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A better understanding of the overall transcriptional 
landscape of human cells has been possible due to the 
ENCODE and FANTOM projects (1-3). It emerged that 
mammalian genomes are more intricate than previously 
suspected and produce a lattice of transcripts, among which 
only 2% encodes for proteins (4,5). Although alternative 
splicing and the presence of different Transcription Start 
Sites can concur to this complexity, a huge part of it can 
be explained by the existence of short (<30 nt) and long  
(>200 nt) non-coding RNAs (ncRNAs) which exert their 
roles without being translated into proteins (6,7). These 
include the long non-coding RNAs (lncRNAs), which 
represent a large and diverse class of RNA polymerase II 
transcripts longer than 200 nucleotides and act as fine-
tuners of gene expression by a range of mechanisms (8). 
LncRNAs have histone-modification profiles, splicing 
signals, and exon/intron lengths akin to protein-coding 
genes. However, despite these similarities, lncRNAs are low 
expressed, preponderant in the nucleus and highly tissue-
specific suggesting potential roles in specifying cell identity 
(9-11) and, when deregulated, in disease (12-14). LncRNAs 
mode of action can be hinted by their nuclear or cytoplasmic 
localization due to their unique ability to base-pair, which 
result in protein coordination and RNA interaction (15). 
When they are nuclear, lncRNAs can reshape the chromatin 
by acting in cis (at nearby regions) or in trans (on distant 
loci). This regulatory potential, in combination with the 
tissue specificity of lncRNAs, suggests that they can be an 
active component of a broad epigenetic regulatory network. 
Indeed, lncRNAs can scaffold distinct histone modification 
complexes to coordinate discrete functions on specific 
genomic loci (16-19). Several lines of evidence also suggest 
that lncRNA-genome interactions can contribute in the 

organization of three-dimensional nuclear structures (20,21). 
This is the case of the enhancer RNAs (eRNA), a recent 
class of lncRNAs which downregulation lead to a reduction 
in mRNA levels from specific neighbouring genes (22) and a 
loss of specific enhancer-promoter contacts (23). 

Based on their closeness to protein-coding genes, 
lncRNAs can be classified into (I) sense or antisense, where 
both overlap another transcript but differ in the selected 
strand; (II) bidirectional, when its transcript expression 
starts in close proximity of the neighboring gene; (III) 
intronic, when their transcription begins from an intron of 
another transcript; (IV) intergenic, when lncRNA is created 
between two protein coding genes of an independent 
transcription unit (24). Although this classification is 
systematic and limited to the involvement of varied 
molecular mechanisms in lncRNA expression, it does not 
provide further information about their modes of action nor 
for their cellular functions. Evidence suggests that lncRNAs 
are positively correlated with the expression of the antisense 
coding genes (9). 

Luo and colleagues focused on a particular aspect 
of lncRNA regulation, which is their ability to act as 
epigenetic controllers (25). The authors determined the 
genomic distribution of human and mouse lncRNA genes 
relative to protein coding loci and focus on antisense 
head-to-head, also named divergent, lncRNAs (<5 kb to 
a coding gene). This class of transcripts comprises almost 
20% of total lncRNAs. In human, gene ontology analysis 
revealed that the neighboring protein coding genes 
associated to divergent lncRNAs were strongly enriched 
in nuclear functions, as transcription factor activity 
and sequence-specific DNA binding, as well as embryo 
development. In line with a possible role in development, 
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the chromatin environment surrounding the divergent 
lncRNA loci is particularly enriched for chromatin marks 
that are characteristic of developmental regulators, as the 
H3K27me3 and the H3K4me3 modifications. 

Previous studies have described mammalian lncRNA/
mRNA divergent transcription (26,27); however, Luo and 
colleagues provided novel insight into lncRNA roles at a 
functional level (25). Indeed, the knock-down of a subset 
of these lncRNAs in mouse embryonic stem cells (mESCs) 
led to a downregulation of nearby genes involved in cell fate 
specification. The authors provide a more detailed analysis 
on the regulation of the Even-Skipped Homeobox 1 (EVX1) 
by its divergent partner, Evx1as. Evx1as downregulation 
by RNAi and antisense oligonucleotides (ASOs), or its 
genomic deletion by CRISPR/Cas9, led to an attenuation 
of EVX1 transcription. Conversely, the tethering of Evx1as 
to EVX1 promoter mediated by a CRISPR system produced 
a significant increase of the levels of EVX1 transcription, 
indicating a cis regulatory function of the lncRNA in control 
of EVX1 gene expression. A deeper investigation of the 
Evx1as protein interactors revealed that Evx1as facilitates 
Mediator recruitment and the binding of H3K4me3 and 
H3K27ac at the promoter, thus shaping an active chromatin 
state. Single cell analysis during mESC differentiation 
upon LIF withdrawal revealed that EVX1as is present in 
most of the cells that activate EVX1 expression. EVX1 is 
involved in the determination of the character of primitive 
streak derivatives during gastrulation, in a regulatory 
network with Goosecoid (GSC) and Brachyury (28).  
EVX1 and Brachyury stimulate each other’s expression, 
while EVX1 and GSC are mutually repressive. As a result, 
EXV1 promotes mesoderm specification at the expenses 
of endoderm. In their paper, Luo et al. showed that both 
EVX1 and Evx1as were required for proper mesoderm 
differentiation. Notably, compared to EVX1, depletion of 
Evx1as seemed to produce a stronger negative effect on the 
expression of mesoderm genes, leaving an open possibility 
of a broader function for this divergent lncRNA. 

In conclusion, in addition to cis regulatory DNA 
elements as promoters or enhancers, divergent lncRNAs 
may provide another layer of transcription regulation. Fine-
tuning of gene expression is extremely important during 
early phases of embryonic development, when key factors 
must be activated, maintained and eventually repressed in 
a tightly regulated manner, in space and time. Increasing 
evidence suggests that the contribution of the non-
coding portion of the transcriptome to this fine-tuning is 
considerable. Certainly, lncRNAs represent flexible, mobile, 

and transient molecules thus providing a convenient mean 
to precisely regulate nearby gene expression in a site-
specific way. We believe that more examples of lncRNAs 
with a key function in development and differentiation, 
such as those described in the paper by Luo and colleagues, 
will come in the next future. 
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