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In this article, we give a criterion for the existence of a metric of curvature 1 on a 2-

sphere with n conical singularities of prescribed angles 2πϑ1, . . . ,2πϑn and non-coaxial

holonomy. Such a necessary and sufficient condition is expressed in terms of linear

inequalities in ϑ1, . . . , ϑn.

1 Introduction

1.1 Formulation of the problem

The aim of this paper is to prove the existence of Riemannian metrics of curvature 1

with n≥ 2 conical singularities of assigned angles on a compact connected orientable

surface of genus 0.

In order to state the problem more formally, we recall some terminology.

Notation. By surface, we always mean a smooth two-dimensional real manifold, possi-

bly with boundary, and we will call a sphere just a compact connected orientable surface

diffeomorphic to S2. By metric, we always mean a Riemannian metric and by spherical

metric just a Riemannian metric of constant curvature 1. We keep the notation S
2 for the

unit 2-sphere endowed with the standard metric. �
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From the local point of view, spherical metrics are easy to describe: it is a clas-

sical result (see Killing [9] and Hopf [8]) that a surface endowed with a spherical metric

is locally isometric to a portion of S
2.

From a global point of view spherical metrics on compact connected orientable

surfaces only exist in genus 0 by Gauss–Bonnet; moreover, in this case they are all iso-

metric to each other.

The situation becomes more interesting if we allow our metrics to admit conical

singularities.

Definition 1.1. A Riemannian metric g of curvature 1 on a surface S has a conical sin-

gularity of angle 2πα > 0 at y∈ S if it can be locally written as g=dr2 + α2 sin2
(r)dθ2,

where (r, θ) are local polar coordinates on S centred at y. We will say that the angle is

integral if α ∈Z. �

Our goal is to answer the following question.

Question 1.2 (Existence of metrics). For which ϑ = (ϑ1, . . . , ϑn) ∈R
n
+ there exists a

spherical metric g on a sphere S with n conical singularities of angles 2π · ϑ =
(2πϑ1, . . . ,2πϑn)? �

1.2 Context and known results

We remark that Question 1.2 is actually different from the following more classical prob-

lem.

Question 1.3 (Existence of conformal metrics). Fix a connected Riemann surface S with

distinct points x1, . . . , xn. For which ϑ = (ϑ1, . . . , ϑn) ∈R
n
+ there exists a conformal metric

of constant curvature on S with conical singularity at xi of angle 2πϑi? �

Note that the curvature of the desired metric in Question 1.3 must have the same

sign as χ(S,ϑ) := χ(S)+∑i(ϑi − 1).

Remark 1.4. Both problems described above can be formulated in terms of moduli

spaces of metrics Met(S, x,ϑ) of constant curvature on the surface S with conical sin-

gularities x1, . . . , xn of assigned angles 2π · ϑ (up to isotopies that fix the singularities).

Thus, Question 1.2 can be rephrased in terms of non-emptiness of such Met(S, x,ϑ); on

the other hand, Question 1.3 asks whether the map Met(S, x,ϑ)→T(S, x) to Teichmüller

space that remembers the underlying conformal structure is onto. In this paper, we will

not push this point of view farther. �
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For n= 0 and χ(S)≥ 0 it is a standard fact that in every given conformal class

there exists a metric of constant curvature and that such a metric is unique up to

rescaling and conformal automorphisms of S; whereas for χ(S) < 0 such an existence

and uniqueness statement is provided by the classical uniformization theorem proved

by Koebe [10, 11] and Poincaré [14].

Assume now n> 0. Existence and uniqueness results were proved by

Thurston [16] and Troyanov [17] for χ(S,ϑ)= 0 and by McOwen [13] and Troyanov [19]

for χ(S,ϑ) < 0.

As for the case χ(S,ϑ) > 0, existence and uniqueness still holds in the subcritical

case (and so, in particular, when all angles are smaller than 2π ) again by Troyanov [19].

On the other hand, it is known that such uniqueness does not hold any more in the

supercritical case. For instance, an existence theorem was proved by Bartolucci et al. [1]

for χ(S)≤ 0 and a lower bound for the number of such metrics is also provided. Note

that the general case of χ(S,ϑ) > 0 and ϑ /∈ (0,1]n is not covered by the above works.

Another manifestation of the non-uniqueness of the solution is provided by

Scherbak [15], who counted the exact number of such metrics for almost all configu-

rations of x1, . . . , xn∈ S, when S is a sphere, χ(S,ϑ) > 0 and all ϑi are integers.

Back to Question 1.2, it is easy to see that the only possibility for n= 1 is a

surface isometric to the standard S
2. An answer to this question is also known for

n= 2 by work of Troyanov [18] and for n= 3 by work of Eremenko [3]. A detailed anal-

ysis of spherical polygons with two non-integral angles is done in [4], and more exten-

sively for n= 4 in [5]; spherical quadrilaterals with three non-integral angles are studied

in [6].

In this paper, we will give an almost complete answer to this question for n≥ 4.

1.3 Main results

Our first main result shows that the existence of a spherical metric on a sphere S

with conical singularities of angles 2π · ϑ imposes some restrictions on the vector

ϑ = (ϑ1, . . . , ϑn).

Notation. Denote by ‖ · ‖1 the standard �1-norm on R
n and by d1 the associated �1

distance, and let Z
n
o denote the subset of odd points of R

n, namely of points m =
(m1, . . . ,mn) in Z

n such that ‖m‖1 is odd. �

Theorem A (Holonomy constraints). Suppose there exists a sphere S with a spher-

ical metric with conical singularities of angles 2πϑ1, . . . ,2πϑn. Then the following
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inequalities hold:

ϑ > 0
n∑

i=1

(ϑi − 1)>−2

⎫⎪⎬⎪⎭ (P)

d1
(
ϑ − 1,Zn

o

)≥ 1 (H)

where 1= (1,1, . . . ,1) ∈R
n.

Moreover, if equality in (H) is attained, then the holonomy of the metric

is coaxial. �

We wish to point out that, when all angles are smaller than 2π , the statement

follows from Troyanov’s results [19].

Remark 1.5. The positivity constraints (P) follow from the positivity of the angles and

the positivity of the area, via the Gauss–Bonnet theorem. �

As the set of points for which the holonomy constraints (H) do not hold is the

union of disjoint octahedra, we also have the following lemma.

Lemma B (Connectedness). The set of points in R
n that strictly satisfy the holonomy

constraints (H) is non-empty for n≥ 3 and connected for n≥ 4. The same holds for the

subset of points that satisfy the positivity constraints (P) and the holonomy constraints

(H) strictly. �

The proof of Theorem A consists of a few steps. We first associate to each spheri-

cal metric on S with conical singularities x1, . . . , xn the holonomy representation ρ of the

free group π1(S \ {x1, . . . , xn}) in SO(3,R). Then we show that, since S is a sphere, such

holonomy representation admits a canonical lift ρ̂ to SU(2). Thus, we relate representa-

tions π1(S \ {x1, . . . , xn})→ SU(2) to closed broken geodesics on S
3 and we verify that the

wished closed broken geodesic on S
3 exists if and only if Inequalities (H) are satisfied.

This explains the name “holonomy constraints”.

A special role will be played by “generic” holonomy representations, namely

whose image does not belong to a 1-parameter subgroup of SO(3,R).

Definition 1.6. A representation ρ in SO(3,R) is coaxial if its image consists of rotations

about the same axis. �
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The second main result of this paper is the following partial converse to

Theorem A.

Theorem C (Existence of spherical metrics). Let ϑ1, . . . , ϑn be real numbers that satisfy

both the positivity constraints (P) and the holonomy constraints (H) strictly. Then there

exists a sphere S with a spherical metric with conical points of angles 2πϑ1, . . . ,2πϑn

and non-coaxial holonomy. �

Remark 1.7. The cases that are not covered by this theorem are those in which (H)

becomes an equality, when the holonomy of such a spherical metric is necessarily coax-

ial (provided such a metric exists!). �

In order to prove Theorem C, we proceed as follows.

First, we construct such metrics for n= 2,3,4 (the cases n= 2 and n= 3 were

previously treated by Troyanov and Eremenko, respectively).

The idea is then to inductively produce metrics with n≥ 5 conical points close to

degenerate ones by picking a spherical metric with fewer singularities and splitting a

conical point. More precisely, given ϑ1, . . . , ϑn as in Theorem C, we show that the wished

spherical metric on S can be obtained starting from a spherical metric on S′ with n− 1

conical singularities by operating a surgery in a neighbourhood of a conical point. Typ-

ically, the surgery will produce two points of angles 2πϑi, 2πϑ j very close to each other

on S out of a single conical point of angle 2π(ϑ1 ± ϑ j − 1+ η) on S′, where η is a small

fee that we have to pay for the performed cut-and-paste operation. In order to take care

of this little η, we use a deformation result by Luo [12].

Remark 1.8. The presence of such a possibly nonzero η is what forces us to require that

the holonomy constraints (H) are satisfied strictly. �

Finally, the combinatorial result that tells us which conical point to split is the

following.

Theorem D (Algebraic merging). Assume n≥ 5. Let ϑ1, . . . , ϑn be real numbers that sat-

isfy both the positivity constraints (P) and the holonomy constraints (H) strictly. Then

there is a choice of distinct i, j ∈ {1, . . . ,n} such that at least one of the following two

(n− 1)-tuples(
ϑ1, . . . , ϑ̂i, . . . , ϑ̂ j, . . . , ϑn,

(
ϑi + ϑ j − 1

))
,

(
ϑ1, . . . , ϑ̂i, . . . , ϑ̂ j, . . . , ϑn,

(
ϑi − ϑ j − 1

))
satisfies positivity constraints and holonomy constraints strictly. �

4941Spherical Metrics with Conical Singularities on a 2-Sphere

 at U
niversita' degli Studi R

om
a L

a Sapienza on O
ctober 15, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


1.4 Structure of the paper

The paper is divided into two parts: the former deals with the holonomy constraints and

the latter provides the actual geometric constructions of the wished metrics.

In Section 2.1, Theorem A is proved. More precisely, we first recall some well-

known facts about the developing map and the holonomy representation associated

to a spherical metric. Then we prove that such a representation admits a natural

lift to SU(2) and that such a lift is canonical, if we are working with a sphere. In

the remaining subsections, we show that representations in SU(2) carry (almost) the

same information as closed broken geodesics on S
3, whose existence is equivalent to

the holonomy constraints (H). The case of Abelian and coaxial holonomy is briefly

discussed.

In Section 2.2, the holonomy and positivity constraints are studied from an alge-

braic point of view and Lemma B and Theorem D are proved.

Section 3.1 is devoted to the study of spherical bigons and triangles. As our

final goal is to prove an existence theorem, we do not try to state a full characteriza-

tion of them (which can be found in [18] and [3]), but we only provide constructions.

The last subsection deals with triangles which are close to a bigon or a union of two

bigons: these will be the key ingredients for operating the surgery that splits a conical

point.

Section 3.2 is rather short and presents three typical cases of surgery. The first

one takes place near a conical point and will be used to split a conical singularity. The

second and the third one are performed along a path and will be used to produce spheres

with angles 2π(ϑ + ei + ej ) starting from spheres with angles 2π · ϑ .

Spheres with four conical points are constructed in Section 3.3. Most of them

can be obtained by doubling a spherical (convex and non-convex) quadrilateral. Two

sporadic one-parameter families of metrics require an ad hoc treatment.

Finally, in Section 3.4 we show how to apply the previously developed tools

to inductively construct all desired metrics with n≥ 5 conical points and so to prove

Theorem C.

2 Algebraic Constraints

2.1 Holonomy constraints

2.1.1 Holonomy representation

We recall the following well-known fact.
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Lemma 2.1 (Developing simply connected surfaces). Let Ω be a connected surface

endowed with a Riemannian metric of curvature 1. Then the following hold.

(i) Ω is locally isometric to S
2.

(ii) If Ω is simply connected, then these local isometries patch together to define

a global developing map dev :Ω→ S
2, which is a local isometry.

(iii) Let p̃∈Ω and ṽ ∈ T1
p̃Ω be a unit tangent vector. If two developing maps

dev,dev′ :Ω→ S
2 agree on ( p̃, ṽ), then they coincide on the whole Ω. �

Even if the surface is not simply connected, we can still develop paths on spher-

ical surfaces.

Lemma 2.2 (Developing paths). Let Σ be a surface with a metric of curvature 1 and let

γ : [0,1]→Σ be a continuous path.

(i) There exists a simply connected surface Ω with a metric of curvature 1 such

that the path γ factorizes as γ = j ◦ γ̃ , where γ̃ is a map γ̃ : [0,1]→Ω and

j :Ω→Σ is a local isometry onto its image.

(ii) The composition of dev :Ω→ S
2 with γ̃ defines a developing map devγ =

dev ◦ γ̃ : [0,1]→ S
2 for γ . Similarly, the composition of d(dev) and dγ̃ induce a

d(devγ ) : γ ∗TΣ → TS2 . �

The surface Ω should be thought of as a thickening of γ : for instance, if γ is an

embedding, we can choose j to be the inclusion of a tubular neighbourhood of γ ([0,1]).

Proof of Lemma 2.2. Take for instance j :Ω→Σ to be a universal cover and put on

Ω the pull-back metric from Σ . Then clearly γ factorizes as desired and so (i) follows.

Assertion (ii) is a consequence of Lemma 2.1. �

In light of the previous lemma, the following is very natural.

Definition 2.3. Two paths γ on S and γ ′ on S′ are isometric if their developing maps devγ

and devγ ′ agree up to an isometry of S
2. �

Now we want to attach an element of SO(3,R) to every based loop on Σ . Fix

a basepoint p∈Σ and a unit tangent vector v ∈ T1
pΣ . Choose also a point p̄∈ S

2 and a

v̄ ∈ T1
p̄S

2.

4943Spherical Metrics with Conical Singularities on a 2-Sphere

 at U
niversita' degli Studi R

om
a L

a Sapienza on O
ctober 15, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


For every γ loop on Σ based at p, let γ = j ◦ γ̃ and Ω be as in Lemma 2.2. For

t= 0,1 there is a unique unit vector ṽt ∈ T1
γ̃ (t)Ω such that djγ̃ (t)(ṽt)= v. Moreover, there

exists a unique choice of dev :Ω→ S
2 that takes (γ̃ (0), ṽ0) to ( p̄, v̄) ∈ T1

S
2.

We will call ρ(γ ) the unique element of SO(3,R) that acts on T1
S

2 by taking

d(dev)γ̃ (0)(ṽ0)= ( p̄, v̄) to d(dev)γ̃ (1)(ṽ1).

The conclusion is the following well-known fact.

Corollary 2.4 (Holonomy representation). The association γ �→ ρ(γ ) descends to a well-

defined homomorphism ρ : π1(Σ, p)→ SO(3,R), called holonomy representation. �

Remark 2.5. ρ is unique up to global conjugation, namely a different choice of v and of

( p̄, v̄) produce the representation BρB−1 for some B ∈ SO(3,R). �

Remark 2.6. Given a free loop inΣ , the same construction determines a conjugacy class

of elements in SO(3,R). �

We will be particularly interested in the following application of Corollary 2.4.

Let S be a surface homeomorphic to a sphere. Let x1, . . . , xn be distinct points of

S and let ϑ1, . . . , ϑn> 0. Denote by Ṡ the punctured surface S \ {x1, . . . , xn}.

Corollary 2.7 (Holonomy representation for cone surfaces). For every spherical metric

g on Ṡ with conical singularities of angles 2πϑi at xi and for every p∈ Ṡ, the induced

holonomy representation ρ : π1(Ṡ, p)→ SO(3,R) is well-defined up to global conjugation.

Moreover, if γ j is a loop that simply winds around xj, then ρ(γ j) is a rotation of angle

2πϑ j. �

In order to perform cut-and-paste constructions, we will need to establish a

certain technical deformability property of spherical metrics.

Definition 2.8. A spherical metric g on Ṡ with conical singularities of angles 2π · ϑ =
(2πϑ1, . . . ,2πϑn) is angle-deformable if there exists a neighbourhood N of ϑ ∈R

n such

that the following property holds:

• There exists a continuous family of spherical metrics (gν) on Ṡ parametrized

by ν ∈ N with conical singularities of angles 2π · ν, such that gϑ = g. �

Notation. We say that the angle vector ϑ or the associated defect vector δ (see

Definition 2.20) is deformable if there exists an angle-deformable metric with conical

singularities of angles 2π · ϑ . �
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A corollary of a theorem by Luo [12] on CP
1-structures with moderate singulari-

ties can be specialized to the case of spherical metrics with non-integral angles and non-

coaxial holonomy. Here we formulate it in a simplified form, well-suited to our needs.

Theorem 2.9 (Deformability). Let ϑ = (ϑ1, . . . , ϑn)with each ϑi positive and non-integral.

Suppose that there exists a spherical metric g on Ṡ with conical singularities of angles

2πϑi at xi and with non-coaxial holonomy. Then g is angle-deformable. �

Remark 2.10. Actually, Luo shows that infinitesimal variations ρ̇ of the holonomy repre-

sentation ρ of a spherical metric g can be lifted to ρ-equivariant infinitesimal variations

of the developing map associated to g (or, equivalently, ρ-equivariant vector fields on

the universal cover ˜̇S of Ṡ) and so to infinitesimal variations of the spherical metric g

on Ṡ. Since the spaces of spherical metrics and of representations are smooth orbifolds

at non-coaxial points and the map g �→ ρ = hol(g) is submersive for non-integral angles,

the statement then follows by invoking the implicit function theorem. We emphasize

that, although it is easy to produce a ρ-equivariant vector field on ˜̇S that lifts ρ̇, the

subtle point is to make sure that the developing map stays locally injective along

the variation and in particular that it keeps displaying a conical behaviour locally

near the singularities. Here the non-integrality of the angles is again used, see [12]. �

We will often check non-coaxiality of the holonomy by means of the following

easy statement.

Lemma 2.11 (Non-coaxiality criterion). Consider a spherical metric g on Ṡ with conical

singularities of angles 2πϑi at xi. Suppose that there exists a smooth geodesic path γ

of length � /∈ πZ between two distinct points xj and xk such that ϑ j, ϑk �∈Z. Then the

holonomy of g is non-coaxial.

Moreover, if � is not a multiple of π/2 or if ϑ j is not half-integral, then the holon-

omy of g is non-Abelian. �

Proof. Fix a basepoint p∈ Ṡ and let [γi] ∈ π1(Ṡ, p) be the class of a loop that simply

winds about xi. Let ρ : π1(Ṡ, p)→ SO(3,R) be the holonomy representation associated to

the metric g. Since ϑ j and ϑk are not integers, the transformations ρ(γ j) and ρ(γk) are

not the identity and so they have well-defined axes Aj, Ak ⊂R
3. Now, the curve γ can be

developed to a (not necessarily injective) smooth geodesic γ̄ path on S
2 with endpoints

x̄j ∈ Aj ∩ S
2 and x̄k ∈ Ak ∩ S

2. Since the length of γ (and so of γ̄ ) is not a integer multiple

of π , the points x̄j and x̄k are distinct but not antipodal in S
2 and so they do not lie on

the same line in R
3. Hence, Aj �= Ak and the holonomy is not coaxial.
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Finally, suppose by contradiction that the two non-trivial rotations ρ(γ j), ρ(γk)

of S
2 with distinct axes commute. Then ρ(γ j) must preserve Ak but it also must act non-

trivially on Ak ∩ S
2. Thus, Ak must lie in the plane of R

3 orthogonal to Aj and ρ(γ j) must

be a rotation of angle π . This implies that the length of γ̄ (and so of γ ) is a multiple of

π/2 and that ϑ j is half-integral. �

Remark 2.12. It is easy to see that the only Abelian but non-coaxial holonomy represen-

tation takes values (up to conjugation) in the non-cyclic subgroup of order 4 of diagonal

matrices in SO(3,R). Such a holonomy is indeed realized, for instance, by a spherical

surface of genus 0 with three conical points of angles π and by suitable branched covers

of it. �

2.1.2 Canonical lift to SU(2)

The statement of Corollary 2.7 can be slightly improved as follows.

Proposition 2.13 (Lift of the holonomy to SU(2)). Let S be a surface homeomorphic to a

sphere and x1, . . . , xn be distinct points of S and let p∈ Ṡ= S \ {x1, . . . , xn} be a basepoint.

Suppose that Ṡ is endowed with a Riemannian metric of curvature 1 with conical singu-

larities of angles 2πϑ j > 0 at xj. Then its holonomy representation ρ admits a canonical

lift ρ̂ : π1(Ṡ, p)→ SU(2). Moreover, if γ j is a loop that winds simply around xj, then ρ̂(γ j)

has eigenvalues e±iπ(ϑ j−1). �

Remark 2.14. Analogously as before, ρ̂ is well-defined up to global conjugation. More-

over, a free loop in Ṡ determines a conjugacy class of elements in SU(2). �

Remark 2.15. It is well known that the PSL(2,C)-valued holonomy representation asso-

ciated to any CP
1-structure on a compact Riemann surface Σ can be lifted to SL(2,C)

and that such lifts correspond to complex line bundles L on Σ such that L⊗2 ∼= TΣ (see [7,

Lemma 1.3.1], for instance).

In our case, we are considering the punctured surface Ṡ. Since S has genus 0,

requiring that ρ̂(γ j) has eigenvalues e±iπ(ϑ j−1) already guarantees the uniqueness of the

lift, so that we only have to check the existence. If we were dealing with a punctured sur-

face Σ̇ of positive genus, then the requirement on the eigenvalues of ρ̂(γ j) would restore

the correspondence between lifts of the holonomy representations and line bundles L

on Σ such that L⊗2 ∼= TΣ . Since it is not needed here, we will not analyse this case. �
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Definition 2.16. A standard set of matrices for ϑ ∈R
n
+ is a n-uple (U1, . . . ,Un) of ele-

ments of SU(2) such that U1 ·U2 · · ·Un= I and the eigenvalues of U j are e±iπ(ϑ j−1) for

j = 1, . . . ,n. �

An immediate consequence of Proposition 2.13 is the following.

Corollary 2.17 (From metrics to standard matrices). Let ϑ1, . . . , ϑn be positive real num-

bers. Suppose that there exists a metric of curvature 1 on a sphere S with conical

singularities of angles 2πϑ1, . . . ,2πϑn. Then there exists a standard set of matrices

for ϑ . �

Fix a standard set of generators γ1, . . . , γn of π1(Ṡ, p), namely

• γ j : [0,1]→ Ṡ is a smooth simple loop that winds counterclockwise around xj;

• the images of γ j intersect only at p;

• γ1 ∗ · · · ∗ γn� cp the constant path at p.

Proof of Corollary 2.17. Just let U j := ρ̂(γ j), where ρ̂ is the canonical lift provided by

Proposition 2.13. �

Although Proposition 2.13 may be phrased in the more general context of CP
1-

structure with conical singularities, we wish to provide a complete proof tailored to our

needs in the setting of spherical metrics.

Proof of Proposition 2.13. We break the proof into three main steps.

Step 1 : construction of the lift ρ̂.

Since S is homeomorphic to a sphere, there exists an open disk D ⊂ S that con-

tains all x1, . . . , xn and the images of γ1, . . . , γn. We can, for instance, assume that S \ D

consists of a single point q.

Choose a nowhere zero smooth vector field V on D, a point p̄∈ S
2 and a v̄ ∈ T1

p̄S
2.

Let η be a path contained in a coordinate chart near q and that simply winds

around q. Clearly, in such a coordinate chart V |η has winding number ±2.

Normalizing V with respect to the given spherical metric on S, we obtain

a smooth unit vector field V̂ := V
‖V‖ on D ∩ Ṡ. Clearly, such a V̂ may be singular at

x1, . . . , xn,q; moreover, V̂ |η has winding number ±2 too in the above chosen coordinate

chart near q.

Represent an element in π1(Ṡ, p) as a path γ : [0,1]→ Ṡ ∩ D. By Lemma 2.2(ii)

and Lemma 2.1(iii), there exists a unique developing map devγ that takes (p, V̂(p)) ∈
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T1S to ( p̄, v̄) ∈ T1
S

2. For every t∈ [0,1], let Rγ (t) ∈ SO(3,R) be the unique transformation

that takes d(devγ )0(V(γ (0)))= ( p̄, v̄) to d(devγ )t(V(γ (t))). The path Rγ : [0,1]→ SO(3,R) is

clearly continuous and satisfies Rγ (0)= I and Rγ (1)= ρ(γ ).
Let R̂γ : [0,1]→ SU(2) be the unique continuous lift of Rγ via the standard double

cover SU(2)→ SO(3,R) such that R̂γ (0)= I . Define ρ̂(γ ) := R̂γ (1).

If s �→ γs is a continuous family of loops in Ṡ ∩ D based at p, then ρ(γs)= ρ(γ0)

and so ρ̂(γs)= ρ̂(γ0) by continuity. Thus, two loops based at p that are homotopic in Ṡ ∩
D = Ṡ \ {q} have the same SU(2)-holonomy: this defines a representation π1(Ṡ \ {q}, p)→
SU(2).

In order to see that the constructed SU(2)-representation descends to π1(Ṡ, p)∼=
π1(Ṡ \ {q}, p)/〈η〉, it is enough to check that the SU(2)-holonomy along η is trivial. As V̂ |η
winds twice, the given spherical metric of S is smooth at q and η is freely homotopic to

γ1 ∗ · · · ∗ γn, we obtain ρ̂(γ1) · · · ρ̂(γn)= ρ̂(η)= I .

Hence, we conclude that ρ̂ : π1(Ṡ, p)→ SU(2) is a well-defined representation that

lifts ρ.

Step 2 : eigenvalues of ρ̂(γ j).

Let p′ be a point very close to xj and let β be a loop based at p′ that keeps at

constant distance from xj and that simply winds around xj at constant speed. Clearly,

the path γ j is homotopic to γ ′j = α−1 ∗ β ∗ α, where α is a suitable simple path from p to

a point p′.

Thus, Rγ ′j (1) can be written as A−1 B A, where A= Rγ ′j (
1
3 ) and B = Rγ ′j (

2
3 )Rγ ′j (

1
3 )

−1,

and so R̂γ ′j (1)= Â−1 B̂ Â for Â= R̂γ ′j (
1
3 ) and B̂ = R̂γ ′j (

2
3 )R̂γ ′j (

1
3 )

−1. By our choice of

β, the path [0,1] � t �→ Rγ ′j (
1+t

3 )Rγ ′j (
1
3 )

−1 is very close to be a rotation about a

fixed axis of constant speed 2πϑ j and B is a rotation of angle 2πϑ j. As a con-

sequence, [0,1] � t �→ R̂γ ′j (
1+t

3 )R̂γ ′j (
1
3 )

−1 is very close to be conjugate to the path

[0,1] � t �→ diag(eitπ(ϑ j−1), e−itπ(ϑ j−1)). Thus, B̂ has eigenvalues e±iπ(ϑ j−1) and so the

same holds for ρ̂(γ j).

Step 3 : the lift ρ̂ is canonical.

Consider first another nowhere vanishing vector field W on D and let Ŵ= W
‖W‖ .

There exists a continuous function ā : D →R/Z such that Ŵ(x) is obtained from V̂(x)

by a counterclockwise rotation of an angle 2π ā(x). Since D is simply connected, the

function ā lifts to a continuous a : D →R. If we call V̂s(x) the vector obtained by rotating

V̂(x) counterclockwise by s · 2πa(x) for all s ∈ [0,1], then s �→ V̂s is a continuous family of

unit vector fields on D with V̂0 = V̂ and V̂1 = Ŵ. This induces a continuous family s �→ ρ̂s

of lifts of ρ, which must thus be the constant family. Hence, ρ̂0 = ρ̂1 and so ρ̂ does not

depend on the choice of the vector field.
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Finally, if D′ = S \ {q′} is another disk, then there is an isotopy that moves q to

q′ fixing {x1, . . . , xn} and so it moves Ṡ ∩ D to Ṡ ∩ D′. Again, this determines a continuous

family of lifts of ρ, which must then be constantly equal to ρ̂. �

We remark that the coaxiality condition for the SO(3,R)-valued holonomy repre-

sentation can be rephrased in a more familiar way in terms of its lift.

Lemma 2.18 (Non-coaxial subgroups). Let Ĝ be a subgroup of SU(2) and let G be its

image via the natural projection SU(2)→ SO(3,R).

(a) The group Ĝ is commutative if and only if G belongs to a 1-parameter sub-

group of SO(3,R). Hence, the canonical lift ρ̂ is Abelian ⇐⇒ the representa-

tion ρ is coaxial.

(b) If G is non-coaxial and τ ∈ PSL(2,C) commutes with all elements in

G, then τ ∈ SO(3,R). Hence, if τρτ−1 = ρ and ρ is non-coaxial, then

τ ∈ SO(3,R). �

Proof. Since unitary matrices are diagonalizable, then Ĝ is Abelian if and only if all

matrices in Ĝ are simultaneously diagonalizable. This occurs if and only if Ĝ is con-

tained in a 1-parameter subgroup of SU(2), which is equivalent to asking that G is con-

tained in a 1-parameter subgroup of SO(3,R). This proves (a).

As for (b), let τ̂ ∈ SL(2,C) be a lift of τ , so that τ̂ γ̂ =±γ̂ τ̂ for every γ̂ ∈ Ĝ. Up to

conjugation by a matrix in SU(2), we can assume that

τ̂ =
(
λ z

0 λ−1

)

with λ, z∈C and |λ| ≥ 1, so that

h := ¯̂τ T τ̂ =
(
|λ|2 + |z|2 zλ̄−1

z̄λ−1 |λ|−2

)

has det(h)= 1 and t := 1
2 tr (h)= 1

2 (|λ|2 + |λ|−2 + |z|2)≥ 1. Thus, h is diagonalizable and it

has eigenvalues μ2 and μ−2, with μ=
√

t+√
t2 − 1≥ 1. It is easy to see that ‖τv‖ ≤μ‖v‖

for every v ∈C
2 and equality holds if and only if v belongs to the μ2-eigenspace

Eμ2 ⊆C
2 of h. Since ‖τ(γ̂ (v))‖ = ‖γ̂ (τ (v))‖ = ‖τ(v)‖ ≤μ‖v‖ =μ‖γ̂ (v)‖, every γ̂ ∈ Ĝ

preserves Eμ2 .
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By (a), the group Ĝ is not Abelian and so Eμ2 cannot be one-dimensional. This

implies that t= 1 and so |λ| = 1 and z= 0, which shows that τ̂ ∈ SU(2) and finally τ ∈
SO(3,R). �

2.1.3 Matrices in SU(2) and broken geodesics on S
3

In view of Corollary 2.17, it is natural first to discuss the following.

Problem 2.19. Find a criterion for the existence of a standard set of matrices

U1, . . . ,Un∈ SU(2) for ϑ ∈R
n
+ that do not simultaneously commute. �

This problem was addressed in many papers and explicit inequalities are known

(see [2]). In order to motivate these inequalities, we recall how this question is equivalent

to a different question about broken geodesics on the standard 3-sphere S
3.

Notation. By broken geodesic on S
3 we will mean a piecewise geodesic path with end-

points v0 and vn that passes through an ordered collection of points v0, . . . , vn of S
3 in

such a way that each side sj going from the vertex v j−1 to the vertex v j is of minimal

length (and so at most π ). �

Given a broken geodesic on S
3 with vertices v0, . . . , vn, we define U j ∈ SU(2) as the

unique transformation that takes v j−1 to v j for j = 1, . . . ,n.

Vice versa, given matrices U1, . . . ,Un in SU(2) and fixed a basepoint v0 := (1,0)
on the unit sphere S

3 ⊂C
2, we define v j :=U j(v j−1)=U jU j−1 · · ·U1(v0) for j = 1, . . . ,n. A

broken geodesic Γ is then obtained by drawing a shortest geodesic sj from v j−1 to v j

for all j = 1, . . . ,n. Note that, given v j−1, the segment sj is uniquely determined unless

U j =−I .

Clearly, the matrices U j satisfy U1 · · ·Un= I if and only if vn= v0, that is, if and

only if the broken geodesic is closed.

Definition 2.20. Let ϑ ∈R
n be an angle vector. Its associated defect vector is δ := ϑ − 1 ∈

R
n, where 1= (1,1, . . . ,1). The associated reduced angle vector ϑ̄ ∈R

n is defined in such

a way that ϑ̄ j ∈ [0,2) and ϑ j − ϑ̄ j ∈ 2Z. Finally, the reduced defect vector is δ̄ := ϑ̄ − 1 ∈
[−1,1)n. �

Remark 2.21. The definition of ϑ̄ is motivated by the fact that the edge sj of the broken

geodesic on S
3 associated to U1, . . . ,Un has length � j = π |1− ϑ̄ j| = π |δ̄ j|. �

We summarize the content of the above discussion into the following.
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Lemma 2.22 (Broken geodesics and standard set of matrices). Let ϑ1, . . . , ϑn> 0. Then

the following are equivalent:

(a) there exists a closed broken geodesic on S
3 with n edges of length � j = π |δ̄ j|

for j = 1, . . . ,n;

(b) there exists a standard sets of matrices U1, . . . ,Un∈ SU(2) for ϑ . �

Note that, through the identification SU(2) �U �→U (v0) ∈ S
3, there is a correspon-

dence between 1-parameters subgroups of SU(2) and maximal circles on S
3 through v0.

Thus, the matrices U1, . . . ,Un simultaneously commute if and only if v0, . . . , vn all belong

to the same maximal circle.

The following result is essentially contained in [2].

Theorem 2.23 (Constraints for broken geodesics). There exists a closed broken geodesic

on S
3 with n edges of length �1, . . . , �n∈ [0, π ] if and only if∑

j∈X

(
π − � j

)+ ∑
k∈Xc

�k ≥ π (Pol)

for all X ⊆ {1, . . . ,n} with |X| odd. �

Remark 2.24. These inequalities are generalizations of the following simple statement:

there cannot be a closed broken geodesic on S
3 with odd number of edges of length π .

Moreover, even if we replace each length � j = π by � j = π ± ε j with
∑

j |ε j|<π , still a

closed broken geodesic cannot exist. �

Lemma 2.25 (Broken geodesics on a maximal circle). Equality in (Pol) has the following

geometric counterpart.

(i) If equality is attained in (Pol) for a certain X, then every closed broken

geodesic on S
3 with edges of lengths � j sits on a maximal circle.

(ii) If a closed broken geodesic on S
3 with edges of lengths � j sits on a maximal

circle, then ∑
j∈Y

� j −
∑
k∈Yc

�k ≡ 0 (mod 2π )

for some subset Y⊆ {1, . . . ,n}. �

Proof. Indeed, (ii) is immediate: once fixed an orientation on the maximal circle, just

let Y be the collection of positively oriented edges of the broken geodesic. About (i), it is
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enough to note that, if a broken geodesic Γ does not sit on a maximal circle, then it can

be deformed in such a way that the quantity on the left-hand side of (Pol) decreases. �

The above characterization of the lengths of the edges of closed broken geodesics

on S
3 gives a criterion for the existence of matrices that satisfy the conditions of Prob-

lem 2.19. Now we want to rewrite such criterion in a more compact way.

Corollary 2.26 (Angle constraints for representations in SU(2)). Given ϑ1, . . . , ϑn> 0, the

following facts are equivalent.

(1) There exists a standard set of matrices U1, . . . ,Un∈ SU(2) for ϑ .

(2) The following inequalities hold∑
j∈X

(
1− ∣∣δ̄ j

∣∣)+ ∑
k∈Xc

∣∣δ̄k

∣∣≥ 1 (Pol’)

for all X ⊆ {1, . . . ,n} with |X| odd.

(3) The following inequality holds

d1
(
δ,Zn

o

)≥ 1 (H)

Also, equality holds in (3) if and only if it holds in (2) for a certain X. Moreover:

(I) if d1(δ,Z
n
o)= 1, then all standard n-uples of matrices U1, . . . ,Un for ϑ simulta-

neously commute and in fact they belong to the same 1-parameter subgroup

of SU(2);

(II) if there exists a standard n-uple of matrices U1, . . . ,Un that belong to the same

1-parameter subgroup of SU(2), then∑
j∈Y

ϑ j −
∑
k∈Yc

ϑk ≡ 0 (mod 2)

for a certain subset Y⊆ {1, . . . ,n}. �

Proof. The equivalence (1)⇐⇒ (2) is just a rephrasing of Theorem 2.23. Moreover, it is

clear that (I) and (II) are rephrasings of (i) and (ii) in Lemma 2.25. So it is enough to show

that (2)⇐⇒ (3), which is a consequence of the following equality:

d1
(
δ,Zn

o

)= inf
|X| odd

⎛⎝∑
j∈X

(
1− ∣∣δ̄ j

∣∣)+ ∑
k∈Xc

∣∣δ̄k

∣∣⎞⎠ (H=Pol’)
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Let m ∈Z
n
o and call X the subset of indices in {1, . . . ,n} for which mi is odd.

Clearly, |X| is odd because ‖m‖1 is. It is easy to see that |δ j −mj| ≥ 1− |δ̄ j| for j ∈ X,

and |δk −mk| ≥ |δ̄k| for k∈ Xc. Thus, d1(δ,m)≥∑ j∈X(1− |δ̄ j|)+
∑

k∈Xc |δ̄k|. Moreover, the

equality is attained for those m ∈Z
n
o for which |δ j −mj| ≤ 1 for all j = 1, . . . ,n. Thus,

Equation (H=Pol’) holds. �

As a consequence, we can determine a necessary condition for the existence of a

metric of curvature 1 on a sphere S with cone points of angles ϑ1, . . . , ϑn.

Proof of Theorem A. It follows by combining Corollary 2.17 and implication (1)�⇒ (3)

in Corollary 2.26. �

2.2 Algebraic merging

The main goal of this section is to prove Theorem D. In order to do that, we first need to

set some notation.

Given ϑ = (ϑ1, . . . , ϑn) ∈R
n
+, we recall that the defect vector is δ = ϑ − 1. Through-

out this section, it will turn more practical to directly work with δ instead of ϑ .

Notation. Denote by Hn the subset of δ ∈R
n that satisfy the holonomy constraints,

namely such that d1(δ,Z
n
o)≥ 1. This is the complement in R

n of a union of octahedrons

centred at points of Z
n
o. Denote by Pn the subset of δ ∈R

n that satisfy the positivity

constraints, namely such that δ1 + · · · + δn>−2 and δ1, . . . , δn>−1. The locus Pn∩Hn of

admissible defect vectors will be denoted by An. �

Let n≥ 4 and let i, j ∈ {1, . . . ,n} be distinct. We define the positive/negative alge-

braic merging operation

M(i± j) : R
n−→R

n−1

as M(i+ j)(δ1, . . . , δn) := (δ1, . . . , δ̂i, . . . , δ̂ j, . . . , δn, δi + δ j) and M(i− j)(δ1, . . . , δn) :=
(δ1, . . . , δ̂i, . . . , δ̂ j, . . . , δn, δi − δ j − 2).

Lemma 2.27 (Basic properties of M(i± j)). Every algebraic merging operation M : R
n→

R
n−1 satisfies the following properties:

(a) M(Zn
o)=Z

n−1
o ;

(b) M is contracting for the �1 metrics;

(c) M(δ) ∈ int(Hn−1) �⇒ δ ∈ int(Hn). �
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Proof. Property (a) is obvious and claim (c) follows from (a) and (b). As for (b), up to

reordering the coordinates we can assume that M = M(1+2) or M = M(1−2).

Let m,m’ ∈R
n. Then

d1
(
M(1+2) (m) ,M(1+2) (m’ )

)= | (m1 +m2)−
(
m′

1 +m′
2

) | + n∑
j=3

|mj −m′
j|

≤ |m1 −m′
1| + |m2 −m′

2| +
n∑

j=3

|mj −m′
j| =d1 (m,m’ ) .

The proof for M = M(1−2) is completely analogous. �

The main result of this section is the following more precise version of

Theorem D.

Theorem 2.28 (Algebraic merging). Let n≥ 5 and suppose that δ ∈ int(An). Then there

exist distinct indices i, j ∈ {1, . . . ,n} such that at least one of the following holds:

(a) M(i+ j)(δ) ∈ int(An−1);

(b) M(i− j)(δ) ∈ int(An−1) and δi, δ j, δi − δ j /∈Z. �

In order to prove the above result, we will separately analyse three different

cases. We will see that in most situations it is possible to find indices i, j such that (a)

holds.

2.2.1 Intersection of An with a unit integer cube

Throughout this section, we assume n≥ 3.

Notation. We will use the symbol �n to denote any closed unit cube with integer vertices

in R
n and the symbol

n
to denote the truncated cube obtained by intersecting �n with

Hn. Sometimes, we will use the notation �c to indicate the unit cube with centre in

c = (c1, . . . , cn) ∈R
n. �

Lemma 2.29 (Truncated cubes). Let �n be a unit cube in R
n with integer vertices. The

intersection
n=�n∩Hn is the convex hull of all even vertices of �n. �

Proof. Note that �n∩Hn consist of all points of �n that are on �1 distance at least one

from all odd vertices of �n. If m is such an odd vertex, then the points in �n at distance

at most 1 from m are formed by the simplex spanned by m and the n even vertices of
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Fig. 1. Symbolic picture of a truncated cube
n

with n≥ 4.

�n at distance 1 from m . Hence, the set �n∩Hn is obtained from �n by cutting away

2n−1 simplices corresponding to the odd vertices of �n. It follows that
n

is a convex

polytope and it is easy to see that its vertices are the even vertices of �n. �

Remark 2.30. Since Pn is convex and An=Pn∩Hn it follows from the lemma that the

intersection of any integral unit cube �n with An is convex. �

As a consequence, we deduce the connectedness of Hn and of An for n≥ 4.

Proof of Lemma B. Each n-dimensional simplex corresponding to an even vertex of �n

has volume 1/n! and so
n

has volume 1− 2n−1

n! > 0, because n≥ 3. Hence, all
n

have

non-empty interior and so, in particular, Hn and An are non-empty.

Let now n≥ 4. We claim that, if c = (c1, . . . , cn) is the centre of a unit cube �c and

ei is a vector in the standard basis of R
n, then the interior of c ∪ c+ei is connected.

In fact, the two adjacent truncated cubes c and c+ei share a face F isometric to

a lower-dimensional truncated cube c’ , where c’ = (c1, . . . , ĉi, . . . , cn). As n− 1≥ 3, the

interior int(F)∼= int( c’ ) (as a subset of R
n−1) is non-empty: let δ be a point in int(F). As

int( c ∪ c+ei ) is star-shaped with respect to δ, the claim follows.

One then easily concludes that int(Hn) and int(An) are connected for n≥ 4. �

Note that the boundary ∂
n

of a truncated n-cube is made of 2n−1 faces isomet-

ric to (n− 1)-simplices (one for each odd vertex of �n) and 2n faces isometric to trun-

cated (n− 1)-cubes (one for each face of �n). All faces have an interior part for n≥ 4 (see

Figure 1), whereas the non-simplicial faces of ∂
3

are degenerate, as it appears clearly

in Figure 2.

Notation. Denote by c the centre of �n, which is a point with half-integral coefficients.

For any δ ∈ n
different from c denote by δπ the projection of δ to the boundary of

n
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Fig. 2. A three-dimensional truncated cube
3
.

from the centre c , that is, the unique point on ∂
n

such that δ belongs to the segment

that joins δπ and c . �

In what follows, we will distinguish two types of points in
n
.

Definition 2.31. A point δ ∈ n
different from its centre is called simplicial if δπ belongs

to a simplicial face of ∂
n
; otherwise, δ is called non-simplicial. �

The following lemma summarizes some simple useful properties of simplicial

and non-simplicial points.

Lemma 2.32 (Boundary of truncated cubes). Let δ be a point in a truncated cube
n

different from its centre c . Then the following hold.

(a) If δ is non-simplicial, then d1(δ
π ,Zn

o) > 1 and there exists an i such that δπi ∈Z.

(b) δ is simplicial if and only if d1(δ
π ,Zn

o)= 1.

(c) Suppose that δ is a simplicial point and let m be a corresponding odd-

integral vertex of �n. Then m is a closest point to δ among all odd-integral

points. �

Proof. The first two statements directly follow from the definitions, so we only prove

(c). Let m(1), . . . ,m(n) be the even vertices of �n sitting at �1 distance 1 from m . Since δ is

simplicial it lies in the convex hull K of points c,m(1), . . . ,m(n) .

Let m’ be any other point in Z
n
o and denote δ′ a point in K. Note that both

functions f =d1(•,m) and f ′ =d1(•,m’ ) are affine on K. So in order to prove that

d1(δ,m)≤d1(δ,m’ ) it is enough to show that f(p)≤ f ′(p) for every vertex p of K. This is

indeed so, because d1(m’ , c)≥d1(m, c)= n
2 and d1(m’ ,m(i))≥d1(m,m(i))= 1. �
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2.2.2 Simplicial and non-simplicial merging

Even if we begin with an admissible defect vector δ, the output of a positive algebraic

merging operation might be no longer admissible. As positivity issues are generally eas-

ier to keep under control, here we focus on the problem of determining whether M(i+ j)(δ)

belongs to int(Hn−1) for given i �= j and δ ∈ int(Hn).

First, a simple observation about merging integral angles.

Lemma 2.33 (Integral merging). Let δ ∈R
n be a vector such that δi ∈Z for some i. Let M

be a merging operation of type M(i+ j),M(i− j),M( j−i) for some j �= i. Then d1(M(δ),Zn−1
o )=

d1(δ,Z
n
o). Hence, M(δ) ∈ int(Hn−1) if and only if δ ∈ int(Hn). �

Proof. Since M(Zn
o)⊆Z

n−1
o and M is contracting for the �1 distances, we have

d1(M(δ),Zn−1
o )≤d1(δ,Z

n
o). It is then enough to show that d1(δ,Z

n
o)≤d1(M(δ),Zn−1

o ). We will

prove it for M= M(i+ j), the other cases being analogous. Moreover, up to reordering the

coordinates, we can assume that i = 1 and j = 2.

For every m ∈Z
n−1
o , we define m’ := (δ1,mn−1 − δ1,m1,m2, . . . ,mn−2) ∈Z

n
o so

that M(1+2)(m’ )=m . Now, d1(δ,m’ )= |δ1 − δ1| + |δ2 − (mn−1 − δ1)| +
∑n

j=3 |δ j −mj−2| =
d1(M(1+2)(δ),m), since M(1+2)(δ)= (δ3, . . . , δn, δ1 + δ2). This shows that d1(δ,Z

n
o)≤

d1(M(1+2)(δ),Z
n−1
o ). �

Now we will state two sufficient conditions for a merging operation to satisfy

the holonomy constraints: one for simplicial points and one for non-simplicial points.

Lemma 2.34 (Non-simplicial merging). Let n≥ 4. Let δ ∈ n
be non-simplicial and sup-

pose that δπi is an integer. Let M be a merging operation of type M(i+ j),M(i− j),M( j−i) with

j �= i. Then the point M(δ) lies in int(Hn−1). �

Proof. Let c be the centre of
n
. We will prove that the image of the segment [δπ , c ]

under the map M : R
n→R

n−1 lies in
n−1

and at worst one of its points, namely M(c),

sits at distance 1 from Z
n−1
o .

Note first that M([δπ , c ]) belongs entirely to some unit integer cube �n−1. Indeed,

ci + cj and ci − cj − 2 are integers, but |(δπi + δπj )− (ci + cj)| ≤ 1 and |(δπi − δπj − 2)− (ci −
cj − 2)| ≤ 1.

Moreover, both M(δπ ) and M(c) satisfy holonomy constraints, that is, they

belong to some
n−1

. Indeed, using the fact that δπi is integer and using Lemmas 2.32(a)
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and 2.33, we have

d1
(
M
(
δπ
)
,Zn−1

o

)=d1
(
δπ ,Zn

o

)
> 1

and so M(δπ ) does not belong to a simplicial face of
n−1

. At the same time,

d1(M(c),Zn−1
o )= n−2

2 ≥ 1, since each coordinate of c is half-integral.

Since
n−1

is convex, and both ends of M([δπ , c ]) belong to the same
n−1

, the

whole segment belongs to it as well. On the other hand, M(δπ ) does not belong to a

simplicial face of
n−1

and so at worst one point of the segment M([δπ , c ]) belongs to a

simplicial face, namely M(c). Clearly, this happens only if n= 4. �

Lemma 2.35 (Simplicial merging). Let n≥ 5. Let δ ∈ n
be simplicial and let m be

a corresponding odd vertex. Consider a merging operation M of positive type M(i+ j)

or of negative type M(i− j) and suppose that d1(M(m),M(δ)) > 1. Then M(δ) belongs to

int(Hn−1). �

Proof. As in the proof of Lemma 2.34, note that the segment M([δπ , c ]) belongs to some

unit integer cube �n−1. Let
n−1

be the truncated cube associated to such a �n−1.

Since n≥ 5, the point M(c) does not belong to any simplicial face of
n−1

,

because d1(M(m’ ),M(c))= n−2
2 > 1 for every vertex m’ of �n−1. From d1(M(m),M(δπ ))≤

d1(m, δπ )= 1,we deduce that the segment M([δπ , c ]) intersects the simplicial face of
n−1

corresponding to the odd vertex M(m). Let us denote such a point of intersection by z

and observe that the point M(c) is the centre of a non-simplicial face of
n−1

. Thus, the

segment [M(c), z] lies inside
n−1

and in fact it is not contained in any simplicial face of
n−1

. As M(δ) lies in the interior of the segment [M(c), z], the conclusion follows. �

The following example shows why the restriction n> 4 is important.

Example 2.36 (Case n= 4). Let a∈ (0, 1
2 ) and let δ = (a,−a,−1 + a,−1+ a) ∈R

4. Observe

that δ is a defect vector that satisfies positivity and holonomy constraints strictly; never-

theless, only the mergings M(1+2), M(1+3), and M(1+4) preserve the positivity constraints.

At the same time neither of these three positive mergings strictly preserves the holon-

omy constraints. �

2.2.3 Case (a): δ1 ≤ 0

The following observation is elementary and so we omit the proof.
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Lemma 2.37. The domain in R
n obtained by intersecting int(An) with the cube (−1,0]n

is described by the following system of 2n+ 1 inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi ≤ 0 for all i = 1, . . . ,n

n∑
j=1

δ j < 2δi for all i = 1, . . . ,n

n∑
j=1

δ j >−2 �

Remark 2.38. As we pointed out in the introduction, the same above set of constraints

for the existence of spherical metrics on a surface of genus 0 with conical singularities

of angles smaller than 2π had already been discovered by Troyanov [19]. �

In order to simplify the notation, up to rearranging the indices we will assume

now on that δ1 ≥ δ2 ≥ · · · ≥ δn.

Proposition 2.39. Assume n≥ 5. Suppose that δ ∈ int(An) ∩ (−1,0)n. Then M(1+2)(δ) ∈
int(An−1). �

Proof. Since
∑

j δ j >−2 and n≥ 4, we have δ1 + δ2 >−1. Hence M(1+2)(δ) satisfies the

positivity constraints.

Suppose now that δ is a simplicial point. It is easy to see that the point −en is

an odd-integer point closest to δ. We have d1(M(1+2)(δ),M(1+2)(−en))=d1(δ,en) > 1. So by

Lemma 2.35, the vector M(1+2)(δ) strictly satisfies the holonomy constraints.

Suppose now that δ is not a simplicial point, and so δπ strictly satisfies the holon-

omy constraints and there exists an index i such that δπi is an integer. As −ei is an odd-

integer vector, we have 1+ 2δπi −
∑

j δ
π
j =d1(−ei , δ

π ) > 1. On the other hand,
∑

j δ
π
j >−2,

because
∑

j δ j >−2 and n≥ 4. As a consequence, 2δπi >
∑

j δ
π
j >−2 and so δπi = 0. The

assumption δ1 ≥ δi necessarily implies δπ1 ≥ δπi = 0 and so δπ1 = 0, because δπ ∈ [−1,0]n.

By Lemma 2.34, we then conclude that M(1+2)(δ) satisfies the holonomy constraints

strictly. �

2.2.4 Case (b): δ1 > 0 and δ2 + δ3 >−1

Up to rearranging the indices, assume that δ1 ≥ δ2 ≥ · · · ≥ δn.

Proposition 2.40. Suppose that n≥ 5 and δ ∈ int(An). Suppose moreover that δ1 > 0 and

δ2 + δ3 >−1. Then there exist indices i, j such that M(i+ j)(δ) ∈ int(An−1). �
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Proof. Note that a positive merging M(i+ j) preserves the sum of the entries of the defect

vector. Thus, in order to prove that M(i+ j)(δ) satisfies the positivity constraints, we only

need to check that δi + δ j >−1.

Suppose first that δ is non-simplicial, and let i be an index such that δπi is inte-

ger. If i �= 1, consider the positive merging M(1+i). According to Lemma 2.34, the vec-

tor M(1+i)(δ) satisfies the holonomy constraints strictly. At the same time δ1 + δi >−1,

because δ1 > 0. Similarly, if i = 1, we can consider the merging M(1+2).

Suppose now that δ is simplicial and let m be a closest odd-integer point. Chose

i and j distinct elements of {1,2,3} so that mi − δi and mj − δ j are of the same sign.

Then d1(M(i+ j)(m),M(i+ j)(δ))=d1(m, δ) > 1 and so, according to Lemma 2.35, the vector

M(i+ j)(δ) strictly satisfies the holonomy constraints. At the same time δi + δ j >−1 by

hypothesis and so positivity constraints are also satisfied. �

2.2.5 Case (c): δ1 > 0 and δ2 + δ3 ≤−1

Note in particular that, in such a case, δ j < 0 for all j > 1.

The following technical definition is useful to clarify when to apply a positive

merging.

Definition 2.41. Let n≥ 5. A vector δ ∈ int(An) with δ1 ≥ · · · ≥ δn is positively mergeable if

the following three conditions are not simultaneously satisfied:

(a) the vector δ is simplicial;

(b) there exists an integer l ≥ 1 such that

(b1) m = (l,−1,−1, . . . ,−1) is a vector in Z
n
o closest to δ;

(b2) l > δ1;

(b3) d1(M(1+n)(δ),M(1+n)(m))≤ 1. �

Proposition 2.42 (Positive merging). Let n≥ 5 and let δ ∈ int(An) be a positively merge-

able defect vector. Then there exists indices i, j such that M(i+ j)(δ) ∈ int(An−1). �

Proof. Suppose first that δ is the centre of a unit cube. Then all its entries are half-

integers. Since n≥ 5, the vector M(i+ j)(δ) sits at distance ≥ 3
2 from Z

n−1
o for any distinct i

and j, and so M(i+ j)(δ) ∈ int(An−1).

Thus, now on we can assume that δ is not the centre of a unit cube. Thanks to

Propositions 2.39 and 2.40, it is enough to treat the case δ1 ≥ 0 and δ2 + δ3 ≤−1.
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Case (a) violated.

The vector δ is non-simplicial. Consider the positive merging M(1+ j), where either

δπ1 or δπj is integer. Since δ1 ≥ 0, the vector M(1+ j)(δ) satisfies the positivity constraints;

moreover, by Lemma 2.34 it also satisfies holonomy constraints strictly.

Assume now on that (a) is satisfied.

The vector δ is simplicial: let m be a point in Z
n
o closest to δ, which is necessarily

of the following type m = le1 −
∑

j∈J e j, for some integer l ≥ 0 and some J ⊂ {2,3, . . . ,n}.
Suppose 3 /∈ J, and so 2 /∈ J either. Then d1(m, δ)≥d1(m − e2 − e3, δ). Replacing

m by m − e2 − e3, we can thus assume 3 ∈ J and then {3,4, . . . ,n} ⊂ J.

Assume now on that either m = le1 − (e2 + · · · + en) or m = le1 − (e3 + · · · + en).

If δ1 −m1 = δ1 − l ≥ 0, then d1(M1+3(δ),M1+3(m))=d1(δ,m) > 1. Thus, M(1+3)(δ)

strictly satisfies the holonomy constraints by Lemma 2.35.

If δ1 − l < 0 and m2 = 0, then d1(M1+2(δ),M1+2(m))=d1(δ,m) > 1. As above,

M(1+2)(δ) strictly satisfied the holonomy constraints by Lemma 2.35.

Thus, we are left to deal with the case δ1 < l and m2 =−1.

Assume now on that (b1) and (b2) are satisfied.

Since d1(M(1+i)(m),M(1+i)(δ))≤d1(M(1+ j)(m),M(1+ j)(δ)) for all 2≤ i < j ≤n, we

can again conclude by applying Lemma 2.35 to the operation M= M(1+n), unless

d1(M(1+n)(m),M(1+n)(δ))≤ 1, that is unless δ is not positively mergeable. �

The remaining cases can be taken care of by negative merging.

Proposition 2.43 (Negative merging). Suppose that n≥ 5 and δ is not positively merge-

able. Then M(1−n)(δ) satisfies positivity and strict holonomy constraints. Moreover, δ1, δn,

and δ1 − δn are not integers. �

Proof. By our assumptions,

1≥d1
(
M(1+n) (δ) ,M(1+n) (m)

)= |1− l + δ1 + δn| + (n− 2)+
∑

1< j<n

δ j ≥

≥n− l − 1+
∑

j

δ j

that is,
∑

j δ j ≤ 2+ l − n. Since
∑
δ j >−2, we conclude that n− l < 4. Since m is odd, the

integer n− l is even and so l ≥n− 2. Moreover, δ1 ≥ l − 1, because m is a vector in Z
n
o

closest to δ.

Recall that M(1−n)(δ)= (δ2, . . . , δn−1, δ1 − δn− 2). By the above computations,

δ1 − δn− 2≥ (l − 1)− δn− 2≥n− 5− δn>−1
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and

δ2 + · · · + δn−1 + (δ1 − δn− 2)≥ δ1 + · · · + δn−2 − 2≥ δ1 + (n− 3) δn−2 − 2>

> (l − 1)− (n− 3)− 2≥−2

which shows that M(1−n)(δ) satisfies the positivity constraints.

On the other hand,

d1
(
M(1−n) (δ) ,M(1−n) (m)

)= | (l + 1)− (δ1 − δn) | +
∑

1< j<n

(
1+ δ j

)
= (l − δ1)+

∑
j>1

(
1+ δ j

)=d1 (δ,m) > 1

and so M(1−n)(δ) strictly satisfies the holonomy constraints by Lemma 2.35.

Since δ is not positively mergeable, it is easy to see that δ1 and δn cannot be

integers. In order to show that δ1 − δn is not an integer either, it is enough to prove that

δ1 − δn> l, because δ1 < l and δn∈ (−1,0). This can be easily verified, since

1≥ |1− l + δ1 + δn| + (n− 2)+
∑

1< j<n

δ j

≥ l − 1− δ1 − δn+ (n− 2) (1+ δn) > (l − δ1 + δn)+ 1

and so δ1 − δn> l. �

So finally we have achieved our task.

Proof of Theorem 2.28. If δ is positively mergeable or the centre of a unit cube, then a

positive merging operation will work by Proposition 2.42 and so (a) holds. On the other

hand, if δ is not positively mergeable, then Proposition 2.43 ensures that a negative

operation of type M(i− j) works and that, in this case, the involved defects δi, δ j, and

δi − δ j are not integers. Thus, (b) holds. �

3 Geometric Constructions

3.1 Spherical bigons and triangles

Definition 3.1. Let n≥ 2. A spherical n-gon is a bordered surface homeomorphic to the

closed unit disc, endowed with a Riemannian metric of constant curvature 1, whose

boundary consists of n geodesic arcs (called edges) that form inner angles πϑ1, . . . , πϑn.

We will say that such an n-gon is convex if all ϑi ≤ 1. �

4962 G. Mondello and D. Panov

 at U
niversita' degli Studi R

om
a L

a Sapienza on O
ctober 15, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Mimicking Definition 2.8, we can consider angle-deformability of spherical

n-gons.

Definition 3.2. A metric g on a spherical n-gon with inner angles π · ϑ is angle-

deformable if there exists a neighbourhood N of ϑ ∈R
n and a continuous family N �

ν �→ gν of spherical metrics on the n-gon such that gν has conical singularities of angles

π · ν for all ν ∈N and gϑ = g. �

We will refer to a 2-gon, 3-gon, and 4-gon, respectively, as a “bigon”, “triangle”,

and “quadrilateral”. If xi, xi+1 are consecutive vertices of an n-gon, then we will denote

by |xixi+1| the length of the edge joining them.

Notation. Let S be a compact spherical surface possibly with boundary and let γ be a

curve inside S. We say that S′ is obtained from S by cutting along γ if S′ is the compact

spherical surface (possibly with boundary) obtained as a metric completion of S \ γ . �

Notation. Let S be a compact spherical surface with boundary. The double DS of S is

the spherical surface obtained by gluing S with S̄ (another copy of S, with the opposite

orientation) isometrically along their boundary. We will say that S is angle-deformable

(respectively, non-coaxial) if DS is (respectively, if DS has non-coaxial holonomy). �

3.1.1 Bigons

Pick spherical coordinates ψ ∈ [0,2π) and φ ∈ [0, π ] on S
2. Given 0<α < 1 and 0< r ≤ π ,

we denote by Bα(r)= {(ψ, φ) |ψ ∈ [0, πα] and φ ∈ [0, r)} and by B̄α(r) its closure. For α ≥ 1,

we let Bα(r) be obtained from k copies B1, . . . , Bk of Bα/k(r) by gluing one geodesic side

of Bi to one geodesic side of Bi+1 for i = 1, . . . ,k− 1. Analogously for B̄α(r).

Definition 3.3. Let α > 0 and r ∈ (0, π). The standard (open) r-neighbourhood of a ver-

tex of a spherical polygon of angle πα is the surface with boundary Bα(r). The stan-

dard (open) r-neighbourhood of a cone point of angle 2πα is the spherical surface

Sα(r) obtained by doubling Bα(r). In an analogous way, we define the standard closed

r-neighbourhoods. �

Lemma 3.4 (Existence of bigons).

(a) For every α > 0, there exists a bigon Bα with both angles πα and with cone

points at distance π . Such Bα is angle-deformable.
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(3.1) (3.2)

Fig. 3. An ordinary and an exceptional sphere with two conical points.

(b) Let d> 0 be an integer. There exists a continuous family of bigons (0,2π) �
� �→ B(d, �) with both angles dπ and the two sides of lengths (�,2π − �) for d

is odd, or (�, �) for d even. �

Notation. In what follows, we will refer to a bigon to type (a) above as an (ordinary)

bigon and to a bigon of type (b) as an exceptional bigon. �

Proof of Lemma 3.4. The bigon in (a) is clearly Bα = B̄α(π) and deformability is obvious.

About claim (b), let D ⊂ S
2 be a closed unit hemisphere. The bigon B(1, �) is eas-

ily obtained from D by marking two points x1, x2 on ∂D that break ∂D into two geodesic

arcs of lengths � and 2π − �. For d> 1, consider cyclic cover S̃→ S
2 of degree d branched

at x1, x2. If B(1), . . . , B(d) are the lifts of D and B ′
(1), . . . , B ′

(d) are the lifts of the other hemi-

sphere S2 \ D, then B(d, �) is obtained as the union of all B(2i+1) and B ′
(2i). �

By doubling the bigons constructed above, we immediately have the following.

Corollary 3.5 (Spheres with two conical points).

(a) For every α > 0, there exists a spherical surface Sα := DBα homeomorphic to a

sphere with both angles 2πα and with cone points at distance π . Such Sα are

angle-deformable (Figure 3.1).

(b) Let d> 0 be an integer. There exists a continuous family (0, π) � � �→ DB(d, �)

of spherical surfaces with cone points at distance � and both angles 2πd

(Figure 3.2). �

Remark 3.6. It can be easily seen that all bigons are of types (a) and (b) described

in Lemma 3.4. Analogously, surfaces of curvature 1 homeomorphic to a sphere with

two conical points can be obtained by doubling such bigons as in Corollary 3.5 (see

Troyanov [18]). �
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As an application, here we characterize spherical surfaces with non-integral

angles and reducible holonomy.

Lemma 3.7 (Metrics with reducible holonomy). Let S be a spherical surface with conical

singularities x1, . . . , xn of angles 2πϑ1, . . . ,2πϑn. Suppose that the holonomy ρ : π1(Ṡ)→
SO(3,R) is reducible and that no ϑi is integral. Then there is a subset J ⊆ {1, . . . ,n} and

geodesic graph G ∈ S such that

(a) S \ G is the disjoint union of the disks Sϑi (π/2) for i ∈ Jc and possibly of some

hemispheres;

(b) for every j ∈ J the conical point xj is contained in G and has conical angle

2π(kj + 1
2 ) for some kj ∈Z≥0. �

Proof. Let ˜̇S→ Ṡ be the universal cover. Consider the developing map dev : ˜̇S→ S
2

and the holonomy representation ρ : π1(Ṡ)→ SO(3,R) associated to the given spher-

ical metric. Since ρ is non-trivial and reducible, there is a plane P ⊂R
3 and an

orthogonal line L invariant under ρ(π1(Ṡ)). Clearly, the map dev does not ramify over

S
2 \ (P ∪ L).

Define G̃ as the π1(Ṡ)-invariant geodesic graph dev−1
(S2 ∩ P )⊂ ˜̇S, which descends

to a geodesic graph on Ṡ. The closure G of such graph passes through the conical points

{xj | j ∈ J} for some J ⊆ {1, . . . ,n}.
Let Rj ∈ SO(3,R) be the holonomy along a loop that simply winds about xj. Such

an Rj is not the identity and its axis lies in P ; moreover, Rj preserves L: the only possi-

bility is that Rj is a rotation by an angle π and so ϑ j = kj + 1
2 for some kj ∈Z≥0.

Consider now an i ∈ Jc. Let Di be the component of S \ G that contains xi and let
˜̇Di → Ḋi be the universal cover of Ḋi = Di \ {xi}. The developing map restricts to a cover

of Ḋi over a component of S
2 \ (P ∪ L) and so Di is isometric to Sϑi (π/2).

Let D be a component of S \ G that does not contain any xi. Then dev induces an

isomorphism between D a component of S
2 \ P , and so D is a hemisphere. �

3.1.2 Triangles

The following theorem follows from [3, Theorem 3].

Theorem 3.8 (Existence of triangles). Let ϑ = (ϑ1, ϑ2, ϑ3) be a triple of real numbers

satisfying holonomy constraints (H) strictly and the positivity constraints (P). Then there

exists an angle-deformable non-coaxial spherical triangle with inner angles π · ϑ . �
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(4.1) (4.2)

Fig. 4. A convex triangle (4.1) and a complement (4.2) of a convex triangle in a hemisphere.

Since we will need spherical triangles later, here we give a short constructive

proof of the above theorem. The wished triangle is assembled from pieces constructed

in Lemmas 3.4, 3.11, and Corollary 3.10.

Lemma 3.9 (Existence of convex triangles). Let ϑ = (ϑ1, ϑ2, ϑ3) ∈ (0,1)3. A convex spher-

ical triangle with angles π · ϑ exists if and only if both conditions are satisfied:

(i) the numbers (1− ϑ1,1− ϑ2,1− ϑ3) satisfy the triangular inequality;

(ii) the following inequality holds: ϑ1 + ϑ2 + ϑ3 − 1> 0.

Moreover, such convex triangles are angle-deformable and non-coaxial. �

Proof. Assume a convex spherical triangle with angles π · ϑ exists. Then condition (i)

holds since its dual spherical triangle has edges of lengths π(1− ϑi). Moreover, (ii) holds

too, since π(ϑ1 + ϑ2 + ϑ3 − 1) is the area of the triangle. Vice versa, fix a hemisphere

D and a point x2 on ∂D. It is easy to see that, for every triple (ϑ1, ϑ2, ϑ3) satisfying (i)

and (ii), one can realize a triangle with such angles as the convex hull in D of x1, x2, x3,

for suitable x3 ∈ ∂D and x1 ∈ D, see Figure 4.1. Such triangles are angle-deformable by

construction; moreover, since ϑi ∈ (0,1) and the triangle is inscribed in a hemisphere, it

is immediate to see that it is non-coaxial. �

This lemma settles Theorem 3.8 for triangles with ϑi < 1. Indeed, inside the unit

cube [0,1]3 Inequalities (H) and conditions (i) and (ii) describe the tetrahedron with ver-

tices (1,0,0), (0,1,0), (0,0,1), (1,1,1).

Corollary 3.10 (Triangles with small angles). Suppose ϑ = (ϑ1, ϑ2, ϑ3) satisfy Inequali-

ties (H) strictly and it belongs to the domain Π3 := [0,2]× [0,1]× [0,1]⊂R
3. Then there

exists an angle-deformable non-coaxial spherical triangle with angles π · ϑ . �
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Fig. 5. The triangle T(d, �, α).

Proof. As we explained, the case when all ϑi are < 1 follows from Lemma 3.9. Suppose

that 1<ϑ1 < 2. Then it is easy to check that the triple ϑ ′ = (2− ϑ1,1− ϑ3,1− ϑ2) sat-

isfies Inequalities (H) as well. Consider a convex spherical triangle T ′ ⊂ S
2 with angles

π(ϑ ′1, ϑ
′
3, ϑ

′
2) at the vertices (x1, x3, x2) and let E ⊂ S

2 be the maximal circle that contains

the vertices x2 and x3. Cut S
2 along E and let D be the component that contains int(T ′).

Then the spherical triangle obtained from D \ T ′ by metric completion has angles π · ϑ ,

see Figure 4.2. Angle-deformability and non-coaxiality of T ′ implies that the constructed

triangles is angle-deformable and non-coaxial too. �

Lemma 3.11 (The triangles T(d, �, α)). Let d be a positive integer and let 0< �<π and

0<α < 1. There exists a spherical triangle T(d, �, α) of vertices y1, y2, y3 with edges of

lengths |y1y2| = |y1y3| = � and |y2y3| = 2πd and angles π(2d), πα, and π(1− α) at the ver-

tices y1, y2, y3 correspondingly. �

Proof. Let D ⊂ S
2 be a closed hemisphere. Choose a geodesic segment γ on D of length

�, with one endpoint b1 in the interior of D and the other endpoint b2 on the boundary of

D and forming angles πα and π(1− α) with ∂D. Consider now a ramified degree d cover

D̃ → D that has an order d branching at b1. The wanted spherical triangle is obtained

by cutting D̃ along γ̃ , namely one of the d geodesic preimages of γ , as illustrated in

Figure 5. �

Denote by Γ 3 ⊂Z
3
≥0 the additive semigroup consisting of elements m =

(m1,m2,m3) such that m1 ≥m2 ≥m3 and m1 +m2 +m3 ∈ 2Z.

Lemma 3.12. The subset {ϑ = (ϑ1, ϑ2, ϑ3) ∈R
3 |ϑ1 ≥ ϑ2 ≥ ϑ3} ⊂R

3
+ is contained in the

union
⋃

m∈Γ 3(Π3 +m). �

The previous lemma is completely elementary, and we omit the proof.
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Fig. 6. Building the triangle in case (a) of Theorem 3.8.

Proof of Theorem 3.8. Let ϑ = (ϑ1, ϑ2, ϑ3) ∈R
3
+ be a triple satisfying Inequalities (H)

strictly. After reordering the coordinates, we can assume ϑ1 ≥ ϑ2 ≥ ϑ3. We will construct

now a spherical triangle with angles π · ϑ .

By Lemma 3.12, there exists m ∈ Γ 3 and ϑ ′ ∈Π3 such that ϑ = ϑ ′ +m . Since

Inequality (H) is invariant with respect to translations by integer vectors m with

m1 +m2 +m3 even, by Corollary 3.10 there exists an angle-deformable non-coaxial

spherical triangle T ′ with angles πϑ ′1, πϑ
′
2, πϑ

′
3 at its vertices x′1, x′2, x′3. Since no ϑ ′i is

an integer, no edge of T ′ has length multiple of π .

Consider now separately two cases.

Case (a): m1 >m2 +m3. The construction is illustrated in Figure 6.

Let d= 1
2 (m1 −m2 −m3). By Lemma 3.11, there exists a spherical triangle T ′′ =

T(d, |x′1x′3|,1− ϑ ′3) with vertices x′′1 , x′′2 , x′′3, angles π(2d,1− ϑ ′3, ϑ ′3) and |x′′1 x′′2 | = |x′′1 x′′3 | =
|x′1x′3|, Denote by T the triangle with vertices x1, x2, x3 obtained by identifying the side

x′′1 x′′3 of T ′′ with the side x′1x′3 of T ′. The angle at vertex x1 of T corresponding to x′1 ∼ x′′1 is

π(2d+ ϑ ′1), the angle at x2 corresponding to x′2 is πϑ ′2 and the angle at x3 corresponding

to x′′3 is πϑ ′3. Finally, take two exceptional bigons B ′′ = B(m2, |x1x2|) and B ′′′ = B(m3, |x1x3|)
and glue them with T by isometrically identifying one side of B ′′ to x1x2 and one side

of B ′′′ to x1x3. Angle-deformability of T ′ implies angle-deformability of T and so of the

wished triangle. Since |x1x2| = |x′1x′2| is not a multiple of π and no ϑi is an integer, the

triangle T is non-coaxial and so is the constructed triangle.

Case (b): m1 ≤m2 +m3. The construction is illustrated in Figure 7.

In this case, set d1 = 1
2 (m2 +m3 −m1), d2 = 1

2 (m3 +m1 −m2), d3 = 1
2 (m1 +m2 −

m3). Take the three exceptional bigons B ′ = B(d1, |x′2x′3|), B ′′ = B(d2, |x′3x′1|), B ′′′ =
B(d3, |x′1x′2|) and glue them with T ′ by isometrically identifying a side of B ′ with x′2x′3,

a side of B ′′ with x′3x′1 and a side of B ′′′ with x′1x′2. As before, angle-deformability and
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Fig. 7. Building the triangle in case (b) of Theorem 3.8.

non-coaxiality of T ′ implies angle-deformability and non-coaxiality of the constructed

triangle. �

The above existence theorem for triangle allows one to draw the following con-

clusion about 3-punctured spheres.

Corollary 3.13 (Existence of 3-punctured spherical metrics). Let ϑ = (ϑ1, ϑ2, ϑ3) be a

triple of real numbers satisfying holonomy (H) strictly and the positivity constraints

(P). Then there exists an angle-deformable non-coaxial spherical surface S of genus 0

with conical singularities of angle 2π · ϑ . �

Proof. The wished spherical surface is obtained by doubling a spherical triangle with

angles π · ϑ , whose existence relies on Theorem 3.8. �

Indeed, a little more is true.

Lemma 3.14 (Double of spherical triangles). Let S be a sphere with distinct points

x1, x2, x3 endowed with a spherical metric g with conical singularities of angle 2πϑi at xi

and non-coaxial holonomy. Then:

(a) g is the unique spherical metric in its conformal class with such conical sin-

gularities;

(b) the spherical surface (S, g) is obtained by doubling a spherical triangle. �

Proof. The uniqueness of g claimed in (a) was already noted in [3]. In fact, let g′ be

a spherical metric conformal to g and denote by J the underlying conformal structure.
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Both g and g′ induce CP
1-structures Ξ,Ξ ′ on the Riemann surface (Ṡ, J): their difference

is thus encoded in a Schwarzian derivative σ(Ξ,Ξ ′), which is a holomorphic quadratic

differential on Ṡ. A direct computation shows that σ(Ξ,Ξ ′) has at most simple poles at

x1, x2, x3, because g and g′ have the same angles at the xi, and so σ(Ξ,Ξ ′)≡ 0. This implies

that the two CP
1-structures and so their holonomy representations agree. Moreover, the

developing maps of g and g′ are conjugate through a Möbius transformation τ ∈ PSL(2,C)

that commutes with the holonomy subgroup of SO(3,R). Since we assumed the SO(3,R)-

holonomy to be non-coaxial, Lemma 2.18(b) ensures that τ must lie in SO(3,R) and

so g= g′.

As for (b), we remark that (S, J) is biholomorphic to CP
1 through a map that takes

x1, x2, x3 ∈ S to [1 : 0], [1 : 1], [0 : 1] ∈CP
1. The conjugation is an anti-holomorphic (and so

conformal) transformation of CP
1 that fixes [1 : 0], [1 : 1], [0 : 1] and so transports to a con-

formal involution ι of S that fixes x1, x2, x3. By (a), the metric g must be fixed by ι, which is

thus an isometry of (S, g). It is then immediate to check that S is isometric to the double

DT , where T is the spherical triangle S/ι. �

3.1.3 Almost degenerate triangles

Spherical triangles can degenerate in several ways. We are interested in describing two

such degenerations: in the first case, the triangle degenerates to an ordinary bigon; in

the second case, the triangle degenerates to a “double bigon”, that is the union of two

ordinary bigons sharing a common vertex.

Definition 3.15. A spherical polygon is r-wide at a vertex xi of angle πα if the closed

ball centred at xi of radius r is isometric to B̄α(r) and does not contain any marked point

other than xi. A spherical surface if r-wide at a cone point xi of angle 2πα if the closed

ball centred at xi of radius r is isometric to S̄α(r) and does not contain any marked point

other than xi. �

Notation. If a spherical surface S is r-wide at a conical point y of angle 2πα, then

we denote by Uy(r) the complement in S of the open neighbourhood of y isometric

to Bα(r). �

The triangles we are going to describe are needed in the surgery operations that

will split a conical point into a pair of conical singularities. In order to prove the angle-

deformability of the so-constructed spherical surface, we need the following properties

from our triangles.
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(8.1) (8.2) (8.3) (8.4)

Fig. 8. Triangles close to ordinary bigons.

Definition 3.16. A spherical triangle (T, g) with vertices x1, x2, x3 and angles π · ϑ =
π(ϑ1, ϑ2, ϑ3) is (x1, x2)-angle-deformable if there exists a neighbourhood N ′ ⊂R

2 of

(ϑ1, ϑ2), a continuous map θ3 :N ′ →R such that θ3(ϑ1, ϑ2)= ϑ3 and a continuous fam-

ily of metrics gν parametrized by ν ∈N ′ such that g(ϑ1,ϑ2) = g and gν has angles

π(ν1, ν2, θ3(ν1, ν2)). �

Note that angle-deformability is clearly stronger than (x1, x2)-angle-

deformability. On the other hand, the above definition is particularly meaningful

for a ϑ that only weakly satisfies the holonomy constraints, in which case absolute

angle-deformability cannot hold.

Also, we recall that a spherical surface of genus 0 with 3 conical points is

obtained by doubling a spherical triangle. Thus, angle-deformability of the surface is

equivalent to angle-deformability of the triangle.

Proposition 3.17 (Triangles close to an ordinary bigon). Let ϑ1, ϑ2, ϑ3 > 0 with ϑ3 =
ϑ1 + ϑ2 − 1. For every ε > 0 there exist η ∈ (−ε, ε) and a spherical triangle T with angles

π(ϑ1, ϑ2, ϑ3 + η) and vertices x1, x2, x3, which is π(1− ε)-wide at x3 and (x1, x2)-angle-

deformable. �

Proof. We divide the proof into four cases, illustrated in Figure 8.

Case (a) : ϑ1 = 1.

Then we can take T = Bϑ2 , mark the two vertices of the ordinary bigon by x2, x3

and place x1 on ∂T at distance π − ε
2 from x3. For such a T , we have η= 0 and both edges

x1x3 and x2x3 have length at most π (see Figure 8.1).
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Now, keep the edge e from x1 to x2 fixed. For i = 1,2 and for every νi close enough

to ϑi shoot the geodesic arc ai starting from xi and that forms an angle πνi with e. Let x3

be the first intersection of a1 and a2 and let T(ν1,ν2) the triangle bounded by e,a1,a2 and

with internal angles π(ν1, ν2, θ3), where θ3 is clearly a continuous function of (ν1, ν2). It is

easy to see that (ν1, ν2) �→ T(ν1,ν2) is a continuous family of triangles and that T(ϑ1,ϑ2) = T .

Hence, T is (x1, x2)-deformable.

Case (b) : ϑ1, ϑ2 < 1.

Let η > 0 be smaller than 2(1− ϑ1),2(1− ϑ2),1− ϑ3 so that the triple (ϑ1, ϑ2,1−
ϑ3 − η) ∈ (0,1)3 satisfies the triangular inequality. By Lemma 3.9, there exists a convex

triangle T ′ with angles π(1− ϑ1,1− ϑ2, ϑ3 + η) and vertices (x1, x2, y3). By construction,

such a T ′ is embedded inside an ordinary bigon Bϑ3+η with vertices y3, x3. The closure T

of the complement of T ′ inside Bϑ3+η is a triangle vertices x1, x2, x3, angles π(ϑ1, ϑ2, ϑ3 +
η) and |x1x3|, |x2x3|<π (see Figure 8.2). Note that, as η→ 0, the area of T ′ (which depends

on η) goes to zero and so its diameter goes to zero too (because ϑ1, ϑ2 ∈ (0,1) are fixed).

Hence, for a sufficiently small η, the triangle T is also π(1− ε)-wide at x3. Since the

holonomy of DT is clearly non-coaxial, it is angle-deformable and so, in particular, T is

(x1, x2)-angle-deformable.

Case (c) : ϑ1 ∈ (1,2), ϑ2 ∈ (0,1), and ϑ3 ∈ (0,1].

Let η < 0 so that |η| is smaller than ε, 2(ϑ1 − 1) and 2ϑ2. Thus, the triple

(2− ϑ1,1− ϑ2, ϑ3 + η) ∈ (0,1)3 satisfies the triangular inequality and by Lemma 3.9 there

exists a strictly convex triangle T ′ with vertices x1, x2, y3 and angles π(ϑ1 − 1, ϑ2,1− ϑ3 −
η). By construction, |x2y3|<π . The triangle T is the obtained by gluing T ′ with a stan-

dard bigon B = Bϑ3+η with vertices x3, y′3 in such a way that y′3 is identified to y3 and e2 is

glued to a portion of an edge of Bϑ3+η (see Figure 8.3). Thus, |x1x3|<π and |x2x3|< 2π . As

before, it is clear that the length of x1y3 goes to zero as η→ 0. Thus, T is π(1− ε)-wide

at x3 for |η| small enough. As above, DT is non-coaxial and so angle-deformable, hence

T is (x1, x2)-angle-deformable.

Case (d) : ϑ3 > 1.

Let d1,d2 be positive integers such that ϑ ′1 = ϑ1 − d1 ∈ (0,2), ϑ ′2 = ϑ2 − d2 ∈ (0,1],

and ϑ ′3 = ϑ3 − (d1 + d2) ∈ (0,1]. By cases (a) or (b), there exists an (x1, x2)-angle-deformable

triangle T ′ with angles π(ϑ ′1, ϑ
′
2, ϑ

′
3 + η) for some |η|< ε, which is π(1− ε)-wide at x3. Call

e1, e2 the edges x1x3 and x2x3 of T ′, of lengths �1, �2 ∈ π(1− ε,2). The triangle T is then

obtained by gluing an edge of the exceptional bigon B(d1, �1) with e1 and an edge of

B(d2, �2) with e2 (see Figure 8.4). Because B(d1, �1) and B(d2, �2) are π(1− ε)-wide at their

vertices, such a T is π(1− ε)-wide at x3. Since this gluing procedure can be performed in

families, the obtained triangle T is (x1, x2)-angle-deformable. �

4972 G. Mondello and D. Panov

 at U
niversita' degli Studi R

om
a L

a Sapienza on O
ctober 15, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


(9.1) (9.2)

(9.3) (9.4)

Fig. 9. Triangles close to double bigons.

Proposition 3.18 (Triangles close to a double bigon). Let ϑ1, ϑ2 > 0 with ϑ3 = ϑ1 − ϑ2 −
1≥ 0 and assume that ϑ2 is not an integer. Then for every ε > 0 there exist η ∈ (−ε, ε)
and a spherical triangle T with angles π(ϑ1, ϑ2, ϑ3 + η) and vertices x1, x2, x3, which is

π(1− ε)-wide at x3 and (x1, x2)-angle-deformable. �

Proof. Again we divide the proof in four cases, illustrated in Figure 9.

Case (a) : ϑ2 ∈ (0,1), ϑ1 = 2.

In this case ϑ3 = 1− ϑ2 > 0. Then T can be chosen to be the triangle T(1, π(1−
ε/2), ϑ2) constructed in Lemma 3.11. Note that, in this case, η= 0 and that both edges

x1x2 and x1x3 are shorter than π (see Figure 9.1). To see that such triangle is (x1, x2)-

angle-deformable, label the midpoint of the edge x2x3 by x4, so that the segment x1x4

splits T into the triangles T ′ with vertices (x1, x2, x4) and angles π(1, ϑ2, ϑ2) and T ′′

with vertices (x1, x4, x3) and angles π(1, ϑ3, ϑ3). Also, the edge x1x4 has length πε/2.

By Proposition 3.17, the triangle T ′ is (x1, x2)-angle-deformable and so there exists

a neighbourhood N ′ ⊂R
2 of (ϑ1, ϑ2), a continuous θ4 : N ′ →R with θ4(ϑ1, ϑ2)= ϑ2 and

4973Spherical Metrics with Conical Singularities on a 2-Sphere

 at U
niversita' degli Studi R

om
a L

a Sapienza on O
ctober 15, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


a continuous family of triangles N ′ � ν → T ′
ν such that T ′

(ϑ1,ϑ2)
= T ′ and Tν has angles

π(ν1, ν2, θ4(ν1, ν2)). Clearly, the length �ν of the edge x1x4 of T ′
ν depends continuously on

ν. Consider now the continuous family ν �→ T ′′
ν of ordinary bigons with opposite vertices

(x3, x′4) and angles π(θ4(ν),1− θ4(ν)) and label by x′1 a point of the edge x3x′4 that sits at

distance �ν from x′4. Gluing T ′
ν and T ′′

ν along the segments x1x4 and x′1x′4, we obtain the

wished family of triangles parametrized by N ′.

Case (b) : ϑ2 ∈ (0,1) and ϑ1 ∈ (1,2).
We proceed as in the proof of Proposition 3.17, case (b). Pick η > 0 and smaller

than ε,2(2− ϑ1),2ϑ2. Then the triple (2− ϑ1, ϑ2,1− (ϑ3 + η)) satisfies the triangular

inequality and so there exists a convex triangle T ′ with vertices x1, y2, x3 and angles

π(ϑ1 − 1,1− ϑ2, ϑ3 + η). Moreover, η can be chosen small enough so that such T ′ is

π(1− ε)-wide at x3. Clearly, the edge y2x1 of T ′ is shorter than π . The desired triangle T

is then obtained by gluing an ordinary bigon Bϑ2 with vertices x2 and y′2 to T ′ by identify-

ing y2 to y′2 and y2x1 to a portion of an edge of Bϑ2 (see Figure 9.2). We underline that both

x1x2 and x1x3 are shorter than π . The double of such a triangle has non-coaxial holonomy

and so the triangle is angle-deformable, and in particular (x1, x2)-angle-deformable.

Case (c) : ϑ2 ∈ (0,1) and ϑ1 ∈ (2,3).
Pick η < 0 such that |η| is smaller than ε,2(1− ϑ2), ϑ1 − 2. Then the triple (3−

ϑ1,1− ϑ2,1− (ϑ3 + η)) satisfies the triangular inequality and so there exists a convex

triangle T ′ with vertices x1, y2, x3 and angles π(ϑ1 − 2, ϑ2, ϑ3 + η). Moreover, η can be

chosen small enough so that such T ′ is π(1− ε)-wide at x3. Clearly, the edge x1y2 of T ′

has length � < π . Consider now a triangle T ′′ = T(1, �, ϑ2) with vertices x2 of angle πϑ2,

x′2 of angle π(1− ϑ2) and x′1 of angle 2π and edges incident at x′1 of length l. The desired

triangle T is then obtained by gluing T ′′ with T ′ by identifying the edge x′1x′2 of the former

to the edge x1y2 of the latter (see Figure 9.3). As in the previous case, x1x2 and x1x3 are

shorter than π and the triangle is angle-deformable, and in particular (x1, x2)-angle-

deformable.

Case (d) : ϑ2 not an integer.

Let d1,d3 be positive integers such that ϑ ′2 = ϑ2 − d3 ∈ (0,1) and ϑ ′3 = ϑ3 − d1 ∈
(0,2) and so ϑ ′1 = ϑ1 − d1 − d3 ∈ (1,3). The previous cases ensure that there exists an

(x1, x2)-angle-deformable triangle T ′ with angles π(ϑ ′1, ϑ
′
2, ϑ

′
3 + η) for some |η|< ε, which

is (π − ε)-wide at x3 and such that |x1x2|<π and |x1x3|<π . The triangle T is then

obtained by gluing an edge of the exceptional bigon B(d1, |x1x3|) with x1x3 and an edge

of B(d3, |x1x2|) with x1x2 (see Figure 9.4). Such a T is clearly π(1− ε)-wide at x3. Since

this gluing procedure can be performed in families, the (x1, x2)-angle-deformability of T

follows from the analogous property of T ′. �
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Remark 3.19. The restriction ϑ2 /∈Z is not due to the chosen proof. In fact, for ϑ2 = 1 and

ϑ1 /∈Z, we would be looking for a bigon with different angles which are not multiples of

π and it is known that such bigons do not exists. As another example, if ϑ2 =d, ϑ3 =d′

and ϑ1 =d+ d′ + 2, the double DT a triangle T would be a (connected) ramified cover of

S
2 over 3 points and this is clearly impossible, as the product of a d-cycle and a d′-cycle

in a group of permutations cannot give a (d+ d′ + 2)-cycle. �

3.2 Cut-and-paste operations

We recall that, for every α > 0, we denoted by Sα the spherical surface homeomorphic to

S
2 with two cone points of angle 2πα sitting at distance π , as in Corollary 3.5(a).

3.2.1 Cut-and-paste at a conical point

The goal of this section is to describe a cut-and-paste procedure that permits to increase

the number of conical points on a sphere by modifying the metric in a neighbourhood of

a conical point.

We remind that, if S is a closed spherical surface which is r-wide at a conical

point y, then Uy(r) denotes the closed subsurface of S obtained by removing the closed

ball of radius r centred at y. Thus, ∂Uy(r) is a circle of length 2πα sin(r), where 2πα is

the angle at y.

The following lemma is obvious: the situation is illustrated in Figure 10.

Fig. 10. Chopping off the dark region and gluing U and U ′.
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Lemma 3.20 (Surgery at conical points). Let S and S′ be two spherical surfaces with

cone points y∈ S and y′ ∈ S′ of angles 2πα. Suppose that S is r-wide at y and S′ is

(π − r)-wide at y′ for some r ∈ (0, π). Then the surface S#r S′ obtained by gluing U =Uy(r)

and U ′ =Uy′(π − r) through an isometry ∂U ∼= ∂U ′ is a spherical surface with conical

points. Moreover, if S or S′ has non-coaxial holonomy, the same holds for S#r S′. �

3.2.2 Cut-and-paste along a path

We recall that a path γ on a surface S is called simple if it is injective (i.e., if its image

has no self-intersections).

Definition 3.21. A path γ on a spherical surface S is simply developable if its developing

map devγ is injective. �

The following lemma is obvious.

Lemma 3.22 (Surgery along a path I). Let S and S′ be two spherical surfaces. Let γ

(respectively, γ ′) be a simple path on S (respectively, S′) running from the conical point

y1 of angle 2πα1 to the conical point y2 of angle 2πα2 (respectively, from the conical point

y′1 of angle 2πα′1 to the conical point y′2 of angle 2πα′2) and intersecting the singularities

nowhere else. Suppose that γ and γ ′ are isometric. Then the surface denoted by Sγ#γ ′ S′

and obtained by gluing S \ γ and S′ \ γ ′ via the isometric identification of γ with γ ′ is a

spherical surface; moreover, the two points yi and y′i are identified to a conical point of

angle 2π(αi + α′i) on Sγ#γ ′ S′ for i = 1,2. �

Using this lemma, we get the following result. The situation is illustrated in

Figure 11.

Proposition 3.23 (Surgery along a path II). Consider a spherical surface S with conical

points y1, . . . , yk of angles 2πβ1, . . . ,2πβk and let γ be a simple and simply developable

path on S that joins y1 and y2. Let also d∈Z+.

(a) The spherical surface obtained by gluing S \ γ and d copies of S
2 \ devγ via an

isometric identification of their boundaries has conical singularities z1, . . . , zk

of angles 2π(β1 + d, β2 + d, β3, . . . , βk).

(b) Suppose β2 < 1 and that γ is geodesic path of length �= |γ |<π . Then there

exists a spherical surface S′ and a path γ ′ on S′ isometric to γ such that Sγ#γ ′ S′

has conical singularities z1, . . . , zk of angles 2π(β1 + 2d, β2, . . . , βk). Moreover,

the conical points z1 and z2 on Sγ#γ ′ S′ are joined by a geodesic arc of length �.
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(11.1) (11.2)

Fig. 11. Increasing the angles by d(e1 + e2) and by 2de1.

Moreover, if S is deformable (respectively, non-coaxial), so are the constructed

surfaces. �

Proof of Proposition 3.23. About (a), according to Lemma 3.22 it is sufficient to

construct a spherical surface S′ with two conical points of angles 2πd that are

joined by a simple curve γ ′ isometric to γ . The conical points on the new spheri-

cal surface Sγ#γ ′ S′ will be the classes of the yi, which will be denoted by zi (see

Figure 11.1).

To do this, consider the developing map devγ to S
2, which is injective, and call

y′1 and y′2 its starting and end points. Then let S′ be the ramified cover of S
2 of degree d

branched at y′1, y′2 and let γ ′ be one of the d lifts of devγ . Indeed, such an S′ is obtained

by gluing d copies of S
2 \ devγ .

Observe that the path γ is still simply developable for any other spherical metric

on S sufficiently close to the given one. Thus, if S is deformable, so is the constructed

Sγ#γ ′ S′.

Concerning (b), let S′ be the double of the spherical triangle T(d, �, β2) con-

structed in Lemma 3.11. This is a sphere with conical points y′1, y′2, y′3 of angles 2π(2d),

2πβ2, and 2π(1− β2) and y′1 is joined to y′2 and y′3 by two geodesics of length �= |γ |: call

them γ ′2 and γ ′3. The new spherical surface is obtained by gluing S \ γ to S′ \ γ ′3 by iden-

tifying γ to γ ′3, y1 to y′1, and y2 to y′3 (see Figure 11.2). Observe that y1 and y′1 merge to a

conical point z1 of angle 2π(β1 + 2d), but y2 and y′3 merge to a regular point (i.e., a point

of angle 2π ). On the other hand, the points y′2, y3, . . . , yk will give rise to conical points

z2, . . . , zk of angles 2πβ2, . . . ,2πβk. Finally, note that γ ′2 descends on Sγ#γ ′3 S′ to a geodesic

path of length � between z1 and z2.
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Observe that, for any spherical metric on S sufficiently close to the given one,

the path γ continuously deforms to a geodesic between y1 and y2 of length <π . Thus, if

S is deformable, so is the constructed Sγ#γ ′ S′.

Moreover, considering S \ γ inside Sγ#γ ′ S′, it is easy to see that in both cases (a)

and (b) the spherical surface Sγ#γ ′ S′ has the same holonomy as S, and so it is non-coaxial

if and only if S is. �

3.3 Spheres with four conical points

In this section, we will prove Theorem C for spheres with four conical points of angles

not divisible by 2π .

Theorem 3.24 (Existence of 4-punctured spherical metrics with non-integral angles).

Let ϑ1, ϑ2, ϑ3, ϑ4 be real non-integer numbers that satisfy both the positivity constraints

(P) and the holonomy constraints (H) strictly. Then there exists a sphere S endowed

with a spherical metric with four conical singularities of angles 2πϑ1, . . . ,2πϑ4 and non-

coaxial holonomy. �

Remark 3.25. By Luo’s Theorem 2.9, all metrics from Theorem 3.24 are deformable. �

The proof proceeds in two steps. First, we study several types of spherical

quadrilaterals embedded and immersed in S
2. We construct embedded quadrilater-

als that have at most two angles larger than π and immersed quadrilaterals with

three angles <π and one angle in the interval (2π,3π). By doubling such quadrilater-

als, we obtain all spherical metrics with non-integral angles 2π · (ϑ1, ϑ2, ϑ3, ϑ4) with

ϑ ∈ (0,2)2 × (0,1)2 or ϑ ∈ (2,3)× (0,1)3, apart from metrics with two exceptional one

parameter families of angles. Spherical surfaces with four conical points in the excep-

tional classes are obtained by an alternative construction. Finally, using cut-and-paste

operations along paths we get all the remaining metrics.

Let S4 be the group of permutations of {1,2,3,4} and view it as acting on R
4

in the obvious way S4 × R
4 � (σ,ϑ) �→ ϑσ ∈R

4, where ϑσ := (ϑσ(1), ϑσ(2), ϑσ(3), ϑσ(4)). Let D8

be the subgroup of S4 generated by (1234) and (13), which is isomorphic to a dihedral

group of order 8. The following simple observation will be useful.

Notation. The four vertices of a quadrilateral Q are always cyclically labelled respect-

ing an orientation on ∂Q. �
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Lemma 3.26 (Allowed permutations). Suppose that there exists a spherical quadrilat-

eral Q with vertices x1, . . . , x4 and conical points of angles π · ϑ . Then for every σ ∈D8

there exists a spherical quadrilateral Q′ with vertices x′1, . . . , x′4 and angles π · ϑσ . �

Proof. We can produce Q′ out of Q just cyclically permuting the labels or switching the

orientation. In the former case, we easily see that this corresponds to the permutation

σ1 = (1234) or σ1 = (4321); in the latter case, this corresponds to one of the following σ2 =
(12)(34), σ2 = (13)(24), or σ2 = (14)(23). Since {σ1, σ2} generates the D8, the conclusion

follows. �

Remark 3.27. Given a surface S of genus 0 with four conical points of angles 2π · ϑ , we

can clearly produce an S′ with angles 2π · ϑσ for every σ ∈S4: indeed, it is enough to

relabel the conical points accordingly to σ . On the other hand, given a spherical quadri-

lateral Q with angles π · ϑ , it is not always possible to produce a quadrilateral Q′ with

angles π · ϑσ with σ ∈S4 but σ /∈D8. �

3.3.1 Convex quadrilaterals

Let c = (c1, c2, c3, c4) ∈R
4 be a vector with strictly half-integral coordinates. Recall that

we denote by �c the unit cube in R
4 with centre c and by c the corresponding truncated

cube. Note that, since n= 4 is even, m ∈Z
4
o if and only if m − 1 ∈Z

4
o: thus, ϑ ∈H4 if and

only if δ = ϑ − 1 ∈H4.

Definition 3.28. Let c ∈R
4 be a strictly half-integral vector and let m be an even integral

vertex of �c . The half truncated cube centred at c associated to the vertex m is

�c (m) :=
{
p ∈ c |d1 (m,p)≤ 2

}
. �

Example 3.29. Let c0 = ( 1
2 ,

1
2 ,

1
2 ,

1
2 ) and let 1= (1,1,1,1) and 0= (0,0,0,0) be even ver-

tices of �c0 . The truncated cube c0 is the union of �c0(1) and �c0(0); moreover, the two

half truncated cubes only overlap along a face. �

Lemma 3.30 (Convex quadrilaterals). For every ϑ = (ϑ1, . . . , ϑ4) in the interior of �c0(1)

there exists a convex quadrilateral Q with angles π · ϑ . �

Proof. After possibly reversing the order and cyclically permuting ϑ1, . . . , ϑ4, we can

assume that ϑ1 ≥ ϑ2, ϑ3, ϑ4 and ϑ2 ≥ ϑ4. In this case, one can check that the triple (ϑ1 +
ϑ2 − 1, ϑ3, ϑ4) satisfies strictly both constraints (P) and (H). Hence, for t≥ 0 small enough,
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Fig. 12. Construction of a convex quadrilateral.

there exists a continuous family of spherical triangles t �→Δt with vertices y, x3, x4 and

angles π(ϑ1 + ϑ2 − 1+ t, ϑ3, ϑ4). For t> 0 small enough there exists as well a continuous

family t �→Δ′
t of spherical triangles with vertices y′, x2, x1 and angles π(ϑ1 + ϑ2 − 1+

t,1− ϑ2,1− ϑ1). Note that the diameter of Δ′
t → 0 as t→ 0. Thus, for t> 0 small enough,

it is possible to inscribe Δ′
t inside Δt in such a way that y′ coincides with y and that

y′x2 and y′x1 are contained inside yx3 and yx4, respectively (see Figure 12). Hence, for

such small t> 0, we can obtain our desired quadrilateral with vertices x1, x2, x3, x4 as

the completion of Δt \Δ′
t. �

3.3.2 Non-convex quadrilaterals embedded in S
2

Lemma 3.31 (Seven basic non-convex quadrilaterals). Let ϑ ∈�c0(1) and consider the

following table.

i fi (ϑ) mi ci

0 (ϑ1, ϑ2, ϑ3, ϑ4) (1,1,1,1)
(

1
2 ,

1
2 ,

1
2 ,

1
2

)
1 (2− ϑ1,1− ϑ2, ϑ3,1− ϑ4) (1,0,1,0)

(
3
2 ,

1
2 ,

1
2 ,

1
2

)
2 (ϑ1 + 1,1− ϑ2, ϑ3, ϑ4) (2,0,1,1)

(
3
2 ,

1
2 ,

1
2 ,

1
2

)
3 (ϑ1 + 1, ϑ2, ϑ3, ϑ4 + 1) (2,1,1,2)

(
3
2 ,

1
2 ,

1
2 ,

3
2

)
4 (2− ϑ1,2− ϑ4,1− ϑ3,1− ϑ2) (1,1,0,0)

(
3
2 ,

3
2 ,

1
2 ,

1
2

)
5 (2− ϑ1, ϑ4,2− ϑ3, ϑ2) (1,1,1,1)

(
3
2 ,

1
2 ,

3
2 ,

1
2

)
6 (1+ ϑ1,1− ϑ2,1+ ϑ3,1− ϑ4) (2,0,2,0)

(
3
2 ,

1
2 ,

3
2 ,

1
2

)
7 (1+ ϑ1,1− ϑ2,2− ϑ3, ϑ4) (2,0,1,1)

(
3
2 ,

1
2 ,

3
2 ,

1
2

)
For every convex quadrilateral Q with cyclically ordered angles π · ϑ and for every 1≤ i ≤
7 there exists a quadrilateral Qi embedded in S

2 with cyclically ordered angles π · fi(ϑ).

Moreover, fi takes 1 to mi and �c0(1) to �ci (mi ) through an affine map. �
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Fig. 13. The seven basic non-convex quadrilaterals.

Proof. Let us assume that Q is embedded in S
2 and that yi is the vertex of Q with

angle πϑi. Denote by y′i the point of S
2 antipodal to yi. The four sides of Q lie on four

geodesics in S
2 that cut S

2 in six convex quadrilaterals and eight convex triangles. All

the quadrilaterals in this lemma are assembled from these pieces and the vertices of

these quadrilaterals are chosen among the points yi and y′j.

The convex quadrilateral Q and all of seven non-convex quadrilaterals Qi we

wish to construct are shown in Figure 13: in all the cases we remove from S
2 a point

lying in the quadrilateral opposite to Q and we draw the four great circles on which the

edges of Q lie. �

Remark 3.32. In quadrilaterals (Q1) and (Q2) the vertex x1 is the only one with angle

larger than π and both adjacent sides (namely, x1x2 and x1x4) are shorter than π . In

quadrilaterals (Q3), . . . , (Q7) there are two opposite sides shorter than π that join a ver-

tex with an angle larger than π with a vertex with an angle <π . �

We will now show that the angles of the quadrilaterals constructed in

Lemma 3.31 cover almost all points of ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

and ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

.

Corollary 3.33 (Non-convex quadrilaterals I). Let ϑ be in the interior of ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

but

ϑ �= (1+ a,1− a,1− a,1− a) for all a∈ (0,1). Then for some permutation σ ∈S4 there

exists a spherical quadrilateral with angles π · ϑσ . �
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Proof. To prove this corollary, we will use quadrilaterals of type (Q1) and (Q2). Con-

sider the set of points in ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

that can be represented by quadrilaterals of type

(Q1) in Lemma 3.31. From Lemma 3.30, it follows that these points are exactly those at

distance < 2 from the point m1 = (1,0,1,0). In the same way, quadrilaterals of type (Q2)

correspond to points of ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

at distance < 2 from the point m2 = (2,0,1,1).
Now, the group of coordinate permutations preserving �( 3

2 ,
1
2 ,

1
2 ,

1
2 )

can be identified

to S3
∼= stab(1)⊂S4. The union of the orbits of the points m1 and m2 under this group

consists of the following six vertices of ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

:

(1,0,1,0) , (1,1,0,0) , (1,0,0,1) ; (2,0,1,1) , (2,1,0,1) , (2,1,1,0)

Hence six halves of ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

are covered by ϑ corresponding to spherical quadrilaterals

(see Remark 3.29). It is easy to see that points of type (1+ a,1− a,1− a,1− a) are the

only points that are not covered. These are exactly the points in ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

that are on

distance 2 from the above six vertices. �

Corollary 3.34 (Non-convex quadrilaterals II). Let ϑ be in the interior of ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

. Then

for some permutation σ ∈S4 there exists a spherical quadrilateral with angles π · ϑσ . �

Proof. The argument is similar to the one employed in the proof of Corollary 3.33 but in

this case we use quadrilaterals of types (Q3), (Q4), (Q5), (Q6), and (Q7). By Lemma 3.31,

after taking coordinate permutations, we see that m3, . . . ,m7 correspond to the eight

even vertices of ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

, namely

(2,2,1,1) ; (1,1,0,0) ; (1,1,1,1) ; (2,2,0,0) ;

(2,1,0,1) , (2,1,1,0) , (1,2,0,1) , (1,2,1,0) .

Thus, the construction of (Q3), (Q4), (Q5), (Q6), and (Q7) provides quadrilaterals corre-

sponding to points in ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

at distance < 2 from all eight even vertices.

The only point at distance at least 2 from all eight even vertices of ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

is

its centre. In order to construct a quadrilateral with angles π · ( 3
2 ,

1
2 ,

3
2 ,

1
2 ), consider two

ordinary bigons B ′ and B ′′ of angle π/2, with vertices x1, x2 and x3, x4. Let r ∈ (0, π) and

pick a point y′ ∈ ∂B ′ at distance r from x1 and a point y′′ ∈ ∂B ′′ at distance r from x3. The

wished quadrilateral is then obtained by gluing B ′ and B ′′ via the isometric identification

of x1y′ with y′′x3 (see Figure 14). �
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Fig. 14. A quadrilateral with angles π · ( 3
2 ,

1
2 ,

3
2 ,

1
2 ).

3.3.3 Quadrilaterals immersed in S
2

In order to construct spheres with four conical points with angles in ( 5
2 ,

1
2 ,

1
2 ,

1
2 )

, we pro-

ceed as in the previous section.

Lemma 3.35 (Three basic immersed quadrilaterals). Let ϑ ∈�c0(1) and consider the fol-

lowing table.

i fi (ϑ) mi ci

8 (3− ϑ1,1− ϑ4, ϑ3, ϑ2) (2,0,1,1)
(

5
2 ,

1
2 ,

1
2 ,

1
2

)
9 (2+ ϑ1,1− ϑ2, ϑ3,1− ϑ4) (3,0,1,0)

(
5
2 ,

1
2 ,

1
2 ,

1
2

)
10 (2+ ϑ1, ϑ2, ϑ3, ϑ4) (3,1,1,1)

(
5
2 ,

1
2 ,

1
2 ,

1
2

)
For every convex quadrilateral Q with cyclically ordered angles π · ϑ and for every 8≤
i ≤ 10 there exists a quadrilateral Qi with cyclically ordered angles π · fi(ϑ). Moreover,

fi takes 1 to mi and �c0(1) to �ci (mi ) through an affine map. �

Proof. The quadrilaterals are illustrated in Figure 15 as immersed in S
2, although we

have included also another picture of Q10 for clarity.

The existence of such quadrilaterals relies on Lemma 3.31. In fact, in order to

construct Q8 consider the quadrilateral Q1 and call x′1, x′2, x′3, x′4 its vertices and let B =
Bϑ2 be an ordinary bigon with vertices y4 and y′4. Call z one of the two points on the

boundary of B at distance |x′4x′1| from y′4. The quadrilateral Q8 is obtained from Q1 and

B by gluing the edge x′4x′1 with y′4z, so that x′4 and y′4 are identified to a smooth point

(which will not be marked as a vertex of Q8): its vertices are x1 := [x′1]= [z], x2 := [x′4],

x3 := [x′3], and x4 =: [y4].

In a similar fashion, consider Q with vertices x′i and let B ′′ = B1−ϑ2 and B ′′′ = B1−ϑ3

be two ordinary bigons with vertices x′′, y′′ and x′′′, y′′′, respectively. Let z′′ be a point on

∂B ′′ at distance |x′2x′1| from y′′ and let z′′′ be a point on ∂B ′′′ at distance |x′3x′1| from y′′′.
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Fig. 15. Three families of immersed quadrilaterals.

The quadrilateral Q9 is then obtained by gluing x′2x′1 to y′′z′′ and x′3x′1 to y′′′z′′′ and calling

x1 := [x′1]= [z′′], x2 := [x′′], x3 := [x′3], x4 := [x′′′].

Finally, start again from the quadrilateral Q with vertices x′i and the triangle

T = T(1, |x′1x′4|,1− ϑ4) with vertices y1, y3, y4 of angles π(2,1− ϑ4, ϑ4). The wished Q10 is

obtained by identifying y1y3 to x′1x′4 and then calling x1 := [x′1]= [y1], x2 := [y′2], x3 := [x′3],

and x4 := [y4]. �

Corollary 3.36 (Immersed quadrilaterals). Let ϑ be in the interior of ( 5
2 ,

1
2 ,

1
2 ,

1
2 )

but ϑ �=
(2+ a,a,a,a) for all a∈ (0, 1

2 ]. Then for some permutation σ ∈S4 there exists a spherical

quadrilateral with angles π · ϑσ . Moreover, the vertex with angle larger than 2π can be

joined to any other vertex with a smooth geodesic of length strictly <π . �

Proof. The argument is similar to the one employed in the proof of Corollaries 3.33 and

3.34. This time we use quadrilaterals of types (Q8), (Q9), (Q10).

By Lemma 3.31, after taking coordinate permutations, we see that m8,m9,m10

correspond to the seven even vertices of ( 5
2 ,

1
2 ,

1
2 ,

1
2 )

, namely

(3,1,1,1) ; (2,1,1,0) , (2,1,0,1) , (2,0,1,1) ; (3,1,0,0) ,

(3,0,1,0) , (3,0,0,1) .
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Thus, the construction of (Q8), (Q9), (Q10) provides quadrilaterals corresponding to

points in ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

at distance < 2 from these seven vertices. The remaining points

belong to the interval connecting the vertex (2,0,0,0) with the centre of ( 5
2 ,

1
2 ,

1
2 ,

1
2 )

. The

last assertion can be checked by direct inspection. �

3.3.4 Sporadic families of 4-punctured spheres

Although most 4-punctured spheres can be obtained by doubling spherical quadrilat-

erals, it seems from Lemmas 3.33 and 3.35 that there are two 1-parameter families of

ϑ ∈R
4 such that we are not able to construct quadrilaterals with angles π · ϑ . Thus, for

such families of angles, here we present ad hoc constructions.

Lemma 3.37 (Sporadic 4-punctured spheres).

(a) For any a∈ (0,1) there exists a 4-punctured sphere Sa and a spherical met-

ric on it with conical singularities x1, x2, x3, x4 of angles 2π · (1+ a,1− a,1−
a,1− a).

(b) For any b∈ (0, 1
2 ) there exists a 4-punctured sphere Sb and a spherical metric

on it with conical singularities x1, x2, x3, x4 of angles 2π · (2+ b,b,b,b).

(c) There exists a 4-punctured sphere S and a spherical metric on it with conical

singularities x1, x2, x3, x4 of angles 2π · ( 5
2 ,

1
2 ,

1
2 ,

1
2 ).

Moreover, on the spheres constructed in all three cases there is a smooth geodesic from

x1 to xj of length strictly <π for j = 2,3,4. �

Proof. As for part (a), note that for every a∈ (0,1) there exists a sphere Σa with

three conical points y1, y2, y3 of angles 2π · ϑ(a), where ϑ(a) := ( 1+a
3 ,1− a, 1

3 ). Indeed,

ϑ(0)= ( 2
3 ,1,

1
3 ) and ϑ(1)= ( 1

3 ,0,
1
3 ) lie on the boundary of the simplex formed by the angle

vectors ϑ ∈R
3 corresponding to spheres with three angles < 2π and ϑ(a) lies strictly

inside such a simplex for a∈ (0,1).
Now consider the cyclic cover p : Sa→Σa of degree 3 cover branched over y1 and

y3. The x1 = p−1(y1) is a point of angle 2π(1+ a) and p−1(y3) is a smooth point, which will

not be labelled. Moreover, p−1(y2) consists of three points of angle 2π(1− a), which we

label by x2, x3, x4 (see Figure 16). Thus, (Sa, x1, x2, x3, x4) is our wished spherical surface.

Three geodesics that joint x1 with xj are preimages on Sa of the shortest geodesic in Σa

joining y1 and y2.
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Sa Σa

x1

x2

x3

x4

y1

y2

y3

α

β

p

Fig. 16. The sporadic sphere Sa with the six paths γi j .

Fig. 17. A sphere with angles 2π · ( 5
2 ,

1
2 ,

1
2 ,

1
2 ).

The proof of (b) is entirely analogous. As above, for any b∈ (0, 1
2 ) there exists a

sphere Σb with three conical points y1, y2, y3 of angles 2π · ϑ(b), where ϑ(b) := ( 2+b
3 ,b, 1

3 ).

Indeed, ϑ(0)= ( 2
3 ,0,

1
3 ) and ϑ( 1

2 )= ( 5
6 ,

1
2 ,

1
3 ) lie on the boundary of the simplex formed by

the angle vectors ϑ ∈R
3 corresponding to spheres with three angles < 2π , and ϑ(b) lies

strictly inside it for b∈ (0, 1
2 ). Now, as before take the cyclic cover Sb →Σb of degree 3

branched at y1 and y3.

About (c), consider two hemispheres D and D′ and let � ∈ (0, π). On ∂D pick points

y1, z, y2 (in this cyclic order with respect to the orientation induced on ∂D) in such a way

that |y1y2| = � and z is the midpoint of y1y2; on ∂D′ pick points y′2, z
′, y′3, w

′, y′1 (in this

cyclic order) in such a way that |y′2y′1| = � and that z′ is the midpoint of y′2y′3 and w′

is the midpoint of y′3y′1. As in Figure 17, the wished sphere S is obtained by identify-

ing y1z to zy2 on D and y′2z′ to z′y′3 and y′3w
′ to w′y′1 on D′, and finally y′1y′2 to y1y2: its
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marked points are x1 := [yi]= [y′i], x2 = [z], x3 = [w′], x4 = [z′]. The last assertion is clear by

construction. �

3.3.5 Spheres with ϑ1, ϑ2 < 2, ϑ3, ϑ4 < 1, and with 1<ϑ1 < 2, ϑ2, ϑ3, ϑ4 < 1

Here we derive corollaries from the statements proved in the previous sections. Denote

by Π4 the box [1,2]× [0,2]× [0,1]2 ⊂R
4.

Proposition 3.38 (4-punctured spheres with non-integral angles in Π4). For every ϑ ∈
int(Π4 ∩A4) with no integral coordinate there exists a sphere S with a spherical metric

g and conical singularities x1, x2, x3, x4 of angles 2π · ϑ , which satisfies the following

properties:

(a) there exist six simple paths {γi j |1≤ i < j ≤ 4} that have no inner points of

intersection and such that γi j joins xi and xj;

(b) either γ13 or γ14 is a geodesic shorter than π ;

(c) the metric g has non-coaxial holonomy. �

Proof. We will first construct the spheres and the paths γi j and then will prove that

their holonomy is not coaxial.

Construction of spheres with six paths.

Note that a ϑ ∈ int(Π4 ∩A4) with no integral coordinate must belong to the inte-

rior either of ( 3
2 ,

1
2 ,

1
2 ,

1
2 )

or of ( 3
2 ,

3
2 ,

1
2 ,

1
2 )

. Hence, by doubling quadrilaterals Q constructed

in Corollaries 3.33 and 3.34, we cover all the cases apart from the exceptional family

treated in Lemma 3.37(a).

In order to find the six paths γi j, we proceed as follows.

Consider first the case of S obtained as a double quadrilateral DQ= Q  Q̄/∼.

Take four geodesic paths γ12, γ23, γ34, γ14 corresponding to the edges of Q (or; equiva-

lently of Q̄) and choose a simple path γ13 inside Q and a simple path γ24 inside Q̄. All

these paths will be simple, since the quadrilateral is embedded in S
2. Moreover, it fol-

lows from Remark 3.32 that either γ13 or γ14 can be chosen to be a geodesic shorter

than π .

Consider now the exceptional spheres Sa with a∈ (0,1), constructed in

Lemma 3.37(a). By Lemma 3.14, the surfaceΣa can be constructed by doubling of a spher-

ical triangle Ta with vertices y1, y2, y3 and angles π · ( 1+a
3 ,1− a, 1

3 ). Choose a point z∈ Ta

in the interior of the side y1y3. Now consider the following two paths on Σa= DTa: the

geodesic α determined by the edge y1y2 of Ta and the geodesic β obtained by doubling
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of the geodesic segment y2z contained in Ta. Clearly, β is a simple loop on Σa based at

y2 and it is easy to see that α is shorter than π . If p : Sa→Σa is the triple cyclic cover

branched at y1, y3, then we define γ12, γ13, γ14 to be the preimages of α and γ23, γ34, γ24 to

be the preimages of β through p. Since |α|<π , we have that both γ13 and γ14 are shorter

than π .

This completes the proof of claims (a) and (b).

Non-coaxiality.

Since ϑi /∈Z, non-coaxiality of the holonomy of the spherical surfaces S just con-

structed follows from Lemma 2.11 if we are able to find two distinct conical points xi, xj

on S joined by a smooth geodesic γ of length � with � /∈ πZ. By the above property (b), we

can choose γ to be either the path γ13 or γ14. This proves (c). �

Analogously, we have the following.

Proposition 3.39 (4-punctured spheres with non-integral angles in ( 5
2 ,

1
2 ,

1
2 ,

1
2 )

). For every

ϑ in the interior of ( 5
2 ,

1
2 ,

1
2 ,

1
2 )

there exists a sphere S with a spherical metric g and conical

singularities x1, x2, x3, x4 of angles 2π · ϑ , which satisfies the following properties:

(a) x1 and x2 are joined by a smooth geodesic of length strictly <π ;

(b) the metric g has non-coaxial holonomy. �

Proof. The wished spherical surface S is either obtained from Lemma 3.37(b and c) or

by doubling the quadrilaterals constructed in Corollary 3.36. In either case, property (a)

is satisfied.

Property (b) then follows from Lemma 2.11, since ϑ1, ϑ2 /∈Z. �

3.3.6 Existence of spheres with four conical points and non-integral angles

In this section, we finally prove Theorem 3.24. We will construct the desired spheri-

cal surfaces starting from those produced in Proposition 3.38 and applying the gluing

operations of Proposition 3.23. Since these surgeries do not change the holonomy, non-

coaxiality of the new metrics follows from Proposition 3.38.

Notation. Let e1, . . . ,e4 be the standard generators of Z
4 and define ekl := ek + el for

1≤ k< l ≤ 4. The six elements ekl generate the semigroup

Γ 4 := {p ∈Z
4
≥0 | ‖p‖1 ∈ 2Z and 2pj ≤ ‖p‖1 for all j = 1, . . . ,4

}
. �
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Proof of Theorem 3.24. Let m be a point in Z
4
≥0 such that ϑ ∈�c , where c =m +

( 1
2 ,

1
2 ,

1
2 ,

1
2 ). Without loss of generality, we can assume m1 ≥m2 ≥m3 ≥m4 ≥ 0, and also

m1 ≥ 1.

We will now treat two cases separately.

Case (a): m1 ≤m2 +m3 +m4.

Suppose first that ‖m‖1 ∈ 2Z so that m ∈ Γ 4.

Since m1 ≥ 1, we have m2 ≥ 1 and so m’ =m − e12 ∈ Γ 4. As a consequence, we

have a presentation
m’ =m12e12 + · · · +m34e34,

for suitable mij ∈Z≥0 and so ϑ −m’ ∈ [1,2]× [1,2]× [0,1]2 ⊂Π4. Since ‖m’‖ ∈ 2Z,

the vector ϑ −m’ ∈A4 and so ϑ −m’ ∈ int(Π4 ∩A4) and it has no integral

coordinate.

By Proposition 3.38, there exists a sphere S′ with four conical points of angles

2π · (ϑ −m’ ) and six simple paths γi j joining xi and xj that may only intersect at their

endpoints.

The wished spherical surface S is obtained by performing the surgery described

in Lemma 3.23(a) along these paths, gluing the sphere S′ with m′
i j copies of S

2 \ devγi j

along each γi j for all 1≤ i < j ≤ 4. This settles the case ‖m‖1 ∈ 2Z.

To treat the case when ‖m‖1 is odd, it is enough to choose m’ =m − e1 and

to observe that m’ ∈ Γ 4 and that ϑ −m’ ∈ [1,2]× [0,1]3 ⊂Π4. Then the above argument

carries on.

Case (b) : m1 >m2 +m3 +m4 and ‖m‖1 odd.

Since ϑ −m + e1 ∈ [1,2]× [0,1]× [0,1]2 ⊂Π4 and m − e1 is even, we have ϑ −
m + e1 ∈ int(Π4 ∩A4)with no integral coordinate. Moreover, (m1 − 1)−m2 −m3 −m4 =
2dwith d∈Z≥0. By Proposition 3.38, there exists a sphere S′ with conical points x1, . . . , x4

of angles 2π · (ϑ −m + e1); moreover, either γ13 or γ14 is a geodesic of length <π , which

we will denote by γ .

Hence, we can apply to S′ the surgery operation described in Lemma 3.23(b) along

γ , thus producing a sphere S′′ with angles 2π · (ϑ −m + (2d+ 1)e1).

Finally, we obtain our wished spherical surface by applying the operation of

Lemma 3.23(a) to S′′ by gluing m2 copies of S
2 \ devγ12 along γ12, m3 copies of S

2 \ devγ13

along γ13, and m4 copies of S
2 \ devγ14 along γ14.

Case (c) : m1 >m2 +m3 +m4 with m2 > 0 and ‖m‖1 even.

We proceed analogously to case (b). Since ϑ −m + e12 ∈ [1,2]× [1,2]× [0,1]2 ⊂
Π4 and m,e12 are even, we have ϑ −m + e12 ∈ int(Π4 ∩A4) with no integral coordinate.
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Moreover, m1 −m2 −m3 −m4 = 2d with d∈Z≥0. By Proposition 3.38, there exists a

sphere S′ with conical points x1, . . . , x4 of angles 2π · (ϑ −m + e12); moreover, either γ13

or γ14 is a geodesic of length less than π , which we will denote by γ .

Hence, we can apply to S′ the surgery operation described in Lemma 3.23(b) along

γ , thus producing a sphere S′′ with angles 2π · (ϑ −m + e12 + 2de1).

Finally, we obtain our wished spherical surface by applying the operation of

Lemma 3.23(a) to S′′ by gluing (m2 − 1) copies of S
2 \ devγ12 along γ12, m3 copies of S

2 \
devγ13 along γ13, and m4 copies of S

2 \ devγ14 along γ14.

Case (d) : m1 >m2 +m3 +m4 with m2 = 0 and ‖m‖1 even.

Clearly, we must have m1 = 2+ 2d with d∈Z≥0 and m2 =m3 =m4 = 0 Hence, ϑ −
2de1 belongs to the interior of ( 5

2 ,
1
2 ,

1
2 ,

1
2 )

.

By Proposition 3.39, there exists a sphere S′ with conical points x1, . . . , x4 of

angles 2π · (ϑ − 2de1); moreover, x1 and x2 are joined by a smooth geodesic γ of length

strictly <π .

Hence, we can apply to S′ the surgery operation described in Lemma 3.23(b) along

γ , thus producing a sphere S with angles 2π · ϑ .

In all cases, the spherical surface S′ has non-coaxial holonomy by Proposi-

tion 3.38 in cases (a-c) and by Proposition 3.39 in case (d). Thus, the surface S constructed

performing gluing operations as in Lemma 3.23 is non-coaxial too. �

3.4 Splitting conical points

The aim of this section is to complete the proof of Theorem C, by showing the following.

Theorem 3.40 (Existence of spherical metrics for n≥ 5). Assume n≥ 4 and let ϑ1, . . . , ϑn

be real numbers that both the positivity constraints (P) and the holonomy constraints

(H) strictly. If n= 4, then also assume that one ϑi is integral.

Then there exists a sphere S endowed with a spherical metric with nconical sin-

gularities of angles 2πϑ1, . . . ,2πϑn and non-coaxial holonomy. Moreover, such a metric

is deformable. �

Clearly, this immediately leads to our main result.

Proof of Theorem C. The statement for n= 3 follows from Theorem 3.8, since 3-

punctured spheres are obtained by doubling spherical triangles. The statement for n= 4

when all ϑ1, . . . , ϑ4 are not integers has already been proved in Theorem 3.24 and for

n≥ 5 is the content of Theorem 3.40.
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Note that, if n= 4 and ϑ satisfies positivity and strict holonomy constraints, then

at most one ϑi can be integer. This case is also taken care by Theorem 3.40 and so the

proof is complete. �

Theorem 3.40 is based on an inductive argument, whose key step can be formu-

lated as follows.

Lemma 3.41 (Inductive step). Let ϑ ∈R
n
+ and M : R

n→R
n−1 be a merging operation of

type M(i+ j) or M(i− j), where i, j ∈ {1, . . . ,n} are two distinct indices. If M = M(i− j), then

assume that ϑ j /∈Z.

Suppose that there exists a sphere S′ endowed with a non-coaxial, angle-deformable

spherical metric g′ with n− 1 conical singularities x′1, . . . , x
′
n−1 of angles 2π · ϑ ′, where

δ′ := M(δ) and δ, δ′ are the defects associated to ϑ,ϑ ′. Then there exists a sphere S

endowed with a non-coaxial, angle-deformable spherical metric g with n conical sin-

gularities of angles 2π · ϑ . �

Proof. Since the metric g is angle-deformable, there exists a neighbourhood N ′ ⊂R
n−1

of ϑ ′ and a continuous family of metrics N ′ � ν ′ �→ g′
ν ′ on S′ such that g′

ϑ ′ = g′ and g′
ν ′ has

singularities of angles 2π · ν ′. Up to shrinking N ′, we can assume that all gν ′ are ε-wide

at x′n−1 and with non-coaxial holonomy.

Case M= M(i+ j).

By Proposition 3.17, there exist an |η|< ε/2 and an (y1, y2)-angle-deformable

spherical triangle (T, g′′) with vertices y1, y2, y3, angles π(ϑi, ϑ j, ϑi + ϑ j − 1+ η), which

is π(1− ε/2)-wide at y3. Thus, there exists a neighbourhood N ′′ of (ϑi, ϑ j) ∈R
2, a

function θ3 :N ′′ →R with θ3(ϑi, ϑ j)= ϑi + ϑ j − 1+ η and a continuous family N ′′ �
ν ′′ �→ g′′

ν ′ of spherical metrics on T such that g′′(ϑi ,ϑ j)
= g′′ and g′′

ν ′′ has conical angles

π(ν ′′1 , ν
′′
2 , θ3(ν

′′)).

By continuity, there exists a neighbourhood N of ϑ ∈R
n such that ν ′′(ν) :=

(νi, ν j) ∈N ′′ and ν ′(ν) := (ν1, . . . , ν̂i, . . . , ν̂ j, . . . , νn, θ3(νi, ν j)) ∈N ′ for all ν ∈N .

For every such ν ∈N , consider the surface (S, gν) obtained by gluing (S′, g′
ν ′(ν))

and the double of (T, g′′
ν ′′(ν)) at the conical points x′n−1 ∈ S′ and [y3] ∈ DT according to

Lemma 3.20. This construction provides a continuous family N � ν �→ gν of spherical

metrics on S with conical points of angles 2π · ν. Moreover, the holonomy of gν is non-

coaxial, since it contains that of g′
ν ′(ν), which is non-coaxial.

Case M= M(i− j).

Since δ j /∈Z, we can apply Proposition 3.18 to obtain an |η|< ε/2 and an (y1, y2)-

angle-deformable spherical triangle (T, g′′) with vertices y1, y2, y3, angles π(ϑi, ϑ j, ϑi −
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ϑ j − 1+ η), which is π(1− ε/2)-wide at y3. The proof then works as in the previous

case. �

Finally, the argument is completed as follows.

Proof of Theorem 3.40. Let δ = (ϑ1 − 1, . . . , ϑn− 1) as usual.

Case n= 4 and ϑi ∈Z.

Since δ ∈ int(A4), for any j �= i the operation M = M(i+ j) satisfies δ′ = M(δ) ∈
int(A3) by Lemma 2.33. By Theorem 3.8, there exists a non-coaxial angle-deformable

spherical triangle with angles 2π(δ′1 + 1, δ′2 + 1, δ′3 + 1) and so we can apply Lemma 3.41,

thus obtaining the wished non-coaxial angle-deformable spherical surface of genus 0

with angles 2π(ϑ1, . . . , ϑ4).

Together with Theorem 3.24, this settles the case n= 4.

Case n≥ 5: induction.

Assume now that the statement holds for (n− 1)-punctured spheres: we will

prove it for n-punctured spheres.

Since n≥ 5, by Theorem 2.28 there exists a merging operation M such that δ′ :=
M(δ) belongs to int(An−1). By inductive hypothesis, there exists a surface S′ of genus 0

with a non-coaxial angle-deformable spherical metric and n− 1 conical singularities of

angles 2π(δ′1 + 1, . . . , δ′n−1 + 1). The conclusion now follows by Lemma 3.41. �

List of Symbols

ei ith vector of the standard basis of R
n

1 vector e1 + · · · + en ∈R
n

ϑ angle vector (ϑ1, ϑ2, . . . , ϑn) ∈R
n

ϑ̄ reduced angle vector ϑ̄ ∈ [0,2)n with ϑ − ϑ̄ ∈ 2Z

δ defect vector ϑ − 1 ∈R
n

δ̄ reduced defect vector ϑ̄ − 1 ∈ [−1,1)n

N small neighbourhood of ϑ in R
n

ν angle vector in N
d1(·, ·) standard �1 distance in R

n

‖ · ‖1 standard �1-norm in R
n

Z
n
o subset of odd-integral vectors, that is, m ∈Z

n⊂R
n with ‖m‖ odd

Hn locus of δ ∈R
n such that d1(δ,Z

n
o)≥ 1

Pn locus of δ ∈ (−1,+∞)n such that
∑

i δi >−2
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An intersection of Hn and Pn

M(i+ j) algebraic positive merging operation

M(i− j) algebraic negative merging operation

�n unit cube with integral vertices in R
n

c centre of a unit cube in R
n

�c unit cube with centre c ∈R
n

n
truncated cube �n∩Hn

c truncated cube �c ∩Hn

�c(m) half truncated cube with centre c and vertex m

δπ radial projection of δ ∈ c onto ∂ c (for δ �= c )

S
2,S3 unit spheres endowed with the standard metric

T1Σ unit tangent bundle to Σ

dev developing map of a simply connected surface

devγ developing map of a path γ

Ṡ complement of the conical points x1, . . . , xn in S

ρ holonomy representation in SO(3,R)

ρ̂ standard lift of the holonomy representation to SU(2)

cp constant loop based at the point p

γ j loop that simply winds about the jth marked point

U j matrix in SU(2) representing the holonomy along γ j

v j vertex of a broken geodesic on S
3

sj side of a broken geodesic on S
3

� j length of the side sj of a broken geodesic on S
3

|xixi+1| length of the edge between xi and xi+1 in a spherical polygon

DS surface obtained by doubling the surface with boundary S

Bα(r) standard open r-neighbourhood of a vertex of angle πα in a spherical

polygon

B̄α(r) standard closed r-neighbourhood of a vertex of angle πα in a spherical

polygon

Sα(r) standard open r-neighbourhood of a point of angle 2πα in a spherical

surface

S̄α(r) standard closed r-neighbourhood of a point of angle 2πα in a spherical

surface

Bα ordinary spherical bigon with angles πα

Sα double of Bα
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B(d, �) exceptional spherical bigon with angles πd at distance �

T(d, �, α) spherical triangle with sides �, �,2πd and angles πα, π(1− α),2πd

Uy(r) complement in a spherical surface of the neighbourhood

of the cone point y of angle 2πα isometric to Bα(r)

S#r S′ surface obtained by surgery at conical points

Sγ#γ ′ S′ surface obtained by surgery along paths
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