnik et al., 

2014).  
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DC-derived exosomes has been described to have an immunomodulatory role in many 

studies because of their importance as APCs, but it still unknown the functions of their 

miRNAs in recipient cells (Fernandez-Messina et al., 2015), and likewise, Valadi et al., 

demonstrate the transfer of exosomal miRNAs from mast cells to target cells but the 

functional role of these miRNAs remains unknown (Valadi et al., 2007).  

In the context of viral infection, EBV-infected B-cells could release exosomes containing 

viral miRNAs that could repress specific mRNA translation in recipient cells (Pegtel et al., 

2010). Also in the course of HCV infection, HCV RNA is packed into exosomes and 

transferred to plasmacytoid DC (pDC) leading to IFN-α production (Dreux et al., 2012).  

Several examples of tumor cell-derived exosomes containing miRNAs have been reported to 

date. It has been recently described that an oncomiR, miR-135b, is enriched in hypoxic 

multiple myeloma cell-derived exosomes and this small RNA increases angiogenesis 

targeting factor–inhibiting hypoxia-inducible factor 1 (FIH-1) mRNA and thus facilitating 

hypoxia-inducible factor 1 (HIF-1) transcriptional activity (Umezu et al., 2014). Another 

study, supporting the classical role of exosomal miRNAs in recipient cells, has demonstrated 

the down-regulation of TLR4 in DC caused by direct targeting of miR-203 that is 

overexpressed in pancreatic cancer cell-derived exosomes. This reduction in TLR4 

expression was shown to inhibit normal DC cytokine production (Zhou et al., 2014). 

Moreover, it has been shown that miR-433 up-regulation induces senescence in ovarian 

cancer cells and the exosomal transfer of this miRNA between these cancer cells leads to the 

senescence bystander effect (Weiner-Gorzel et al., 2015).  

Beside the classical role of miRNAs in modulating mRNA translation, increasing evidence 

propose a direct binding of miRNA to Toll-like receptors (TLRs) leading to a direct 

immunomodulatory effect. Recently, Fabbri and colleagues have reported that lung cancer 

cell-derived exosomes containing high levels of miR-21 and miR-29a, can act as ligand for 

human TLR8 in macrophages, leading to NF-kB pathway activation with the consequent 

induction of CD69 expression and the production of several inflammatory cytokines, 

including IL-6 and TNF-α (Fabbri et al., 2012). Likewise, another study performed in a 

murine model has demonstrated that let-7, an highly abundant regulator of gene expression 

in the CNS, binds to TLR7 expressed in neurons and activates signals involved in 

neurodegeneration (Lehmann et al., 2012). Moreover, Yu and coworkers provided another 

evidence of TLR engagement via miRNA. In particular, they demonstrated that TLR1 is 

able to recognize some circulating miRNAs, including miR-122, miR-155, miR-21 and 
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miR-15b, with a consequent enhanced CD69 surface expression  and IFN-γ production on 

human NK cells in combination with low doses of IL-12, and similar results were obtained 

with these miRNAs contained in exosomes (He et al., 2013). 

 

2.4 Exosome uptake 

Many evidence support exosome uptake in recipient cells, and this process can be directly 

visualized by confocal microscopy or flow cytometry after exosome labeling with a lipid 

membrane fluorescent dye. 

Exosomes can be taken up through different possible mechanisms including endocytosis 

(clathrin-mediated or caveolin-dependent), phagocytosis, macropinocytosis and fusion with 

plasma or endosomal membrane; moreover, it should be considered that exosome 

internalization pathways could vary depending on target cell (Mulcahy et al., 2014).  

Protein interactions involved in the exosome uptake 

The exosome uptake mechanism can involve protein-protein interactions thus facilitating 

subsequent endocytosis and this event may probably confer a selective interaction with 

recipient cells.  Indeed, proteinase K treatment of exosomes was shown to significatively 

reduce their uptake by ovarian cancer cells (Escrevente et al., 2011). Many different proteins 

associated to exosomes have been described to interact with membrane receptors on target 

cells, including  tetraspanins (Hemler, 2005), integrins, immunoglobulins, proteoglycans and 

lectins. 

Tetraspanins are membrane proteins which have numerous functions including cell 

adhesion, motility, activation and proliferation, and are highly abundant on the exosome 

surface. As already mentioned, the tetraspanins CD63, CD9 and CD81 are well-established 

markers of exosomes and it is reported that the treatment of recipient cells with antibodies 

against CD81 or CD9 can reduce exosome uptake by DC (Morelli et al., 2004). Tumor cells 

over expressing tetraspanin Tspan8 release exosomes carrying a Tspan8-CD49d complex 

which plays a crucial role in the exosome uptake by rat aortic endothelial cells (Nazarenko 

et al., 2010).  

Several reports suggest that integrins, usually involved in a wide range of functions, may 

also partecipate in the exosome uptake by different types of immune cells. Thus, for 

example, antibodies that mask the binding site of CD11a or its ligand ICAM-1 can reduce 

exosome uptake by DC (Morelli et al., 2004). Similar results were obtained after blocking 

the integrins v (CD51) and 3 (CD61) on the DC cell surface.  Naïve T cells  have been 
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shown to internalize exosomes through a mechanism requiring the participation of T cell 

receptor (TCR), CD28 and LFA-1 (Hwang et al., 2003). In another study, Nolte-'t Hoen and 

coworkers have observed that T cells can recruit DC-derived exosomes containing major 

histocompatibility complex class II (MHCII) molecules during cognate DC-T cell-cell 

interaction. Recruitment of these exosomes required T-cell activation and was LFA-1-

dependent. Interestingly, the induction of a high-affinity state of LFA-1 on resting T cells 

was sufficient to improve exosome binding (Nolte-'t Hoen et al., 2009).  These results 

highlight the emerging roles of integrins in vesicles uptake, particularly in immune cells. 

Lectins have also been involved in exosome uptake as shown for DC-SIGN, a C-type lectin 

receptor able to recognize and internalize glycoprotein ligands. The recruitment of exosomes 

derived from breast milk by monocyte-derived DC was strongly reduced by neutralizing 

antibodies specific for DC-SIGN (Naslund et al., 2014). Another interesting molecule, 

galectin-5, has also been detected within exosomes. Galectin is a type of lectin that shows 

affinity for -galactoside. Extracellular galectins cross-link cell surface and extracellular 

glycoproteins and may thereby modulate cell adhesion and induce intracellular signals. It 

was observed that galectin-5 positive exosomes were phagocytosed into rat peritoneal 

macrophages and J774 macrophages with a mechanism galectin-5 dependent (Barres et al., 

2010).  

Endocytosis 

Endocytosis, as mentioned above, is one of the possible mechanisms for exosome uptake 

and many studies demonstrate that is an active, rapid, endoergonic process requiring a 

functional cytoskeleton. In particular, Franzen and colleagues performed experiments on 

exosome uptake by bladder cancer cells, evidentiating a direct correlation between vesicle 

internalization and incubation time, with saturation point after 14 hours; in addition, they 

have demonstrated that the exosome uptake was dose dependent and that was abrogated at 

4°C, suggesting that energy was necessary for this process (Franzen et al., 2014). Further 

evidence that internalization is not a passive process is provided by observations that 

vesicles are not taken up by cells fixed in paraformaldehyde. Endocytosis comprises more 

than one internalization pathways, such as macropinocytosis, phagocytosis and endocytosis 

mediated by clathrin, caveolin and lipid-raft. Macropinocytosis is not the main pathway 

involved in exosome uptake, and is probably specific for some cell types, as well as 

phagocytosis is typical of macrophages and other specialized cells. During phagocytosis 

membrane invaginations progressively surround exosomes or other materials to internalize, 
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while in macropinocytosis membrane extensions perform the encapsulation of extracellular 

components (Mulcahy et al., 2014). Phosphatidylserine located on exosome surface, was 

described to play a crucial role in both macropinocytosis and phagocytosis, engaging T-cell 

Immunoglobulin-Mucin domain containing molecules 4 (TIM4) (Feng et al., 2010) and 

TIM1 on Th2 cells (Zakharova et al., 2007). Instead, during internalization mediated by 

clathrin, caveolin or lipid-raft, the mechanisms consist in invaginations of domains enriched 

in those molecules with subsequent surrounding of exosomes or other material and transfer 

into cytosol of target cells. 

Cell surface membrane fusion 

Finally, another mechanism for exosome uptake consists in the direct fusion of vesicle 

membrane with the cell plasma membrane through a lipid-lipid interaction (Parolini et al., 

2009). Several protein families, including SNAREs and Rab proteins, participate in this 

process (Jahn and Sudhof, 1999) and the fusion of the membranes can be observed via 

fluorescent lipid dequenching. Furthermore, exosome fusion with plasma or endosomal 

membrane is suggested by the evidence of exosome delivery of miRNA and luciferin to the 

cytosol of the recipient cells. A schematization of different ways of exosomes uptake is 

depicted in Figure 4. 
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Figure 4. Mechanisms for exosome uptake. From Mulcahy et al., 2014. Exosomes are taken up by 

target cells through different mechanisms. Exosome internalization can be mediated by caveolin, 

lipid-raft or clathrin dependent endocytosis, macropinocytosis, phagocytosis and the direct fusion 

with plasma membrane, and eventually with the endosomal membrane. 

 

2.5 Exosome modulation of immune response 

Exosomes are reported to be important in both physiological and pathological conditions, 

and their biological effects seem to be mainly dependent on their producing cells. In 1996, 

Raposo and coworkers demonstrated for the first time a role for exosomes in antigen 

presentation, showing that exosomes secreted by B lymphoblastoid cells carry MHC class II 

–antigen complexes able to induce antigen-specific MHC class II-restricted T cell responses. 

(Raposo et al., 1996). At the same way, two years later, another study reported that DC-

derived exosomes, expressing MHC class I-antigen complexes, were efficaceous in the 

stimulation of antigen specific CD8
+
 T cells (Zitvogel et al., 1998). Since these discoveries, 

several papers came out describing a central role of DCs in the activation of adaptive 

immunity, through an indirect antigen presentation mechanism mediated by these 

nanovesicles (Morelli et al., 2004). In another scenario, there are several evidence describing 
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DCs uptake of exosomes derived from many cell types bringing specific antigens, such as 

tumor-antigens or pathogen-derived antigens from infected macrophages (Giri and Schorey, 

2008) and also virus-derived ones derived from cytomegalovirus infected endotelials cells 

(Walker et al., 2009). After the uptake of antigen-carrying exosomes, DCs acquire the ability 

to present these molecules to T lymphocytes initiating the adaptive immune response. In 

another interesting work, it has been reported that mast cell-derived exosomes induced 

immature DCs to up-regulate MHC class II, CD80, CD86, and CD40 molecules and to 

acquire potent Ag-presenting capacity to T cells (Skokos et al., 2003), thus evidentiating a 

collaborative interaction between mast cells and DCs leading to the elicitation of specific 

immune responses. All together, these observations show that exosomes can stimulate T-cell 

mediated immune reponses through two different ways, indirectly by affecting the 

maturation process of DCs or directly by presenting antigen/MHC complexes to T 

lymphocytes.  

In regard to the effects of tumor cell-derived exosomes (Tex) on immune cells, different 

consequences have been described from immune stimulation or immune suppression, 

depending mainly on the molecules expressed on exosome surface and their molecular 

cargo.  

Several Tex-mediated immune suppressive mechanisms have been reported to date. In some 

circumstances, Tex restrain tumor immune surveillance by promoting Myeloid-Derived 

Suppressor Cells (MDSC) or regulatory T cells (Treg) functions. For example, exosomes 

derived from melanoma and colorectal carcinoma cells have the capability to impair 

monocyte differentiation into DCs promoting at the same time the generation of MDSC with 

a consequent production of IL-6 and transforming growth factor-β (TGF-β) which suppress 

T cell proliferation and cytolytic functions and promote tumor growth (Valenti et al., 2006). 

Another study performed in both mice and humans reported that Hsp72 associated to Tex 

triggered Stat3 activation in MDSCs in a TLR2/MyD88-dependent manner through 

autocrine production of IL-6 (Chalmin et al., 2010). Moreover mesothelioma cell-derived 

exosomes, expressing TGF-β1, impair IL-2 dependent T cell proliferation and promote Treg 

cells functions leading to a switch towards an immunosuppressive phenotype (Clayton et al., 

2007). An alternative mechanism of immune escape mediated by Tex might be linked to the 

expression of Fas ligand (FasL), which could engage its receptor on T cells inducing 

apoptosis (Huber et al., 2005; Andreola et al., 2002). Likewise, it should be noted that 
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TRAIL- and FasL-bearing exosomes, released by human placenta, are able to induce T cell 

apoptosis conferring immune privilege for the fetus (Stenqvist et al., 2013). 

In the matter of immunostimulatory effects of Tex, a recent study described macrophage 

activation after incubation with breast cancer cell-derived exosomes. In particular, the 

presence of palmitoylated proteins on exosome surface triggers TLR2 on macrophages and 

thus activates the NF-kB pathway with a consequent enhanced production of pro-

inflammatory cytokines (Chow et al., 2014b). Even in the context of autoimmunity, 

exosomes could play an activating role; for example, a membrane form of TNF- was found 

to be associated to exosomes derived from the synovial fibroblasts of rheumatoid arthritis 

patients and was responsible to stimulate the activation of NF-kB and AKT pathways in 

CD4
+
 T cells (Zhang et al., 2006). 

The immunomodulatory role of exosomes is summarized in table 1 and 2, while their effects 

on NK cell-mediated functions will be discussed later.  

 

Source of 

exosomes 

Recipient cells Mechanism Effects 

 

 

 

Dendritic  

cell 

CD8
+ 

T cell - MHCI-TCR interaction  

- Antigen transfer 

Direct or indirect 

antigen presentation 

Primed CD4
+ 

T cell MHCII Direct antigen 

presentation 

Naïve CD4
+ 

T cell MHC and antigen 

transfer 

Indirect antigen 

presentation 

NK cell - IL-15 transpresentation   

- NKG2D-NKG2DL 

interaction 

Activation 

B cell Primed CD4
+ 

T cell MHCII Direct antigen 

presentation 

Infected 

macrophage 

Immature DC Pathogen Antigen transfer and 

maturation 

Tumor cell DC --- Antigen tranfer 

NK cell Hsp Activation 

 Macrophage Hsp 

Fibroblast Primed CD4
+ 

T cell TNF-TNFRI interaction Resistance to AICD  

 

Table 1. Activating functions of exosomes on immune cells (Adapted from Thery et al., 2009). 
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Source of 

exosomes 

Recipient cells Mechanism Effects 

Dendritic  

cell 

Primed CD4
+ 

T cell MHCII Inhibition of activation 

 

 

 

 

 

 

 

Tumor cell 

 

CD8
+ 

T cell ? Inhibition of cytotoxic 

activity NK cell NKG2D-NKG2DL 

interaction 

Regulatory CD4
+ 

T 

cell 

TGFβ-TGFβR 

interaction 

Promotion of 

regulatory activity 

Monocyte ? Inhibition of 

differentiation into 

DCs 

MDSC ? Differentiation into 

MDSCs 

CD4
+ 

T cell Galectin9-TIM3 

interaction 

T cell killing 

Effector  CD4
+ 

T 

cell 

CD95-CD95L interaction 

Primed CD4
+ 

T cell 

Effector  CD4
+ 

T 

cell 

CD95-CD95L interaction T cell killing 

Placenta  Effector  CD4
+ 

T 

cell 

CD95-CD95L interaction T cell killing 

 

Table 2. Inhibitory functions of exosomes on immune cells (Adapted from Thery et al., 2009). 

 

2.6 Role of exosomes in the modulation of NK cell functions  

Exosomes could be divided on the basis of their effect on NK cells in immunostimulatory  

and immunosuppressive, considering those derived from APCs in the first group and those 

originating from placenta or normal epitelium in the second one (Mincheva-Nilsson and 

Baranov, 2014), even if the real functional consequences of exosome-NK cell interaction are 

not completely understood. In particular the role of Tex on NK cells is controversial and 

seems to be dependent on exosome molecular cargo and the source of these vesicles.  

Many studies report that NK cell-mediated functions can be modulated by exosomes 

carrying NK cell activating ligands on their surface. Ashiru and colleagues have 

demonstrated that MICA*008, one allelic form of the NKG2DL MICA, released mainly in 

association with exosomes (Ashiru et al., 2013) caused NKG2D downmodulation and a 

concomitant  reduction of NK cell cytotoxicity, suggesting an alternative pathway to induce 

immune suppression on NK cells (Ashiru et al., 2010). Similarly, exosomes derived from 

mesothelioma and prostate cancer cells strongly induce NKG2D dowmodulation on NK 

cells with a mechanism mediated by TGFβ1 and MICA/B molecules associated to these 

nanovesicles (Clayton et al., 2008). The immunosuppressive effect of exosomes on NK 
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cells, mediated by NKG2D-NKG2DL interaction has also been described for placenta-

derived exosomes. Indeed, these vesicles express either ULBPs and MIC molecules able to  

engage NKG2D and impair NKG2D-mediated cytotoxicity on NK cells (Hedlund et al., 

2009). 

NKp30 represents another NK cell activating receptor whose ligand named BAG6/BAT3 

has been shown associated to exosomes. Simhadri and collegues observed that DC-derived 

exosomes expressing high levels of BAG6/BAT3 molecule stimulate IFN-γ and TNF-α 

release in NK cells (Simhadri et al., 2008). Interestingly, soluble BAG6 was detected in the 

plasma of chronic lymphocytic leukemia (CLL) patients, with the highest levels at the 

advanced disease stages. Incubation of NK cells, with the soluble form of BAG6/BAT3 or 

with exosome-bearing this ligand, resulted in the suppression or activation of NK cell 

cytotoxicity respectively (Reiners et al., 2013), thus suggesting that a dysregulated balance 

of exosomal vs soluble BAG6/BAT3 expression may cause immune evasion of tumor cells 

(Reiners et al., 2013). 

Other mechanisms of exosome-mediated modulation of NK cells functions have been 

described over the last years. The presence of IL-15Rα on DC-derived exosomes surface can 

increase IL-15-mediated NK cell proliferation (Viaud et al., 2009). These authors have also 

noticed that NKG2DL expressed on Dex can have a stimulatory role on NK cell functions 

(Viaud et al., 2009), evidentiating that the contribute of different molecules determines the 

final immunomodulatory effect. 

One of the major components of exosomes is Hsp70, a molecular chaperone belonging to 

the heat-shock protein family, which can be localized in the cytosol as well as associated to 

the exosome membrane.  Interestingly, only exosomes with membrane Hsp70, produced by 

Hsp70-positive tumor cells, stimulated either NK cell migration and lytic activity against 

tumor cells through granzyme release (Gastpar et al., 2005). Similarly, another group 

demonstrated NK cell activation mediated by Hsp-bearing exosomes secreted by human 

hepatocellular carcinoma cells, with a resulting increase in NKG2D, NKp44 and CD94 

surface expression, and NK cell cytotoxicity associated to an upregulation of granzyme B 

release (Lv et al., 2012). These studies emphasize an immune stimulatory effect of exosomal 

Hsp70. 

In several different models, it has been observed the expression of TGFβ1 molecule on 

exosomes. In general, TGFβ1 positive exosomes have an inhibitory role on NK cell 

mediated functions as shown for exosomes derived from the sera of acute myeloid leukemia 
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(AML) patients which have the capability to strongly downmodulate NKG2D expression 

and NK cell cytotoxicity with a mechanism dependent on the formation of SMAD-DNA 

complexes (Szczepanski et al., 2011). A summary of exosome-mediated modulatory effects 

on NK cell-mediated functions is reported in Table 3. 

 

Source of 

exosomes 

Organism Effect on NK cells Mechanism References 

 

 

Dendritic cell 

 

Human/

mouse 

Increase cell 

proliferation and  IFN-γ 

production 

IL-15Rα and 

NKG2DLs  

(ULBP1) on 

exosomes 

Viaud S et al. , 

2009 

Mouse Increase IFN-γ 

production 

TNF-α on 

exosomes 

Munich et al., 

2012 

Human Increase IFN-γ  and 

TNF-α production 

BAT3 on 

exosomes 

Simhadri et al., 

2008 

 

 

 

 

 

 

 

 

 

 

Tumor cells 

 

 

 

 

Human  

Reduction of NKG2D-

mediated functions: 

IFN-γ production and 

cytotoxicity 

TGFβ and 

NKG2DLs on 

exosomes 

Clayton et al., 

2008 

Reduction of 

cytotoxicity 

NKG2DLs on 

exosomes 

Hedlung et al., 

2011 

Increase Granzyme B 

production and 

cytotoxicity 

HSP70 on 

exosomes 

Gastpar et al., 

2005 

Increase cytotoxicity 

and Granzyme B 

production 

HSPs (60,70,90) 

on exosomes 

Lv et al., 2012 

 

Mouse 

Inhibition of 

cytotoxicity. Reduction 

of perforin and IL-2 

dependent NK cell 

proliferation 

Block of Jak3 

and Cyclin D3 

activation 

Liu et al., 2006 

Placenta Human  NKG2D 

downmodulation and  

cytotoxicity  

NKG2DLs 

(ULBP1-5, 

MIC) on 

exosomes 

Hedlung et al., 

2009 

 

Table 3. Modulatory effects of exosomes on NK cell-mediated functions. 
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3.  Multiple Myeloma 

Multiple Myeloma (MM) is a very common neoplastic plasma cell (PC) disease 

characterized by a multifocal proliferation of clonal long-lived PC with an accumulation in 

the bone marrow (BM) (over 10% by definition) and less frequently in extramedullary 

tissues (Kyle and Rajkumar, 2004; Kyle, 1985). Several symptoms are typically associated 

with this malignancy including serum monoclonal gammopathy, skeletal destruction, 

immune suppression/immune deficiency, renal failure, anemia and hypercalcemia that arise 

during tumor progression.  

MM can be considered a disease with an high level of molecular heterogeneity, thus its 

etiological genetic baground is characterized by different structural and numerical 

chromosomal aberrations such as loss and gain of whole chromosomes as well as mutations 

in oncogenes and tumor-suppressor genes together with translocation and a wide range of 

mutation (Anderson and Carrasco, 2011). For example, some translocation juxtaposed cyclin 

genes to a stronger Ig enhancer leading to cyclin D1 or D3 overexpression and a consequent 

increase in tumor growth and survival (Shaughnessy, Jr. et al., 2001; Gabrea et al., 1999; 

Bergsagel and Kuehl, 2001). Furthermore, mutation in TP53 or PTEN together with other 

mutations are described to have a role in MM pathogenesis through the constitutive 

activation of the noncanonical NF-kB pathway (Keats et al., 2007). 

Of note, increasing evidence demonstrate the importance of the mutual interaction between 

MM cells and BM microenvironment in tumor progression. Thus both extracellular matrix 

proteins, fibronectin, collagen, laminin and osteopontin, and several cell types, such as 

hematopoietic stem cells, progenitor and precursor cells, immune cells, endothelial cells, 

erythrocytes, adipocytes, osteoclasts and osteoblasts, could influence and facilitate tumor 

growth through the secretion of IL-6, TNF-α and other paracrine factors (Caers et al., 2008; 

Ribatti et al., 2006). This evidence can provide the basis for the development of novel 

therapeutic strategies for MM targeting MM-bone marrow stromal cells (BMSC) interaction. 

MM procedes by an age-progressive premalignant condition termed monoclonal 

gammopathy of undetermined significance (MGUS), present in 1% of adults over the age of 

25, and then can evolve in active MM. Recent screening studies demonstrate that all the 

diagnosed MM patients had previously been diagnosed with MGUS (Anderson and 

Carrasco, 2011). Moreover, MGUS patients display abnormal secretion of monoclonal Ig 

without any organ dysfunction and in theory their malignant PCs can produce all classes of 

immunoglobulin, even if IgG are the most common followed by IgA and IgM while those 
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producing IgD and IgE are usually very rare. In some patients an asymptomatic intermediate 

and more advanced premalignant stage named smoldering MM (SMM) is clinically 

recognized and characterized by a stable intramedullary tumor-cell content reaching about 

30% and the risk of evolvement to symptomatic MM is 10-20% per year (Kyle et al., 2007). 

The progression to the terminal stage of MM is associated with increasingly severe 

secondary features. MM has a greater intramedullary tumor-cell content which causes bone 

lesion and subsequent bone fracture and pain and interferes with normal hematopoiesis. The 

breakdown of bones also leads to calcium release into the blood, resulting in hypercalcemia 

and its associated symptoms already mentioned. Furthermore, the presence in blood and 

urine of a monoclonal immunoglobulin called “Bence Jones protein” is considered a typical 

feature of MM patients. This protein is responsible of the onset of kidney injuries onset 

together with the hypercalcemia. PCs infiltration into the bone marrow and renal 

dysfunction often cause severe anemia in these patients (Palumbo and Anderson, 2011). 

Furthermore in some patients, the tumor can acquire the ability to grow in extramedullary 

sites such as blood, pleural fluid and skin thus generating a more aggressive disease.  

Two methods are used to classify patients considering the complication associated with 

diferent stages of disease and many different parameters such as age, performance status and 

renal function, even if these classification have several limitations because this malignancy 

is characterized by a broad molecular heterogeneity (Bataille et al., 2013). Thus, Durie and 

Salmon devised a staging system to predict the outcome by evaluating haemoglobin, serum 

calcium levels, monoclonal immunoglobulin levels in serum and urine, extent of bone 

lesions (Durie and Salmon, 1975) and since 2005, the MM International Staging System 

(ISS) has recognized the combination of beta-2 microglobulin (β2M) with serum albumin 

(SA) concentrations as the most simple and potent combination to determine the prognosis 

in MM patients (Greipp et al., 2005). 

Nowadays MM is still an incurable disease even if some chemotherapeutic strategies are in 

use. Considering the heterogeneity underlying this pathology, several different approaches 

have been developed including autologous stem cell transplantation or subministration of 

different drugs that can be divided in “old drugs” and “new generation drugs”. The first class 

includes alkylators, such as Melphalan, corticosteroids and anthracyclines, such as 

Doxorubicin, while the second class is represented by proteasome inhibitors, such as 

Bortezomib, and immunomodulatory drugs (IMiDs) that induce an increase in immune 

response against tumor cells. Nowadays, the most common strategies in MM therapy are 

http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Hypercalcemia
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based on multidrug-combinations that maximize their synergism while minimizing toxicities 

(Kaiser et al., 2010; Lamottke et al., 2012).   

 

3.1 Role of NK cells in the immunosurveillance of MM: implication for immune-

chemotherapy 

Current insights into the molecular specificities that regulate NK cell-mediated functions 

suggest that it might be possible to design NK-cell-based immunotherapeutic strategies 

against human cancer because of the NK prominent role in immune response toward tumors 

including MM. In fact, several studies show a significative increase in NK cell number in 

patients with MGUS and MM in the early stages compared to normal individuals (Osterborg 

et al., 1990; Gonzalez et al., 1992) and this number is further enhanced during tumor 

progression while NK cell cytotoxic activity decrease (Ogmundsdottir, 1988), suggesting 

that these cells may initially contribute to the control of malignant PCs but this effect is 

attenuated in the course of tumor progression. NK cells can also contribute to graft-versus-

myeloma responses in haploidentical hematopoietic stem cell transplantation (HSCT) (Shi et 

al., 2008) and importantly these cells can elicit potent allogenic and autologous response to 

myeloma cells in vitro and in patients (Shi et al., 2008; Ruggeri et al., 2007).  

Within the tumor microenvironment NK cells recognize and lyse MM cells through a 

mechanism dependent on the engagement of different activating receptors, such as NKG2D, 

DNAM-1 and NCRs (El-Sherbiny et al., 2007; Carbone et al., 2005).  In this regard, several 

studies demonstrated the presence of DNAM-1 and/or NKG2D ligands in MM cell lines and 

in primary malignant PCs derived from MM patients (El-Sherbiny et al., 2007; Soriani et al., 

2009b).  

 Given the importance of NK cells in immune response toward MM, combination therapies 

that enhance NK cell functions are showing promise in treating this malignancy. A pivotal 

strategy to improve NK cell-mediated anti-tumor activity involves the use of several 

chemotherapeutic agents such as genotoxic drugs or inhibitors of proteasome, histone 

deacetylases, GSK3 or of the Hsp-90 molecular chaperone, that are able to induce the up-

regulation of NKG2D and DNAM-1 ligands on tumor cell surface leading to a better NK 

cell-mediated recognition and lysis (Fionda et al., 2009; Wu et al., 2012; Jinushi et al., 2008; 

Soriani et al., 2009b). In addition to their ability to activate specific transduction pathways 

associated to the up-regulation of different NK cell activating ligands on the tumor cells, 

these compounds can also affect tumor survival.  
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In particular, the induction of DDR in response to genotoxic agents Doxorubicin and 

Melphalan (Mel) strongly enhanced NKG2DL and DNAM-1L on MM cells increasing their 

susceptibility to NK cell-mediated killing (Soriani et al., 2009b). 

Moreover, in our laboratory we found that different drugs targeting the GSK3 kinase can up-

regulate both MICA protein surface and mRNA expression in MM cells, with little or no 

effects on MICB and DNAM-1L expression (Fionda et al., 2013); furthermore, exposure to 

GSK3 inhibitors renders myeloma cells more susceptible to NK cell-mediated cytotoxicity 

with a mechanism mostly dependent on NKG2D (Fionda et al., 2013).  

Other alternative strategies used in MM therapy consist in stimulation of NK cell-mediated 

function through the administration of some ‘new generation’ drugs including Thalidomide 

and other Immunomodulatory drugs (IMiDs
®
), such as lenalidomide (CC-5013, Revlimid

®
) 

and pomalidomide (CC-4047, Actimid
®
), that are able to activate NK cells directly or 

indirectly, through T cell production of IFN-γ and IL-2 or DC activation (Bartlett et al., 

2004). We have recently shown that these drugs can strongly enhance the expression of the 

ligands for NKG2D and DNAM-1 both in human MM cell lines and in primary malignant 

PCs. We found that the transcription factors IKZF1/3 and IRF4 play a crucial role in this 

regulatory mechanism through the ability to repress the basal transcription of mica and pvr 

gene expression. Lenalidomide-induced downregulation of these transcription factors leads 

to de-repression of mica and pvr promoter activity, and consequently to increased gene 

transcription. Thus, we identified IKZF1/3 and IRF4 as “druggable” transcriptional 

repressors of NK cell-activating ligand expression in MM cells (Fionda et al., 2015).  

The release of soluble NKG2D ligands has been suggested to be a major mechanism of 

tumor cell evasion from NKG2D mediated immunosurveillance. As a matter of fact, soluble 

forms of NKG2DL are present in the serum of MM patients and other types of malignancies 

and their levels correlate with tumor stage and metastasis and with reduced expression of 

NKG2D on NK cells and other cytotoxic lymphocytes. Soluble NKG2DLs can be released 

through metalloproteinase-mediated cleavage, exosome secretion, or alternative splicing. We 

have recently studied the effect of genotoxic drugs on NKG2D ligands shedding. Our data 

demonstrate that genotoxic agents stimulate the shedding of MIC molecules sensitive to 

proteolytic cleavage with a mechanism mediated by ADAM10 protease. Interestingly, we 

found that the combined use of chemotherapeutic drugs and metalloproteinase inhibitors 

enhances NK cell-mediated recognition of MM cells preserving MIC molecules on the cell 

surface (Zingoni et al., 2015). Our results stronlgy suggest that targeting of 



34 
 

metalloproteinases in conjunction with chemotherapy could be exploited for NK cell-based 

immunotherapeutic approaches, thus contributing to avoid the escape of malignant cells 

from stress-elicited immune responses. 

 

3.2 Role of exosomes in the progression of Multiple Myeloma 

The release and the reciprocal exchange of exosomes from both stromal and MM cells can 

be considered an important mechanism of cross-talk between MM and BM 

microenvironment and could facilitate directly or indirectly tumor growth and progression.  

Roccaro and colleagues have recently demonstrated that exosomes derived from BMSCs of 

patients affected by MM could be transferred to MM cells inducing MM cell growth and 

promoting dissemination, whereas exosomes derived from BMSCs of healthy donors didn’t 

have the same effects (Roccaro et al., 2013). In another study, exosomes obtained from 

BMSCs induced survival, proliferation, migration and drug resistance of human MM cells 

through the transport of bioactive molecules, such as miRNAs, mRNAs and proteins (Wang 

et al., 2014). 

On the other hand, a very recent study has provided the first evidence that MM cell-derived 

exosomes directly influence bone-resorbing osteoclasts (OCs) differentiation and function, 

such as migration and secretion of factors involved in bone resorption activity thus 

facilitating tumor growth. Moreover, it has been shown that these vesicles could enhance 

survival and anti-apoptotic gene expression in OCs through a mechanism mediated by the 

activation of AKT pathway (Raimondi et al., 2015). Other studies have reported the ability 

of exosomes derived from MM cells to stimulate angiogenesis. In particular, Liu and 

colleagues demonstrated the crucial role of MM cell-derived exosomes in the induction of 

endothelial cell proliferation and secretion of both IL-6 and vascular endothelial growth 

(VEGF) (Liu et al., 2014), while Umezu et al, showed that these vesicles could enhance 

angiogenesis through exosomal miR-135b-mediated HIF-1 signaling. They also 

demonstrated that MM cells in chronic hypoxic conditions were able to secrete more 

exosomes than the parental cells under normoxia (Umezu et al., 2014). Interestingly, Di 

Noto and colleagues recently observed that MM patients released an higher amount of 

exosomes compared to MGUS and healthy donors, suggesting a direct correlation between 

exosome secretion and MM progression. They also observed the involvement of exosomes 

in tumor survival and expansion because of their ability to transport mRNA, miRNA and 

several proteins, such as cytokines and growth factors (Di et al., 2015). Overall, these recent 
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studies denote an emerging role of exosomes in the intercellular communication between 

MM and stromal cells but little is known about the effects of MM-cell derived exosomes on 

immune cells. 
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AIM 

 

NK cells are reported to be an important component of the innate immunity response against 

stressed, infected and transformed cells. They can either sense damaged cells through the 

recognition of different activating ligands and at the same time they are able to detect 

DAMPs released by abnormal cells trough Toll-like receptors. Multiple myeloma represents 

a clonal B-cell malignancy characterized by the expansion of transformed plasma cells in the 

bone marrow. Several studies show that NK cells participate in the surveillance of MM.  In 

the cross-talk between NK and malignant cells, tumor cells can release a wide range of 

soluble factors and extracellular vesicles that could modulate NK cell-mediated functions. In 

this context, we focused our attention on a specific class of nanovesicles named exosomes. 

These vesicles can carry proteins, lipids and nucleic acid, as mRNAs and miRNAs, and are 

considered key players of intercellular communication.  

My PhD project was aimed at investigating the molecular and biochemical features as well 

as the immunomodulatory properties of exosomes released from MM cells in steady state 

conditions and after treatment with Melphalan, a genotoxic agent used in MM therapy. We 

found that MM-cell derived exosomes have an immunostimulatory role on NK cell in terms 

of proliferation, CD69 induction and IFN- production. Subsequently, we analyzed the 

molecular mechanisms underlying these events and focused our attention on Toll-like 

receptor family. We identified the TLR2/NF-kB axis as one of the mechanisms mediating 

exosome-induced IFN- production.  

We envisage that a better understanding of exosome molecular phenotype and 

immunomodulatory properties will provide new insight into their importance in cancer 

therapy and their possible use as biomarkers. 
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MATERIALS AND METHODS 

Antibodies and reagents 

The following antibodies were from BD Biosciences (San Jose, CA): anti-CD3/APC-H7 

(clone SK7), anti-CD3/APC, anti-CD56/PE (clone NCAM16.2), anti-CD14/FITC (clone 

HCD14), anti-IFN-APC (clone B27).  Anti-TNF-/APC (clone cA2) was from Miltenyi 

Biotec (Cologne, Germany). Anti-human IL15Rfrom R&D Systems (Minneapolis, MN). 

Anti-human Ki-67 antigen/FITC (clone MIB-1) was from DAKO (Golspug, Denmark). 

Anti-CD63 (H-193), anti-Hsp70/Hsc70 (W27), anti-CD81 (H-121), NFkB p65 (C-20), anti-

Tsg101 (M-19) were purchased from Santa Cruz Biotechnology (CA). Phospho-NF-kB p65 

(Ser 536) (clone 7F1) was from Cell Signaling (Danvers, MA). Anti-calreticulin was from 

Thermo Fisher Scientific (Rockford, USA). Anti-MHC I (clone HC10) was kindly provided 

from Dr. P. Giacomini, Regina Elena Cancer Institute, Rome, Italy. The following 

antibodies were from BioLegend (San Diego, CA): control mouse IgG1 (clone MOPC-21), 

anti-human CD69/APC (clone FN50), anti-human IL-12/IL-23p40/Alexa Fluor 647 (clone 

C11.5), anti-human CD63/PE (clone H5C6). F(ab)2 fragments of APC conjugated goat-anti-

mouse (GAM-APC or GAM-PE) IgG were from Jackson Immunoresearch Laboratories 

(West Grove, PA). Anti-β-actin (clone AC-74, IgG2a) was from Sigma-Aldrich (St Louis, 

MO); anti-hTLR2-IgA neutralizing antiboby (clone B4H2) was from InvivoGen (San Diego, 

CA) and anti-human CD282 (TLR2) APC (clone TL2.1) was from eBioscience (California, 

USA). Enzyme-linked immunosorbent assay (ELISA) for IFN- and TNF-α were from R&D 

Systems. The NF-kB SN50 inhibitor peptide was from Calbiochem (Los Angeles, USA). 

Other reagents used were as follows: bovine serum albumin (BSA), 3-(4,5-dimethylthiazol-

2)-2,5-diphenyltetrazolium bromide (MTT), brefeldin A (BFA), saponin, paraformaldehyde 

(PFA), propidium iodide (PI), trypan blue, dimethylformamide (DMF), puromycin, 

Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE), Melphalan, all from Sigma-

Aldrich (St Louis, MO). In addition, hygromycin, blasticidin, R848, Pam3CSK4, ODN 

2216, Poly (I:C), LPS were from InvivoGen (San Diego, CA). Recombinant Human IL-15 

and IL-2 were purchased from Peprotech (Rocky Hill, NJ). 

 

Cell lines  

The human MM cell lines SKO-007(J3) and  ARK, were provided by P. Trivedi (“Sapienza” 

University of Rome). The cell lines were maintained at 37°C and 5% CO2 in RPMI 1640 
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(Life Technologies, Gaithersburg, MD) supplemented with 10% FCS. All cell lines were 

mycoplasma free (EZ-PCR Mycoplasma test kit; Biological Industries).  

 

Exosome purification 

Exosome-free medium was obtained as follows: FCS was centrifuged at 100.000 g for 3 

hours in a Beckman ultracentrifuge (Beckman Coulter, Brea, CA) in order to remove 

microvesicles-like exosomes. RPMI 1640 was supplemented with 10% of FCS-exosome 

free and antibiotics.  

ARK and SKO-007(J3) cell lines were cultured at 1 x 10
6
 cells/ml in exosome-free medium 

for 24-48 hours. In some experiments, cells were treated with a sublethal dose of Melphalan 

(Mel) determined by the assay as previously described (Soriani et al., 2009a). 

Concentrations 10 times lower than IC50 values were used to treat the different cell lines as 

follows: ARK (3μM) and SKO-007(J3) (5μM). After 48 hours of drug treatment, cells were 

washed and plated at 1,5 x 10
6
 cells/ml in fresh  exosome-free medium and incubated for 

additional 24 hours at 37°C and 5% CO2
 
.  

Exosome purification protocol consists of different sequential centrifugations as previously 

reported (Thery et al., 2006) and it is schematically represented in Figure 5. Cells were 

harvested by centrifugation at 300 g for 10 minutes and supernatants were collected.  Cell-

free supernatants were then centrifuged at 2.000 g for 20 minutes followed by centrifugation 

at 10.000 g for 30 minutes to remove cells debris. Supernatants were filtered using a 0.22 

μm filter and centrifuged at 100.000 g for 70 minutes at 4°C in a Beckman ultracentrifuge in 

order to pellet exosomes. The resulting pellet was washed in a large volume of cold PBS and 

again centrifuged at 100.000 g for 70 minutes at 4°C. Finally, exosomes were resuspended 

in PBS for further analyses and functional studies.       
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Figure 5. Exosome isolation protocol. Schematic representation of exosome isolation protocol 

based on a series of differential centrifugation and ultracentrifugation. Every step allows to remove 

both alive and death cells, cell debris, apoptotic bodies and vesicular or proteic contaminants to 

obtain a final pellet enriched in exosomes. 

 

Flow cytometric analysis of exosomes  

Flow cytometric analysis of CD63
+
 exosomes  was performed by positive magnetic selection 

using CD63
+
 dynabeads (Invitrogen). About 5-10 μg of exosome preparation were diluted 

with Isolation buffer (PBS/0.1% BSA) in a final volume of 100 µl, then 20 µl of magnetic 

beads conjugated with anti-CD63 antibodies were added. The suspension was incubated 

with gentle tilting and rotation for 18-22 hours at 4°C  and then washed twice with isolation 

buffer. The beads-bound exosomes were resuspended in 200 µl of isolation buffer, labeled 
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with cIg/PE or anti-CD63/PE (BioLegend). Samples were acquired using a FACSCanto (BD 

Biosciences, San Jose, CA) and data analysis was performed using the FlowJo program. 

 

RNA isolation, RT-PCR, and real-time PCR 

Total RNA from human primary purified NK cells or monocytes was extracted using Total 

RNA Mini Kit (Geneaid, New Taipei City, Taiwan) after different times of exosome 

treatment. Total RNA (100-800 ng) was used for cDNA first-strand synthesis using oligo-dT 

(Promega, Madison, WI) in a 25μL reaction volume. Real-time PCR was performed using 

the ABI Prism 7900 Sequence Detection system (Applied Biosystems, Foster City, CA). 

cDNAs were amplified in triplicate with primers for IFN-γ (Hs00989291_m1), TNF-α ( 

Hs01113624_m1), CD69 (Hs00934033_m1) and IL-12B (Hs01011518_m1), and human β-

actin (Hs99999903_m1) all conjugated with fluorochrome FAM (Applied Biosystems). The 

cycling conditions were: 50°C for 10 min, followed by 40 cycles of 95°C for 30 sec, and 

60°C for 2 min. Data were analyzed using the Sequence Detector v1.7 analysis software 

(Applied Biosystems). The level of gene expression was measured using threshold cycle 

(Ct). The Ct was obtained by subtracting the Ct value of the gene of interest from the 

housekeeping gene (β-actin) Ct value. In the current study, we used Ct of the untreated 

sample as the calibrator. The fold change was calculated according to equation 2
−ΔΔCt

, where 

ΔΔCt was the difference between Ct of the sample and the Ct of the calibrator (according to 

the formula, the value of the calibrator in each run is 1). 

 

Exosomal RNA isolation 

100 μg of exosomes were used for exosomal-RNA isolation with Total Exosome RNA and 

Protein Isolation Kit according to the manufacturer's instructions (Invitrogen). Briefly, 

exosome pellet was resuspended in 200 μl of PBS and then one volume of preheated (37°C) 

2X Denaturing Solution, was added, gently mixed and incubated on ice for 5 minutes. One 

volume of Acid-Phenol:Chloroform was added and mixed by vortexing for 30-60 seconds. 

The samples were centrifuged for 5 minutes at 12.000 g at room temperature, the upper 

acqueous phase was collected in a fresh tube and 1.25 volume of 100% ethanol was added, 

mixed and loaded into the Filter Cartridge (supplied by the kit) to allow the RNA binding. 

The column was washed three times with washing solutions containing ethanol, the flow-

through was discarded and the column was transferred into a fresh collection tube. RNA was 
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eluted with 30 μl of preheated (95°C) nuclease-free water and then quantified using a 

NanoDrop Spectrophotometer ND-1000 (Thermo Scientific). 

 

 Exosome miRNA profiling  

Exosome microRNAs (miRNA) expression profiling was performed by using Megaplex 

Pools cards A and B containing up to 380 miRNAs for each (Applied Biosystems). About 

600 ng of total exosome-RNA was used for the synthesis of single-stranded cDNA in a final 

volume of 7.5 μl. The cycling conditions were: 40 cycles at 16°C for 2 min, 42°C for 1 min, 

and 50°C for 1 sec, followed by 85°C for 5 min and 4°C for 5 min. 6 μl of RT product was 

mixed with the TaqMan Universal PCR Master Mix and nuclease-free water in a final 

volume of 900 μl. 100 μl of this mixture was dispensed into each port of the microRNA 

Array card A and B. Data were analyzed using the Sequence Detector v1.7 analysis software 

(Applied Biosystems). Thermal-cycling conditions according to the manufacturer's 

instructions (Applied Biosystems).  

Expression analysis of single microRNA was performed by using the TaqMan Small RNA 

assay (Applied Biosystems). 10 ng of exosomal-total RNA was utilized for RT reaction and 

as RT primers: miR -15b, miR-21, miR-29a, miR-122, miR-155, RNU-44, RNU-48 and U6 

snRNA were used (Applied Biosystems). The cycling conditions were: 16°C for 30 min, 

42°C for 30 min, followed by 85°C for 5 min and 4°C for 5 min.  RT products were used to 

prepare qPCR reaction mix; real-time PCR specific miRNA primers were all conjugated 

with fluorochrome FAM. The cycling conditions were: 50°C for 2 min, 95°C for 10 min, 

followed by 40 cycles of 95°C for 15 sec, and 60°C for 60 sec. Real-time PCR was 

performed using the ABI Prism 7900 Sequence Detection system (Applied Biosystems, 

Foster City, CA). Data were analyzed using the Sequence Detector v1.7 analysis software 

(Applied Biosystems).  

 

SDS-PAGE and Western blot analysis 

For Western blot analysis, SKO-007(J3) and ARK cells or exosome preparations were lysed 

in 1X RIPA lysis buffer (1% NP-40, 0.1% SDS 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 

0.5% Sodium Deoxycholate, 1 mM EDTA in water) plus complete protease inhibitor 

mixture and phosphatase inhibitors sodium orthovanadate and sodium fluoride (Sigma-

Aldrich). The lysate was incubated 20 min on ice and then centrifuged at 12.000 rpm for 20 

min at 4°C, and the supernatant was collected as whole-cell and -exosome extract. Protein 
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concentration was determined with the Bio-Rad Protein Assay. 40 to 50 μg of cell or 

exosome extract was run on 8% or 10% denaturing sodium dodecyl sulfate (SDS)-

polyacrylamide gels. Proteins were then electro-blotted onto nitrocellulose membranes 

(Schleicher & Schuell, Keene, NJ) and blocked in 5% milk in TBST buffer for 1 hours. 

Immunoreactive bands were visualized on the nitrocellulose membranes, using Horseradish 

Peroxidase (HRP)-coupled goat anti-rabbit or goat anti-mouse Igs and the enhanced 

chemiluminescence kit (ECL) detection system (GE Healthcare Amersham), following the 

manufacturer’s instructions.  

 

Human NK cell isolation  

Highly purified primary NK cells were obtained from human peripheral blood mononuclear 

cells (PBMCs) by negative selection using magnetic beads (Miltenyi Biotec). Briefly, 100 x 

10
6
 PBMCs were resuspended in 400 μl of isolation buffer (PBS without Ca

2+
 and Mg

2+
 

supplemented with 0,5% bovine serum albumin BSA, and 2mM EDTA, pH 7.2) and 

incubated with 100 μl of “Biotin-Antibody Cocktail”, containing human antibodies against 

antigens not expressed by NK cells, for 5 minutes at 4°C and then with 300 μl of isolation 

buffer and 200 μl of “MicroBead Cocktail” for 10 minutes at 4°C. The cell suspension was 

applied onto LS column placed in the magnetic field of MACS Separator (Miltenyi Biotec) 

and the unlabeled cells, enriched in NK cells were collected. NK cell purity was more than 

95% CD56
+
CD3

- 
as assessed by immunofluorescence and flow cytometry analysis (Figure 

6). In some experiments, purified NK cell subsets, CD56
bright 

and CD56
dim

, were sorted by 

FACSARIA (BD).  

 

 

 

Figure 6. NK cell isolation and purification procedure. Primary human NK cells were purified 

from PBMCs derived from healthy donor through immunomagnetic negative selection. The purified 

cells were incubated in exosome-free medium in the presence of MM cell-derived exosomes.  

 

 



43 
 

Cytokine production and cell proliferation 

For intracellular cytokine detection, NK cells were seeded at 2-3 x 10
6 

/ml in exosome-free 

medium, and incubated with different doses of MM cell-derived exosomes (1-20 µg/ml) for 

24 hours. BFA was added at 5 µg/ml and left for additional 24 hours.  

For evaluating cell proliferation, NK cells were labelled with CFSE as previously described 

(Cerboni et al., 2007). Briefly, cells were extensively washed with PBS and then 

resuspended in PBS at 50 x 10
6 

cells/ml and labeled with 2,5µM of CFSE for 10 minutes at 

37°C. Cell labeling was blocked by adding complete RPMI 1640 medium. Cells were 

washed twice before been cultured for five days in the presence of 20µg/ml of MM cell-

derived exosomes.  

In some experiments, NK cells were treated with different doses of recombinant human IL-

15 (5-50 ng/ml), or with 500 U/ml of  human recombinant IL-2.  Sometimes, before 

exosome treatment, NK cells were pre-incubated with the NF-kB peptide inhibitor SN50 

(10-15M) for 1 hour at 37°C. 

 

Human Monocyte purification 

Monocytes were purified from human PBMCs by negative selection using magnetic beads 

(Dynal Invitrogen, Carlsbad, CA). 100 x 10
6
 PBMCs were resuspended in 1 ml of isolation 

buffer; 200 µl of blocking reagent (aggregated gamma globulin in 0.9% NaCl) plus 200 µl 

of antibody mix (containing biotinylated mouse IgG antibodies against CD3, CD7, CD16, 

CD19, CD56, CDw123 and CD235a) were added to the cells. The cell suspension was 

incubated for 20 minutes at 4°C and then washed with isolation buffer before being mixed 

with 1 ml of pre-washed magnetic beads for 15 minutes at 4°C with gentle tilting and 

rotation. The mixture containing cells and magnetic beads was placed in a magnet for 2 

minutes and the supernatant containing CD14
+
 monocytes was transferred to a new tube for 

functional studies. Monocyte cell purity was about 80-90% CD14
+
 as assessed by 

immunofluorescence and flow cytometry analysis.  

Monocytes were seeded at 2-3 x 10
6
/ml in exosome-free medium  and incubated with 20 

µg/ml of MM cell-derived exosomes for 48 hours. For intracellular cytokine detection, after 

24 hours BFA was added at 5 µg/ml and left for additional 24 hours. In some experiments 

monocytes were pre-incubated with  the NF-kB peptide inhibitor SN50 (10-15M) for 1 

hour at 37°C. 
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Immunofluorescence and FACS analysis 

For intracellular cytokine detection, human primary NK cells and monocytes were labeled 

with anti-CD56/PE and anti-CD14/FITC or anti-CD14/PerCP respectively for 25 minutes at 

4°C. Cells were washed with PBS and fixed in 1% PFA for 20 minutes at room temperature 

(RT). Cells were washed with PBS and then incubated with PBS containing 2% BSA for 15 

minutes at RT and then permeabilized with PBS containing saponin 0.5% and FCS 1% for 

20 minutes at RT. NK cells and monocytes were washed with PBS/1%FCS, and labeled 

with anti-IFN-γ/APC or anti-TNF-α/APC respectively for 25 minutes at 4°C. Samples were 

washed in PBS- 0.5% saponin-1% FCS. Cellular pellets were resuspended in PBS/1%FCS. 

In other experiments, NK cells were stained with anti-CD69/APC for 20 minutes at 4°C and 

washed with PBS. All the samples were acquired using a FACSCanto (BD Biosciences, San 

Jose, CA) and data analysis was performed using the FlowJo program. 

 

Electron microscope and immunogold-labeling 

A total of 20 to 30 μl prepared exosome samples for electron microscopy were fixed in 2% 

formaldehyde in PBS, pH 7.4, at 48 °C. They were then washed in PBS and postfixed in 

1.33% osmium tetroxide for 2 h at 48 °C. After several washes in PBS, the samples were 

dehydrated in graded alcohol, transferred into toluene, and embedded in Epon 812 resin. The 

resin was allowed to polymerize in a dry oven at 60 °C for 24 h. Thin sections were cut with 

a glass knife on a Reichert microtome, stained with toluidine blue, and examined on 

Axioscope microscope (Zeiss Jena GmbH, Germany). Ultrathin sections were cut on a 

Richert microtome using a diamond knife, stained with uranyl acetate–lead citrate and 

evaluated on a Philips electron microscope Morgagni 268D (Philips, Endhoven, The 

Netherlands). Each observation was carried out independently 6–7 times per sample. 

For immunogold labeling, exosomes were applied to formvar carbon-coated copper grids 

and incubated with rabbit anti-human CD81 monoclonal antibody and mouse anti-human 

Tsg101 antibody (Santa Cruz Biotechnology) at room temperature for 1 hour. Incubation 

with PBS served as a blank control. Following washing in PBS, exosomes were incubated 

with 20 μl of protein A immunogold (SPA) (1:15 diluted) at room temperature for 30 

minutes. A negative dye containing 15 μl uranyl acetate was performed at room temperature 

for 30 seconds. Positively labeled exosomes were seen as vesicles containing black colloidal 

gold particles under the transmission electron microscope. The numbers of exosomes were 
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counted in 10 random fields (1000 nm × 700 nm). Counting was repeated five times and the 

average was calculated for each of the specimens. 

 

Exosome uptake  

100 g of exosomes diluted in PBS were incubated with the red fluorescent dye PKH26 for 

10 minutes (Sigma-Aldrich) and then exosomes were washed with PBS by 

ultracentrifugation at 100.000g for 1 hour.  PKH26-labelled exosomes were diluted with 

PBS and used for uptake experiments. 

Primary NK cells cells were plated on poly-L-lysine-coated multichamber glass plates in 

complete medium and incubated with PKH26-labelled exosomes (20 μg/ml) for different 

times. Medium was removed and the cell monolayer was gently washed with PBS, and fixed 

with 4% paraformaldehyde. Cover slips were mounted using SlowFade Gold reagent (Life 

Tecnologies) and acquired at room temperature using an ApoTome Observer Z.1 

microscope with an Axiocam MR equipped with AxioVision Version 4.6.3 software for 

image acquisition. In some experiments, PKH26-labelled exosomes were incubated with 

highly purified NK cells for different times. Cells were collected, washed twice with PBS 

and then samples were acquired using a FACSCanto (BD Biosciences, San Jose, CA). Data 

analysis was performed using the FlowJo program. 

 

ELISA 

Detection of IFN-γ or TNF-α in supernatants (SNs) collected after exosome stimulation of 

primary NK cells or monocytes was performed using a sandwich ELISA procedure 

according to the manufacturer's instructions (R&D Systems). Plates were developed using a 

peroxidase substrate system (R&D Systems), and then read with the Victor3 multilabel plate 

reader (Model # 1420-033, Perkin Elmer, Santa Clara, CA) capable of measuring 

absorbance in 96-well plates using dual wavelength of 450-540 nm. Results were expressed 

as picograms per milliliter (pg/ml) and referred to a standard curve obtained by plotting the 

mean absorbance for each standard on the y-axis against the concentration on the x-axis and 

drawing a best fit curve through the points on the graph.  

Moreover, detection of proinflammatory cytokines and chemokines, fractalkine, IFN-γ, IL-

15, IL-6, IL-8, IP-10, MIP1-β and Rantes, in the same supernatants was performed with a 

Milliplex 
MAP

 Human Cytokine/Chemokine Magnetic Bead Panel - Immunology Multiplex 
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Assay according to the manufacturer's instructions (Millipore). Plates were read with Bio-

Plex MAGPIX Multiplex Reader (BIO-RAD). 

 

NF-κB Luciferase Reporter Assay 

TLR-specific activation assays were performed using human embryonic kidney 293 

(HEK293) cells expressing luciferase under control of the NF-κB promoter and stably 

transfected with either TLR4, MD2, and CD14 (TLR4-HEK293), TLR2 (TLR2-HEK293),  

TLR3 (TLR3-HEK293), TLR7 (TLR7-HEK293), TLR8 (TLR8-HEK293) and TLR9 

(TLR9-HEK293). HEK293-transfected cells were maintained in DMEM supplemented  with 

4.5 g/liter glucose and 10% FCS, 1% penicillin/streptomycin solution (Invitrogen), and 

specific antibiotics for the different cell lines were added as shown in Table 4. 

 

Cell line Antibiotics Agonist 

HEK293-Luc Puromycin 5 μg/ml --- 

TLR2-HEK293 Puromycin 5 g/ml 

Hygromycin 250 g/ml 

Pam3SCK4 1M 

TLR3-HEK293 

 
Puromycin 2 g/ml 

Blasticidin 10 g/ml 

Poly(I:C) 1 g/ml 

TLR4-HEK293 Puromycin 5 g/ml 

Blasticidin 10 g/ml 

Hygromycin 250 g/ml 

LPS 10 g/ml 

TLR7-HEK293 

 
Puromycin 5 g/ml 

Blasticidin 10 g/ml 

R848 10M 

TLR8-HEK293 Puromycin 5 g/ml 

Blasticidin 10 g/ml 

R848 10M 

TLR9-HEK293 Puromycin 5 g/ml 

Blasticidin 10 g/ml 

CpG 50M 

 

Table 4. HEK239 reported cell culture conditions  

 

All the HEK293-transfected cells were kindly provided by Dr U. D’Oro (Novartis, Siena). 

For the NF-κB luciferase assay 30000 cells/well were seeded in 100 μl of complete DMEM 

without antibiotics in 96-well plates and incubated for 18 hours at 37°C. Different 

concentrations of exosomes (1-20 g/ml) were added and left for different times (2-18 

hours). As positive control for each transfectant specific TLR agonists were used as 

indicated in Table 4. After incubation, supernatants were aspired from each well, cells were 

washed with PBS and then were lysed for 15 minutes at room temperature using 100 μl/well 

of 1:5 diluted “passive lysis buffer” (Promega, Madison WI). Protein concentration was 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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evaluated by Bio-Rad Protein Assay. 3g of total proteins for each sample were diluted in 

50 l of PBS and 50 l of luciferase assay substrate (Promega, Madison WI) was added. 

Emitted light was immediately quantified using a luminometer GloMax-Multi Detection 

System (Promega, Madison WI). 

Statistics 

Error bars represent SD or where indicated SEM. Statistical analysis was performed with the 

Student paired test; * p < 0.05, ** p< 0.01, *** p< 0.001. 
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RESULTS 

 

Structural and biochemical characterization of exosomes derived from Multiple 

Myeloma cells upon Mel treatment  

To isolate and characterize exosomes produced by MM  cells, we utilized a classic exosome 

isolation protocol that exploits their differential sedimentation properties. Exosomes were 

isolated from the conditioned media of ARK and SKO-007(J3) cell lines in steady state 

conditions or upon treatment with Melphalan (Mel), a genotoxic agent used in MM therapy.  

Interestingly, we found that drug-treated cells released a higher amount of exosomes either 

in SKO-007(J3) and ARK cell lines (Figure 7).  

 

     

Figure 7. Melphalan-treated MM cells release a higher amount of exosomes. The exosome 

amount was measured by BCA protein assay and was normalized per 10
6
 cells. Data are expressed as 

fold increase of the μg/10
6
 cells values obtained from Melphalan treated MM cells divided by μg/10

6
 

cells of untreated MM cells. The mean of ten (for SKO-007(J3) exosomes) or five (for ARK 

exosomes) independent experiments +/- SEM is shown. Statistical analysis was performed with 

paired t-test,* p≤ 0.05 and *** p ≤  0.001. 

 

 

 

 

 

 

untreated 

Melphalan 

ARK SKO-007(J3) 



49 
 

Morphological analysis of the MM-purified exosomes is shown in Figure 8A, revealing that 

these vesicles were couple-shaped with a size comprised between 50-80 nm. In addition, 

immunogold labeling showed the expression of exosome markers like CD81 and Tsg101 on 

the outer layer of MM vesicles (Figure 8B). Western blot analysis of MM isolated exosomes 

confirmed the presence of other “accepted” exosome markers including Tsg101, CD63, 

MHC I and Hsp70. Importantly, calreticulin, which is exclusively associated to endoplasmic 

reticulum (RE) was not found in exosome preparations (Figure 8C). A similar pattern of 

expression was found in both untreated and drug-treated MM cells. 

 

 

Figure 8. Characterization of MM cell-derived exosomes. (A) Electron microscope analysis of 

exosome morphology and size. A representative picture of SKO-007(J3)-derived exosomes is shown. 

(B) Immune-gold labeling for Tsg101 and CD81 of SKO-007(J3)-derived exosomes. (C) Western 

blot analysis was performed on lysates derived from exosome fractions or from cell pellet, using 

anti-Hsp70, anti-CD63, anti-Tsg101, anti-MHC I and anti-calreticulin antibodies. 
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CD63 expression on the surface of exosomes was also evaluated by immunofluorescence 

and FACS analysis using magnetic beads conjugated to exosomes as shown in Figure 9 A-B. 

All together these data show that MM cells secrete exosomes expressing the traditional 

exosomes markers and that drug treatment determines an increased release of exosomes. 

 

 

Figure 9. CD63 tetraspanin is expressed on exosome surface. (A) Schematic representation of 

CD63-conjugated beads binding of exosomes and their visualization through immunofluorescence 

and FACS analysis. (B) CD63 expression on the surface of exosomes was assessed by 

immunofluorescence and FACS analysis of CD63 conjugated beads coated with exosomes. After 

overnight incubation of exosomes with beads, exosomes were stained with anti-CD63 mAb (thin 

histograms) or control isotypic Ig (filled histograms). 
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MicroRNA profiling of MM cell-derived exosomes  

We next investigate the exosome microRNA profiling. To this aim, the expression of 754 

miRNAs and 4 controls was evaluated either on SKO-007(J3) cells and on SKO-007(J3)-

derived exosomes. As shown in the Venn Diagram, we found that a portion of these 

miRNAs was exclusively present in the cell, whereas other miRNAs were expressed only in 

exosomal cargo, while the great amount of these was in common between SKO-007(J3) 

cells and SKO-007(J3)-derived exosomes (Figure 10). Moreover, we checked for the 

presence of some microRNAs that were described to have immunomodulatory properties on 

NK cell mediated functions, for example through their binding of TLR1 on NK cells, 

leading to enhancing of CD69 surface expression and IFN-γ production (He et al., 2013) and 

also acting as TLR8 ligands (Fabbri et al., 2012). Considering this evidence, we analyzed, 

through a Real-Time qPCR, the expression of: miR-15b, miR-29a, miR122 and miR-155, 

normalized with U6snRNA, observing an enrichment of these specific miRNAs in the 

exosomal cargo compared to cellular ones (data not shown).  

These data demonstrate a difference between cellular and exosomal miRNA cargo, 

supporting the presence of a specific mechanism for the sorting of miRNAs in the exosomes, 

as described in 2013 by Sanchez-Madrid and colleagues (Villarroya-Beltri et al., 2013). 
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Figure 10. miRNA profiling of MM cell-derived exosomes. The total amount of RNA was isolated 

from both SKO-007(J3) cells and SKO-007(J3)-derived exosomes. About 600 ng of total RNA was 

used to perform microRNA expression profiling through the use of Megaplex Pool cards A and B, as 

described in Materials and Methods. The Venn Diagram was performed using an online program 

(http://www.bioinformatics.lu/venn.php) with the data reported in the lower table. In the left column 

of the table are represented miRNAs expressed only in SKO-007(J3) cells, in the central column 

miRNAs present both in SKO-007(J3) cells and SKO-007(J3)-derived exosomes and in the right 

column those expressed only in SKO-007(J3)-derived exosomes. A representative experiment is 

shown. 

 

 

 

 

 

 

http://www.bioinformatics.lu/venn.php
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Exosomes can be taken up by NK cells and induce CD69 expression  

To investigate the effects of exosomes on NK cell-mediated functions, we first explore 

whether these nanovesicles could be taken up by NK cells. To this aim, highly purified 

primary NK cells were obtained from PBMCs by negative immunomagnetic selection and 

NK cell purity was more than 95% CD3
-
CD56

+ 
as assessed by immunofluorescence and 

flow cytometry analysis (Figure 6). Exosomes were labelled with the red fluorescent dye 

PKH26 and then incubated for different times with purified NK cells in the presence or not 

of IL-15. As shown in Figure 11A, exosomes can be internalized by both resting and IL-15 

activated NK cells and a peak after 3 hours of incubation was observed. To discern whether 

exosomes were internalized or just bounded to the cell surface, exosome:cell conjugates 

were treated with trypsin before FACS analysis and we found that trypsin just marginally 

reduced the intensity of fluorescence showing that the majority of exosomes were inside the 

cells (Figure 11B). We also incubated NK cells with an excess of unlabelled exosomes and 

we obtained a complete abrogation of PKH26
+
 cells thus proving that exosome uptake was a 

specific process (Figure 11B). Fluorescence microscopy analysis on NK cells incubated 3 

hours with PKH26-labelled exosomes further confirmed exosome internalization (Figure 

11C).   

Different doses of exosomes were incubated with primary NK cells for 48 hours and than 

the expression of the activation marker CD69 was evaluated by FACS analysis. 

Interestingly, CD69 was induced on exosome-treated NK cells in a dose dependent manner 

(Figure 11D).  Similar effects were observed using exosomes from ARK or SKO-007(J3) 

cells and no significant differences were noted between exosomes derived from untreated or 

Mel-treated MM cells (Figure 11E).  

Collectively, our results show that MM cells derived-exosomes are internalized by both 

resting and IL-15 activated NK cells and stimulate the induction of the activation marker 

CD69.  
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Figure 11. MM cell-derived exosomes are taken up by primary NK cells and induce CD69 

expression. (A) MM cell-derived exosomes were labeled with the red fluorescent dye PKH26. 

Primary human NK cells were incubated for different times with 20 μg/ml of PKH26 labeled 

exosomes with or without IL-15 (50 ng/ml). The fluorescence of internalized exosomes was 

evaluated by immunofluorescence and FACS analysis and measured as the percentage of PKH26
+ 

cells. One representative experiment is shown. (B) NK cells were cultured for 3 hours in presence of 

PKH26-labeled exosomes and IL-15 as described in panel A, or with a combination of PKH26-

labeled exosomes and trypsin, or PKH26-labeled and unlabeled exosomes at 1:3 ratio. The mean of 

two indipendent experiments +/- SEM is shown. (C) NK cells were incubated for 3 hours with 

PKH26-labelled exosomes (20 µg/ml), washed and plated on poly-L-lysine-coated multichamber 

glass plates and fixed. Images were acquired using an ApoTome Observer Z.1 microscope with a 

60x/1.4 NA Plan-Neofluar objective. Upper panels: Representative images of single cells are shown 

as maximum intensity projection (3 Z sections with 0.2 μm spacing). Lower panels: differential 

interference cotrast overlay the fluorescence images. (D) NK cells were incubated for 48 hours with 

different amounts of SKO-007(J3)-derived exosomes. CD69 expression was evaluated by 

immunofluorescence and FACS analysis. A representative experiment is shown. (E) NK cells were 

incubated with 20 μg/ml of SKO-007(J3) and ARK–derived exosomes as described in panel D. 

Where indicated exosomes were prepared from Melphalan-treated cells (exo Mel). Data were 

represented as mean values of the percentage of CD69
+
 NK cells of four (for SKO-007(J3)-derived 

exosomes) or five (for ARK-derived exosomes) independent experiments +/- SEM. Statistical 

analysis was performed with the paired Student test, *p ≤ 0.05.  
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Exosomes express IL-15Rα and increase IL-15 induced NK cell proliferation  

We next extended the analysis of the effects of exosomes on NK cell proliferation. To this 

aim, NK cells were labelled with CFSE and cultured with exosomes in the presence or not of 

IL-15. Our data show that exosomes alone are not able to stimulate NK cell proliferation but 

they can significantly increase IL-15 induced NK cell proliferation. Similarly to the data 

obtained with the CD69 marker, we didn’t observe any significant difference between 

exosomes derived from untreated of Mel-treated MM cells (Figure 12A). 

Since IL-2 and trans-presentation of IL-15 by IL-15Rα are required for NK cell proliferation 

(Koka et al., 2003), we asked whether exosome-mediated NK cell proliferation was 

dependent only from the presence of exogenous IL-15 or could be mediated also by IL-2. 

Interestingly, the augmentation of NK cell proliferation, measured with the Ki67 marker, 

was observed only with IL-15 but not with IL-2 strongly suggesting that this effect could be 

mediated by IL-15 trans-presentation (Figure 12B). Indeed, it has been shown that IL-15Rα 

is constitutively expressed on several MM cell lines (Tinhofer et al., 2000) but it is not 

known whether this molecule could be associated to MM cell-derived exosomes although a 

prior study had reported the presence of IL-15Rα on exosomes produced by DCs (Viaud et 

al., 2009). Thus, we investigated whether MM cell-derived exosomes expressed IL-15Rα 

molecules. As shown in Figure 12C, IL-15Rα was detected in exosome preparations derived 

from both ARK and SKO-007(J3) cells.  

These data highlight that IL-15Rα harbored by MM-cell derived exosomes is functional, 

leading to NK cell proliferation when associated to exogenous IL-15.  

 

 

 



56 
 

 

Figure 12. Exosomes express IL-15Rα and increase IL-15 induced NK cell proliferation.          

(A) CFSE-labeled NK cells were incubated with 20 μg/ml of SKO-007(J3) cell-derived exosomes in 

the presence of IL-15 (50 ng/ml). After five days cell divisions were evaluated by 

immunofluorescence and FACS analysis by measuring CFSE reduction and expressed as percentage. 

One representative experiment is shown. (B) CFSE-labeled NK cells were incubated with 20 μg/ml 

of MM cell-derived exosomes in the  presence of IL-15 as described in panel A. The mean values of 

six independent experiments is shown. Statistical analysis was performed with the paired t-test, **p 

< 0.01 and *p < 0.05. (C) NK cells were incubated for five days with 20 μg/ml of SKO-007(J3) cell-

derived exosomes in the presence of IL-15 (50 ng/ml) or  IL-2 (500 U/ml). The percentage of Ki67
+
 

cells was evaluated through immunofluorescence and FACS analysis. A representative experiment is 

shown. (D) Western blot analysis was perfomed on lysates derived from exosome fractions derived 

from both SKO-007(J3) and ARK cells using anti-IL-15Rα and anti-calreticulin antibodies.  
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Exosomes stimulate IFN-γ production through a mechanism mediated by Nuclear 

factor (NF)-kB signaling pathaway  

High expression of the activation marker CD69 on NK cells is usually coupled with 

functional activation (Borrego et al., 1993). We therefore investigated the effect of MM cell-

derived exosomes on NK cell-mediated IFN-γ production. NK cells were incubated with 

exosomes for 48 hours and IFN-γ production was evaluated both at mRNA and protein 

level. As shown in Figure 13A-B, exosomes alone significantly stimulated IFN-γ production 

in resting NK cells. Cytokine-induced IFN-γ production occurs mainly through the JAK-

STATs, T-BET, MAPK, or NF-kB signaling pathways (Schoenborn and Wilson, 2007). 

Transcription factors in these signaling pathways associate with corresponding binding sites 

in the regulatory elements of the IFNG gene, subsequently enhancing IFNG mRNA 

synthesis. Thus, we explored whether NF-kB signaling pathway was activated in NK cells 

after exosome treatment. Our results showed that althought the total level of p65 protein, a 

transactivation component of NF-kB signaling, was unchanged, the treatment with 

exosomes induced an increase in the phosphorylation of p65 in primary NK cells (Figure 

13C). To further confirm the involvement of NF-kB in the exosome-induced IFN-γ 

production, NK cells were pre-treated with SN50, a cell permeable peptide which inhibits 

translocation of the NF-kB active complex into the nucleus, and then incubated with 

exosomes. As shown in Figure 13D, SN50 treatment blocks exosome-induced IFN-γ 

production. In addition, we found that the combined stimulation of NK cells with IL-15 and 

exosomes further increase IL-15 induced IFN-γ production with no differences between 

exosomes derived from untreated or Mel-treated MM cells (Figure 13D). Remarkably, 

exosomes didn’t affect NK cell degranulation against the K562 cell line (data not shown).  

These data demonstrate that exosomes stimulate NK cell IFN-γ production with a 

mechanism dependent on NF-kB signaling pathway without affecting NK cell 

degranulation. 
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Figure 13. Exosomes induce IFN-γ production through a mechanism mediated by NF-kB.        

(A-B) NK cells were incubated with 20 μg/ml of SKO-007(J3)-derived exosomes for 48 hours. (A) 

The levels of soluble IFN-γ were determined in the supernatants by a specific sandwich ELISA. The 

mean of four experiments is shown. (B) Real-time PCR analysis of IFN-γ mRNA. Data, expressed as 

fold change units, were normalized with β-actin and referred to the untreated cells considered as 

calibrator. Values reported represent the mean of six independent experiments +/- SEM. Statistical 

analysis was performed with the paired Student test, **p ≤  0.01 and ***p ≤  0.001. (C) NK cells 

were incubated with 20 μg/ml of SKO-007(J3)-derived exosomes in the presence of a suboptimal 

concentration of FCS (2%) for 48 hours. Western blot analysis was performed on total cell lysates 

using p65 and phospho-p65 (p-p65) Abs. Numbers beneath each line represent quantification of p-

p65 by densitometry normalized with p65. (D) NK cells were pre-treated  for 1 hour with the NF-kB 

inhibitor, SN50 (10µM), and then incubated with 20 μg/ml of SKO-007(J3)-derived exosomes for 48 

hrs. Real-time PCR analysis of IFN-γ mRNA was performed as described in panel B.  The mean of 

three independent experiments is shown. (E) NK cells were cultured with 20μg/ml of SKO-007(J3) 

cell-derived exosomes in the presence of IL-15 (50 ng/ml). After 24 hours, Brefeldin A (5 µg/ml) 

was added and left for additional 24 hours. Intracellular IFN-γ expression was evaluated by 

immunofluorescence and FACS analysis. One representative experiment is shown. (F) Data were 

represented as mean values of the percentage of IFN-γ
+
 cells of seven independent experiments 

(using both SKO-007(J3)- and ARK-derived exosomes) +/- SEM. Statistical analysis was performed 

with the paired t-test, * p ≤  0.05 and ** p ≤ 0.01.  
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Exosomes stimulate IFN-γ production with a mechanism dependent on Toll-like 

receptor 2 (TLR2)  

Some studies show that different type of exosomes have the capability to trigger immune 

cell functions through a mechanism requiring receptors belonging to toll like receptor family 

including TLR 7, 8, 1 and 2 (Chow et al., 2014a; Chalmin et al., 2010; He et al., 2013; 

Fabbri et al., 2012). Since downstream TLR pathway involves NF-kB activation, we asked 

whether the exosome-induced NK cell activation was mediated by one or more TLR 

expressed on NK cells. With this rationale, cells stably co-expressing  a TLR gene and an 

NF-κB-inducible luciferase reporter gene were used to test the capability of MM cell-

derived exosomes to engage a specific TLR. Interestingly, exosome treatment of reporter 

cells was found to induce luciferase activity only in those cells expressing TLR2 whereas no 

effect on luciferase reporter activity was observed in cells expressing TLR3, TLR4, TLR7, 

TLR8 and TLR9 or cells transfected with the NF-κB-inducible luciferase reporter gene 

alone (Figure 14A-C).  

These data suggest that MM cell-derived exosomes can selectively engage TLR2 receptor. 
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Figure 14. Exosomes derived from SKO-007(J3) and ARK cell lines stimulate NF-kB activity 

through TLR2 in 293/Luc reporter cells. (A) HEK293/Luc reporter cells transfected with a vector 

containing NF-kB/Luc alone were incubated with with 20 µg/ml of SKO-007(J3) cell-derived 

exosomes, ARK cell-derived exosomes and different TLR agonists, as indicated, for 24 hours. Data 

are expressed as fold increase of the Relative Luc activity of cells treated with TLRs agonists, 

compared to untreated cells. A representative experiment is shown. (B) HEK293/Luc reporter cells 

transfected with a single TLR were incubated with exosomes, as described in panel A, and with the 

specific TLR agonists, as described in Materials and Methods. Data are expressed as fold increase of 

the Relative Luc activity, as in panel A. (C) TLR2 transfected cells were incubated with 20 µg/ml of 

SKO-007(J3) cell-derived exosomes, ARK cell-derived exosomes and 1μM of Pam3CSK4 for 18 

hours. The mean values of five independent experiments +/- SEM is shown. Statistical analysis was 

performed with the paired t-test,  *p ≤ 0.05.  
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Since we define an important role for TLR2, the effect of its agonist on NK cells was 

promptly examined. A previous work has been shown that IFN-γ production in response to 

PSK2, one of the known TLR2 agonists,  was mainly associated to the NK CD56
bright 

subset 

(Lu et al., 2011). Thus, highly purified NK cells were treated with different doses of TLR2 

agonist, Pam3CSK4, or exosomes and IFN-γ production was evaluated by 

immunofluorescence and FACS analysis on both CD56
bright

 and CD56
dim

 cells. Interestingly, 

Pam3CSK4 treatment determines a strong increase of IFN-γ production in the majority of 

CD56
bright 

cells whereas just a small percentage of CD56
dim 

cells were able to respond to 

TLR2 agonist. Remarkably, exosome-induced IFN-γ production was prevalent in CD56
bright 

cells (Figure 15A). To further confirm that CD56
bright

 NK cell subset was more responsive to 

both exosomes and Pam3CSK4, CD56
bright

 and CD56
dim 

NK cell subsets were sorted, and 

IFN-γ mRNA was measured upon exosome or Pam3CSK4 treatment. As shown in Figure 

15B, an increase of IFN-γ mRNA in response to exosome or TLR2 agonist was observed 

only in the CD56
bright 

NK cell subset. The different response to TLR2 agonist was not 

attributable to different levels of cell surface TLR2  on NK cell subsets as shown in Figure 

15C, in which TLR2 was measured on NK cells derived from 10 different healthy donors.   

Finally, to investigate the contribute of TLR2 in the exosome-mediated IFN-γ production by 

NK cells, a neutralizing antibody against TLR2 was used to pre-treat NK cells before 

exosome stimulation. As shown in Figure 16, anti-TLR2 treatment blocks either Pam3CSK4 

and exosome-mediated IFN-γ induction in NK cells.  

Collectively, our results indicate that MM-cell derived exosomes stimulate IFN-γ production 

by human primary NK cells through the engagement of TLR2 and that CD56
bright 

NK cell 

subset is more responsive to TLR2 stimulation.   
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Figure 15. TLR2 agonist and MM cell-derived exosomes stimulate IFN-γ production mainly in 

the CD56
bright

 NK cell subset. (A) NK cells were incubated with increasing doses of Pam3CSK4 or 

ARK cell-derived exosomes, as indicated. After 24 hours, Brefeldin A (5 µg/ml) was added and left 

for additional 24 hours. Intracellular IFN-γ expression was evaluated by immunofluorescence and 

FACS analysis. The gating strategy used consists in separating CD56
bright 

cells from CD56
dim 

NK 

cells. A representative experiment is shown. (B) NK cells were purified by immunomagnetic 

negative selection (pre-sorted), and then CD56
bright 

and CD56
dim 

cells were sorted by FACSARIA 

(BD) and incubated with 20 µg/ml of SKO-007(J3) cell-derived exosomes, ARK cell-derived 

exosomes and 1μM of Pam3CSK4 for 48 hours. Real-time PCR analysis of IFN-γ mRNA was 

performed and the data, expressed as fold change units, were normalized with β-actin and referred to 

the untreated cells considered as calibrator. One representative experiment is shown. (C) Cell surface 

expression of TLR2 was evaluated on CD56
+
CD3

- 
total NK cells and on CD56

bright
 and CD56

dim
 NK 

cell subsets of total PBMCs derived from ten different healthy donors. Values represent the mean 

fluorescence intensity (MFI) of TLR2 subtracted from the MFI value of the isotype control Ig. 
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Figure 16. Exosome-induced IFN-γ production is dependent on TLR2. Primary NK cells were 

pre-treated with 2 µg/10
6
cells of α-TLR2 for 20 minutes, washed and then incubated with 20 µg/ml 

of ARK cell-derived exosomes and 1μM of Pam3CSK4 for 48 hours. Real-time PCR analysis of 

IFN-γ mRNA was performed and the data, expressed as fold change units, were normalized with β-

actin and referred to the untreated cells considered as calibrator. The mean values of three 

independent experiments +/- SEM is shown. Statistical analysis was performed with the paired t-test,  

*p ≤ 0.05.  
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DISCUSSION 

 

Exosomes are not still considered as “garbage bags” but currently are thought to be an 

important mechanism for intercellular communication, thanks to their ability to convey 

many proteins, lipids, miRNA and mRNA (Valadi et al., 2007; Tran et al., 2015). Several 

studies describe the involvement of exosomes in the modulation of both innate and adaptive 

immune response through different mechanisms (Thery et al., 2009).  

Our results show that MM cells produce exosomes with a immunostimulatory role on NK 

cells functions. We have used two different MM cell lines as a model for analyzing 

exosomes molecular features and their immunomodulatory properties. Previously, it has 

been described the ability of MM cells to secrete these nanovesicles (Umezu et al., 2014). In 

our study, we observed that MM cells release nanovesiscles that we further characterized as 

exosomes through the evaluation of the typical size and morphology by electron microscopy 

and the expression analysis of some characteristic exosomal markers such as CD63, CD81 

and Tsg101. We also performed a miRNA expression profiling by analyzing more than 700 

miRNA and we found that some miRNAs were exclusively present into exosomes, thus 

indicating a specific mechanism of miRNA sorting into these vesicles as previously shown 

(Villarroya-Beltri et al., 2013).  

Exosomes could interact with and taken up by target cells through different mechanisms. 

May be an initial ligand-receptor binding can occur at the beginning of cell-exosome 

interaction (Nolte-'t Hoen et al., 2009; Hwang et al., 2003) and then comes the 

internalization through many possible mechanisms including endocytosis (Mulcahy et al., 

2014). Interestingly, a role for adhesion molecules and tetraspanins has been reported to 

mediate exosome internalization either in T cells and DC (Mulcahy et al., 2014). In this 

study we observed that human purified NK cells internalize, and not only bind, MM cell-

derived exosomes with a rapid kinetics and a specific process. Further experiments are 

necessary to define the mechanism underlying the NK cell exosome uptake. 

Our data show that MM cell-derived exosomes increased NK cell proliferation only in 

combination with IL-15 but not with IL-2. It is possible that IL-15R, highly expressed on 

MM cell derived exosomes could mediate IL-15 trans-presentation to NK cells. In line with 

these results, Viaud and colleagues had previously showed that IL-15Rα expressed on 

exosomes derived from DC could trans-presents IL-15 to NK cells thus stimulating cell 

proliferation (Viaud et al., 2009). It shoud be also considered that MM cells express a 
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functional IL-15R (Tinhofer et al., 2000; Soriani et al., unpublished observations), thus 

indicating that these cells are potentially responsive to IL-15 trans-presented by exosomes. 

Further experiments are needed to better elucidate the role exosome-mediated IL-15 trans-

presentation to MM cells.  

We found that exosome treatment of human primary NK cells strongly induced the 

expression of CD69 activation marker on the cell surface and stimulated the production of 

IFN-γ with a mechanism dependent on the NF-kB pathway. Indeed, exosomes induced an 

increase in the phosphorylation of p65, a transactivation component of NF-kB signaling 

pathway. In addition, NK cells pre-treated with SN50, a cell permeable peptide which 

inhibits translocation of the NF-kB active complex into the nucleus, blocked exosome-

induced IFN-γ production.  

Currently, the immunomodulatory role of exosomes on NK cell-mediated functions is a 

controversial question and seems to be strictly dependent on exosomal molecular cargo and 

cell source.  

It is widely described that the NF-kB pathway could be activated by the engagement of 

different Toll-like receptors by their specific agonists (Kawai and Akira, 2008; Deng et al., 

2014). Increasing evidence suggest that, in addition to PAMPs, TLRs could also be triggered 

by DAMPs derived from stressed, damaged, apoptotic and tumor cells (Kawai and Akira, 

2010; Harris and Raucci, 2006). Interestingly, some studies have been shown that PAMPs 

can be also transported in association with extracellular vesicles (Yi et al., 2012; Liu et al., 

2006). Our results strongly indicate that the exosome-induced IFN-γ production on NK cells 

was mediated by TLR2 engagement. Through the usage of reporter cells either expressing 

different TLRs in combination with NF-kB inducible luciferase reporter gene, we found that 

MM-cell derived exosomes were able to selectively activate the luciferase activity only in 

cells expressing TLR2. Consistent with these results, a neutralizing antibody against TLR2 

blocked the exosome-induced IFN-γ production on primary NK cells.  

Human NK cells can be divided into two main subsets, CD56
dim

 and CD56
bright

, on the basis 

of their cell surface density of CD56 (Cooper et al., 2001; De et al., 2011). The CD56
dim

 NK 

cell subset is more naturally cytotoxic whereas CD56
bright

 NK cells promptly produce 

cytokines in response to different stimuli thus suggesting that these subsets may have 

distinct roles in immune response. Accordingly, our findings show that TLR2 agonist as 

well as exosomes mainly stimulate IFN-γ production in the CD56
bright

 cell subset. The 

different response to TLR2 agonist was not attributable to different levels of cell surface 
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TLR2 expression on NK cell subsets and we also exclude a possible contribution of innate 

cytokines derived from monocytes since NK cell subsets were highly purified following 

FACS sorting. In line with these results, it was previously shown that IFN-γ production in 

response to PSK2, one of the known TLR2 agonists, was mainly associated to the NK 

CD56
bright 

subset (Lu et al., 2011). Because of the importance of NK cells in tumor 

surveillance, many efforts have been made to improve this process. In this regard, TLR2 

agonist treatment was proposed as adjuvant in cancer immunotherapy (Seya et al., 2015) and 

it has demonstrated that TLR2 agonist treatment strongly activated human NK cells 

potentiating  ADCC against trastuzumab-coated breast cancer cells (Lu et al., 2011).  

Interestingly, a recent study has proposed a model of TLR2 mediated NF-kB activation and 

consequent cytokine production in human macrophages in response to breast cancer cell-

derived exosomes. In particular, they have shown that palmitoylated proteins expressed on 

tumor exosomes but not on exosomes derived from healthy cells were able to trigger TLR2 

(Chow et al., 2014a). In the present study, we observed that MM exosomes can also 

stimulate TNF-α production in monocytes, at both protein and mRNA level (data not 

shown). Of note, several studies have shown a disregulation of palmitoylation process in 

cancer cells (Yeste-Velasco et al., 2015). Further experiments are needed to establish the 

role played by palmitoylated proteins on the cell surface of MM-cell derived exosomes in 

the regulation of TLR2 triggering.  

TLR2 can recognize different types of DAMPs including heat shock proteins (Hsps) (Jin et 

al., 2007; Kang et al., 2009). In general, these molecular chaperones are usually expressed 

intracellularly and support the folding and the transport of a great variety of proteins. In 

contrast, membrane-bound and extracellular located Hsps act as potent danger signals 

(Multhoff, 2007). Several evidences demonstrate that extracellular located HSPs can be 

associated to extracellular vesicles (Chalmin et al., 2010; Gastpar et al., 2005; Lv et al., 

2012). In this regard, Chalmin et colleagues demonstrated that Hsp72, expressed on the cell 

surface of various types of tumor exosomes, was able to engage TLR2 expressed on MDSCs 

(Chalmin et al., 2010). In addition, Hsp70-bearing exosomes were described to stimulate 

different NK cell functions (Gastpar et al., 2005; Lv et al., 2012). Interestingly, our results 

show that exosomes derived from both ARK and SKO-007(J3) cell lines express high levels 

of Hsp70, suggesting a possible role of this molecule as “DAMP” through the engagement 

of TLR2 on NK cells.  
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Although we demonstrate that MM cell-derived exosomes stimulate NK cells through 

TLR2-mediated NF-kB activation, it should be considered that in tumor microenviroment 

other types of immune cells, expressing TLR2 are present including MDCSs that could 

impair anti-tumor immune response (Valenti et al., 2006; Clayton et al., 2007). Thus MM 

cell derived exosomes in vivo could impair or stimulate the immune system depending on 

the differential contribution of innate immune cells expressing TLR2 localized in the bone 

marrow microenvironment. 

Exosome release is a process that occurs in both physiological and pathological conditions. 

Interestingly, several studies showed an increase of exosomes release during malignant 

transformation. In this regard, a recent report has shown that MM patients produce about 

four folds more exosomes than MGUS and healthy individuals (Di et al., 2015). It has been 

observed that exosome release in tumor cells was augmented in response to hipoxia (Di et 

al., 2015; Umezu et al., 2014), and to agents inducing DDR, including etoposide (Lv et al., 

2012) and Doxorubicin (Yang et al., 2015). In this regard, Telerman and collaborators have 

demonstrated a correlation between tumor suppressor-activated pathway 6 (TSAP6), a direct 

p53 transcriptional target gene, and exosome nonclassical secretory pathway. In particular, 

they shed light on the involvement of TSAP6 both in the sorting of exosomal molecular 

cargo and in exosome secretion (Amzallag et al., 2004). They also demonstrated that DDR-

induced p53-dependent exosome secretion was completely abrogated in TSAP-6 null cells 

(Lespagnol et al., 2008). Consistent with these observations, we found that genotoxic agents 

like Melphalan or Doxorubicin (data not shown) stimulate an increased release of exosomes 

from MM cells. In terms of modulatory effects on NK cells, no differences were observed 

between exosomes derived from untreated and Melphalan treated cells. Moreover, since we 

found a dose dependent correlation between the exosome amount and NK cell activation, 

chemotherapy could play a crucial role in the induction of a stronger NK cell-mediated 

immune response associated to the enhancement of exosome release. On the other hand, it 

will be crucial to investigate whether exosomes derived from drug-treated cells could affect 

the growth rate of MM cells through an autocrine process.  

In conclusion, we have demonstrated that MM cell-derived exosomes have a stimulatory 

role on NK cells in terms of proliferation, CD69 induction and IFN-γ production (Figure 17). 

We also identified the TLR2/NF-kB axis as one of the mechanisms mediating exosome-

induced IFN-γ production. Bridging our understanding of exosome molecular phenotype and 
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immunomodulatory properties will provide key insight into their importance in cancer 

therapy and their possible usage as biomarkers.  

 

 

Figure 17. Model of exosome immunomodulatory role on NK cell-mediated functions. Exosome 

release from MM cells is enhanced after Melphalan treatment. IL-15Rα expressed on exosomes can 

mediate IL-15 trans-presentation, leading to increased NK cell proliferation. Moreover, exosome 

stimulate CD69 expression, p65 phoshorylation and IFN-γ production through a mechanism 

mediated by TLR2/NF-kB pathway. Finally, exosomes further enhance IL-15-mediated IFN-γ 

production. 
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Abbreviations used in this thesis: 

 

ADCC: Antibody-Dependent Cell-mediated Cytotoxicity 

AML: Acute Myeloid Leukemia 

APC: Antigen presenting cell 

Alix: ALG2-interacting protein X 

B2M: beta-2-microglobulin  

BM: Bone Marrow 

BMSC: Bone Marrow Stromal Cell 

DAMP: Damage-Associated Molecular Pattern 

DC: Dendritic Cell 

Dex: Dendritic cell-derived exosomes 

DNAM-1: DNAX Accessory Molecule 1 

DDR: DNA Damage Response 

ELISA: Enzyme-Linked ImmunoSorbent Assay 

ESCRT: Endosomal Sorting Complex Required for Transport  

FACS: Fluorescence-Activated Cell Sorter  

HLA: Human Leukocyte Antigen 

HMGB1: High Mobility Group Box 1 

hnRNPA2B1: heterogeneous nuclear ribonucleoprotein A2B 

Hsp: Heat-shock protein 

HSCT: Haploidentical hematopoietic stem cell transplantation 

ICAM-1: Inter Cellular Adhesion Molecule 1  

ICD: Immunogenic Cell Death 

IFN: Interferon 

Ig: Immunoglobulin 

IL: Interleukin 

ILVs: IntraLuminal Vesicles  

IMiDs: ImmunoModulatory Drugs  

ISS: International Staging System 

ITAM: Immunoreceptor Tyrosine-based Activation Motif 

ITIM: Immunoreceptor Tyrosine-based Inhibitory Motif 

KIR: Killer cell Immunoglobulin-like Receptors  

LFA-1: Leukocyte Function-associated Antigen-1  
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LN: Lymph Nodes  

LIR: Immunoglobulin-Like Receptors 

MDSC: Myeloid-Derived Suppressor Cells 

Mel: Melphalan 

MGUS: Monoclonal gammopathy of undetermined significance 

MHC: Major Histocompatibility Complex 

MIC: MHC class I polypeptide-related Chain 

MM: Multiple Myeloma 

MVBs: Multi Vescicular Bodies  

MVEs: Multivescicular Endosomes 

NCR: Natural Cytotoxicity Receptor 

NF-kB: Nuclear Factor kappa B 

NK: Natural Killer 

NKG2D: Natural Killer cell Group 2 D 

NKG2DL: NKG2D Ligand  

OCs: Osteoclasts 

PBMC: Peripheral Blood Mononuclear Cell 

PAMP: Pathogen-Associated Molecular Pattern  

PC: Plasma Cell 

PRR: Pattern-Recognition Receptors 

SA: Serum Albumin 

SN: Super Natant 

SNAREs: Soluble N-ethylmaleimide–sensitive factor attachment proteins  

TLR: Toll-like receptor 

TGF-β: Transforming Growth Factor β 

TGN: Trans-Golgi Network  

Tex: Tumor cell-derived exosomes 

TLR: Toll-like Receptor 

TNF: Tumor Necrosis Factor 

TRAIL: TNF-Related Apoptosis-Inducing Ligand 

Treg: regulatory T cells  

TSAP6: Tumor Suppressor-Activated Pathway 6  

Tsg101: Tumor susceptibility gene 101 protein 
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ULBP: U-16 Binding Protein 

VEGF: Vascular endothelial growth  

 


