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Abstract

This paper tackles the classical problem of Vibration Absorbers (VAs) operating in the nonlinear dynamic regime. Since traditional

linear VAs suffer from the drawback of a narrow bandwith and numerous structures exhibit nonlinear behavior, nonlinear absorbers

are of practical interest. The resonant dynamic behavior of a nonlinear hysteretic VA attached to a damped nonlinear structure is

investigated analytically via asymptotics and numerically via path following. The response of the reduced-order model, obtained

by projecting the dynamics of the primary structure onto the mode to control, is evaluated using the method of multiple scales up

to the first nonlinear order beyond the resonance. Here, the asymptotic response of the two-degree-of-freedom system with a 1:1

internal resonance is shown to be in very close agreement with the results of path following analyses. The asymptotic solution

lends itself to a versatile optimization based on differential evolutionary.
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1. Introduction

The suppression of unwanted vibrations and the mitigation of large-amplitude oscillations experienced by engi-

neering structures via passive control strategies are widely investigated in the literature. First introduced by Frahm1,

the linear vibration absorber (VA) is the most common device to suppress the oscillations suffered by a structure. Ap-

proximate formulas were derived in2,3 for the VA optimal stiffness and damping by the use of the equal peak method.

More recently, a closed-form exact solution for the linear absorber was obtained in4.

Nonlinear absorbers are also widely studied, including auto-parametric oscillators5,6,7 and nonlinear energy sinks8,9.

The autoparametric VA was first proposed in5 where the behavior of a two-degree-of-freedom (two-dof) system sub-

ject to harmonic excitation was studied according to a first order asymptotic approximation which allowed to investi-

gate the absorber performance. In6 the method of multiple scales was adopted to study the behavior of a pendulum-like

absorber attached to a linear spring-dashpot oscillator under a 2:1 internal resonance. A study of a nonlinear energy
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sink was proposed in9 where the method of multiple scales together with the harmonic balance method were employed

to investigate the capability of this device to control chatter-induced vibrations. Such devices have the potential to

damp oscillations over an extended frequency bandwidth, yet they exhibit a number of drawbacks. In particular,

the auto-parametric absorber is capable of extracting energy from the primary system only if the forcing amplitude

exceeds a certain threshold. Likewise, nonlinear energy sinks may be effective only if the input energy is above a

characteristic threshold level.

A tuning methodology for nonlinear absorbers was proposed in10 based on the imposition of the equality of the

energy possessed by the vibrating element and by the absorber, considering also the case of essentially nonlinear

systems. The equal peak method was adopted in11,12 together with the harmonic balance method truncated to the first

harmonic component to derive an optimal approximate tuning formula for a nonlinear absorber attached to a Duffing

oscillator. In12 it was pointed out that the constitutive law of the absorber must exhibit the same nonlinearity of the

primary system.

Unlike linear absorbers, nonlinear devices are strongly influenced by the external excitation and their performance

can suffer the drawback of strong detuning as the forcing amplitude varies. In13 extensive numerical and experimental

investigations were conducted on nonlinear absorbers where a hysteretic restoring force was introduced by means of

steel wire ropes, whereas in14,15 the introduction of hybrid NiTiNOL-steel wire ropes allowed to study also the pinch-

ing phenomenon and a larger optimization problem. It is of great interest to study the nonlinear regime by analytical

techniques such as the method of multiple scales so as to investigate the behavior of the system for increasing levels

of approximation. In16,17 the method of multiple scales18 was employed to derive the slow modulation of the ampli-

tudes and phases of one-dimensional distributed-parameter nonlinear systems with quadratic and cubic nonlinearities,

whereas a general procedure was developed in19 to construct the nonlinear normal modes of self-adjoint structural

systems.

In this study, the method of multiple scales is adopted to investigate the 1:1 internal resonance arising in a two-dof

system composed of a nonlinear oscillator coupled with a nonlinear VA exhibiting hysteresis. The equations of motion

derived via a Lagrangian approach are solved for different values of the characteristic parameters of the control device.

Before discussing the performance of the control system, the behavior of the hysteretic absorber is investigated via

the method of multiple scales. Such asymptotic method is then extended to the two-dof system to study the vibration

control problem and to exploit the analytical solution within an optimization scheme.

2. Hysteretic Oscillator

In this section, the asymptotic analysis of a hysteretic oscillator subject to harmonic excitation is presented. The

restoring force is the sum of linear and cubic elastic terms and a hysteretic part described by the Bouc-Wen model

represented by a first-order nonsmooth evolution law. The equations of motion derived by a Lagrangian approach are

here presented in nondimensional form as

ẍ + δ x + (1 − δ) z + α x3 = f cosΩt, (1)

ż =
[
1 − (γ + β sign[z ẋ]|z|n] ẋ (2)

where the overdot (˙) denotes differentiation with respect to the nondimensional time t = ω̄tdim. The characteristic

frequency ω̄ is associated with the linear tangent stiffness of the oscillator. The parameter δ represents the ratio

between the post-elastic stiffness and the linear tangent stiffness at the origin. The state-space formulation is adopted

to express the equations of motion as first-order equations, by setting q = x and p = ẋ. The state-space form of the

nondimensional equations of motion is thus expressed as

q̇ − p = 0,

ṗ + q + α q3 + (1 − δ)znl = f cosΩt
(3)

where znl represents only the nonlinear part of the hysteretic force, since its linear term is absorbed by the linear

stiffness.
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2.1. Piecewise representation

The steady-state response of the system to harmonic excitation allows to obtain the force-displacement hysteresis

loop (see Fig. 1). Its shape is characterized by the constitutive parameters β and γ, while the smoothness of the

transition between the elastic and post-elastic phases is governed by n. By setting n = 1, one can rewrite Eqn. (2) as

∂z
∂x
= 1 − {γ + β sign [zẋ]

} |z|. (4)

The hysteretic cycle (see Fig. 1) can be divided into four different branches, each of them corresponding to a different

x

z

u 0
u 1

u 2 u 3

Fig. 1. Typical force-displacement hysteretic cycle. The four branches are highlighted by the red, black, blue and green solid lines and the transition

points are described by the characteristic displacements ui, i = 0, 1, 2, 3.

sign of the hysteresis function z multiplied by the velocity ẋ: branch 1 with z ≥ 0, ẋ ≤ 0 (red line in Fig. 1); branch 2

with z < 0, ẋ < 0 (black line in Fig. 1); branch 3 with z < 0, ẋ > 0 (blue line in Fig. 1); branch 4 with z > 0, ẋ > 0

(green line in Fig. 1).

The upper and lower bounds of the displacement during the steady-state periodic response are denoted by u0 and

u2, respectively, while the displacements where the hysteretic force vanishes are denoted by u1 and u3. By considering

the four branches with the corresponding signs, Eqn. (4) can be rewritten on each branch as

∂z1

∂x
= −1 + (γ − β) z1, with u1 ≤ x ≤ u0, −∂z2

∂x
= −1 + (β + γ) z2, with u2 ≤ x < u1

−∂z3

∂x
= 1 + (β − γ) z3, with u2 < x ≤ u3,

∂z4

∂x
= 1 − (β + γ) z4, with u3 < x < u0.

(5)

These four equations are solved with respect to x to yield the expressions of zi on the four branches as

z1 = − 1

β − γ + B1ex(β−γ), z2 = − 1

β + γ
− B2ex(β+γ), z3 =

1

β − γ − B3e−x(β−γ), z4 =
1

β + γ
+ B4e−x(β+γ) (6)

where Bi are constants. Next, the continuity of the hysteresis cycle at the transition points is enforced giving rise to

the following six conditions:

z1(u0) − z4(u0) = 0, z1(u1) = z2(u1) = 0, z2(u2) − z3(u2) = 0. z3(u3) = z4(u3) = 0. (7)

Moreover, the symmetry of the cycle is prescribed according to u2 = −u0 so that u0 represents here and henceforth

the oscillation amplitude. Thus the four coefficients Bi and the displacements u1 and u3 can be expressed in terms of

the oscillation amplitude u0 and the zi appearing in (6) are uniquely defined. Their expressions are then expanded in

Taylor series of ε up to third order accounting only for the nonlinear part of the hysteretic force, since the linear part

is absorbed in the linear stiffness. The power series expansion of z(nl)

i,k = zi,k − xk reads:

z(nl)

i = ε z(nl)

i,1 + ε
2z(nl)

i,2 + ε
3z(nl)

i,3, with i = 1, . . . , 4. (8)
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2.2. Multiple scales analysis

By introducing the small nondimensionsional parameter ε, the displacements and velocities are expressed in Taylor

series of ε as

q = ε q1(t0, t1, t2) + ε
2 q2(t0, t1, t2) + ε

3 q3(t0, t1, t2) and p = ε p1(t0, t1, t2) + ε
2 p2(t0, t1, t2) + ε

3 p3(t0, t1, t2) (9)

where t0 = t is the fast time scale and t1 = ε t and t2 = ε
2 t are the slow time scales. According to these definitions,

the time derivative becomes d/dt = ∂0 + ε∂1 + ε
2∂2 with ∂j = ∂/∂ tj. Since it is of interest to study the nonlinear

effects arising at higher orders, the external load is rescaled so as to appear at second order, f = ε2 f̄ . Therefore, the

state-space form of the equations of motion gives rise to the following hierarchy of problems:

Order ε :
∂0q1 − p1 = 0

∂0 p1 + q1 = 0
Order ε2 :

∂0q(i)

2
− p(i)

2
= −∂1q1

∂0 p(i)

2
+ q(i)

2
= f (i)

2
+ f cosΩt0

Order ε3 :
∂0q(i)

3
− p(i)

3
= −∂2q1 − ∂1q(i)

2

∂0 p(i)

3
+ q(i)

3
= f (i)

3

(10)

The superscript i denotes the fact that at second and third orders, the hysteresis force assumes different expressions

on the four branches during the oscillation period. This implies that also the solutions of the quadratic and cubic

problems will assume different expressions along the hysteresis loop.

2.3. Linear Problem

The first order problem reduces to the linear undamped system whose solution is written in real form as

q1 = a(t1, t2) cos(t0 + θ(t1, t2)) and p1 = −a(t1, t2) sin(t0 + θ(t1, t2)) (11)

where a(t1, t2) denotes the oscillation amplitude coinciding with the linear approximation of u0. Substituting Eqn. (11)

into the second order problem yields the inhomogeneous terms from which the resonant terms must be eliminated in

order to remove the singularity. To this end, further considerations on the periodicity of the problem are necessary.

The imposition of solvability requires the knowledge of the time instants at which the displacement of the first

order problem attains the characteristic values ui illustrated in Fig. 1. The first time instant to be determined is when

the maximum value u0 is attained, whereas the second time instant corresponds to the displacement u1 which, in the

linear approximation, coalesces to 0. These time instants can be obtained by imposing the following conditions:

∂q1

∂t0

∣∣∣∣∣
t0=T0

= 0 ⇒ T0 = −θ and q1(t0 = T1) = 0 ⇒ T1 =
π

2
− θ. (12)

The remaining time instants corresponding to the displacements u2, u3 and u4, obtained by the periodicity of the linear

solution as T2 = T0 + π, T3 = T0 + 3π/2, and T4 = T0 + 2 π, are collected in the vector τ = {T0, T1, T2, T3, T4}.

2.4. Higher Order Problems

To investigate the primary resonance, the closeness of the external excitation frequency and the natural frequency

is expressed as Ω = 1 + εσ. The inhomogeneous terms of the second order problem contain secular terms that must

be eliminated. The solvability condition is obtained by imposing the orthogonality between the inhomogeneous terms

r(i)

2 of the second order problem and the solution of the corresponding adjoint homogeneous problem that reads:

∂0q∗ − p∗ = 0,

∂0 p∗ + q∗ = 0.
(13)

The solvability conditions are thus expressed as

4∑
i=1

∫ τi+1

τi

w�
1

r(i)

2
dt0 = 0 and

4∑
i=1

∫ τi+1

τi

w�
2

r(i)

2
dt0 = 0 (14)
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where w1 = (sin t0, cos t0) and w2 = (cos t0, − sin t0) represent the solutions of the adjoint problem. This way of

enforcing the solvability stems from the piece-wise nature of the second order hysteretic restoring forces. The ensuing

solvability conditions can be expressed as

∂1a = −2β

3π
(1 − δ)a2 − 1

2
f sin(θ − σt1) and a∂1θ = −2γ

3π
(1 − δ)a2 − 1

2
f cos(θ − σt1). (15)

The second order problem incorporating the solvability conditions can be solved in a piece-wise fashion on each

branch, thus leading to piece-wise expressions for q(i)

2 . A unique solution can be determined by imposing the continuity

of the hysteresis cycle through the transition points and by enforcing its orthogonality to the solutions of the adjoint

problem.

By substituting the second order solution into the third order problem, one obtains the corresponding inhomoge-

neous terms r(i)

3 = {(−∂2q1−∂1q(i)

2 ), f (i)

3 }. Again, the solvability is derived by enforcing the orthogonality between w1,w2

and r(i)

3 , which leads to the expressions of ∂2a and ∂2θ that eliminate the resonant terms in the third order problem.

2.5. Modulation Equations

The system response can be studied by reconstituting the time derivatives of the amplitude and phase, thus arriving

at the so-called modulation equations:

ȧ = ε∂1a + ε2∂2a and θ̇ = ε∂1θ + ε
2∂2θ. (16)

Such equations are solved after transforming them into autonomous form. This can be done by introducing the relative

phase (i.e., phase difference between the excitation and the response) ψ = σ1t1 − θ, thus obtaining

ȧ = a3g1 + a2g2 + a f g3 sinψ + a f g4 cosψ + ag5 + f g6 sinψ + f g7 cosψ,

aψ̇ = a3g8 + a2g9 + a f g10 sinψ + a f g11 cosψ + ag12Ω + ag13 + f g14 sinψ + f g15 cosψ
(17)

where the expressions of gi depend on the nondimensional constitutive parameters. The periodic response is obtained

by searching for the fixed points of the modulation equations obtained as solutions of ȧ = 0 = ψ̇. The frequency-

response equation can thus be obtained in closed form as

Γ(a,Ω) = a2
(
(ag3 + g6)

(
a2g8 + ag9 + g12Ω + g13

)
−
(
a2g1 + ag2 + g5

)
(ag10 + g14)

)
2

+ a2
(
(ag4 + g7)

(
a2g8 + ag9 + g12Ω + g13

)
−
(
a2g1 + ag2 + g5

)
(ag11 + g15)

)
2

− f 2 (ag4 (ag10 + g14) + g7 (ag10 + g14) − (ag3 + g6) (ag11 + g15)) 2 = 0.

(18)

The frequency-response function is a quadratic function of Ω, it can thus be solved to yield the solutions as

c2Ω
2 + c1Ω + c0 = 0 ⇒ Ω1,2 = − c1

2c2

±
√

c2
1
− 4c2c0

2c2

. (19)

One can obtain the fold bifurcation points along the frequency-response curves by finding the stationary points of

Ω(a) with respect to a. However, since the equation is a tenth order polynomial, its solutions are sought numerically.

2.6. Numerical Investigations

The obtained frequency-response functions allow to investigate the system response near the primary resonance.

Figure 2 illustrates the frequency-response curves for different excitation levels ( f = 0.01, 0.015, 0.02). Moreover,

different kinds of hysteresis are investigated by varying the parameters of the Bouc-Wen model. In Fig. 2 the dotted-

dashed lines represent the backbone curves, the dotted-dashed gray lines represent the loci of fold points and the

dashed lines describe the unstable branches of the frequency-response curves. By introducing the cubic restoring term

α x3, it is possible to describe an oscillator which, for small excitation amplitudes, has a softening behavior while at
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(a) Softening behavior when β = 0.45, γ = −3.5, n = 1.
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(b) Hardening behavior when β = 0.5, γ = 4, n = 1.
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(c) Quasi-linear behavior when β = −0.45, γ = 0.45, n = 1.
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(d) Quasi-linear behavior when β = 0.45, γ = −0.45, n = 1.

Fig. 2. Frequency-response curves, backbone curves and unstable regions for three excitation levels, f = (0.01, 0.015, 0.02). The adopted

nondimensional material parameters are δ = 0.05, n = 1, α = 0.

higher amplitudes it can exhibit a hardening behavior. The results are shown in Fig. 3, where the frequency-response

curves are pictured together with their corresponding backbone curves and bifurcation points. The thin black lines

in Fig. 3 represent the ’exact’ solution which is obtained via a path-following algorithm. The comparison between

the two solutions shows a good agreement and also indicates that the dynamic response is well represented by the

multiple scales solution at relatively large amplitudes. In the next section, the asymptotic procedure is extended to a

two-dof system to investigate the vibration control problem.

3. Two-degree-of-freedom system

The hysteretic oscillator is coupled to a nonlinear primary structure, representing the critical mode of the structure

to be controlled. The reduced-order model comprises two nonlinear oscillators. The primary system is characterized

by linear damping and stiffness terms, but also by a nonlinear cubic restoring force. Its displacement is denoted by x1.

The dynamics of the hysteretic oscillator are governed by the same equations described in the previous sections. The
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(a) α = 2.
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Fig. 3. Frequency-response curves, backbone curves and unstable regions (grey areas) when ξ = 0.0005, δ = 0.05, β = 0.45, γ = 4, n = 1. Three

levels of excitation are considered, f = (0.0002, 0.0005, 0.0075). Parts (a) and (b) correspond to α = 2 and α = 20, respectively. The thicker solid

lines indicate the asymptotic solution while the thin solid lines represent the ’exact’ path following solution.

nondimensional equations of motion of the two-dof system are

ẍ1 + 2 ξ1 ẋ1 + x1 + α1 x3
1
+ μ (ẍ1 + ẍ2) = f cosΩt,

μ (ẍ1 + ẍ2) + δ μ α
2 x2 + μα

2 α2 x3
2
+ μα2 (1 − δ) z = 0,

ż =
[
1 − (γ + β sign[z ẋ2]|z|n] ẋ2

(20)

where ξ1, α1, f and Ω represent the damping ratio, the coefficient of the nondimensional cubic force and the nondi-

mensional excitation amplitude and frequency, respectively. Besides the constitutive parameters of the Bouc-Wen

model, the two-dof system depends also on μ and α representing the mass and frequency ratios between the absorber

and the primary structure.

It is convenient to express the equations of motion in modal coordinates and to adopt the first-order (in time)

formulation. The modal coordinates are defined as x = Φ q where the columns of Φ = {φi,j} represent the modal

eigenvectors related to the eigenvalue problem, and p = q̇ is the vector listing the velocities. In matrix form the

equations of motion become

q̇ − p = 0,
ṗ + Λ q = −D p − fnl − fz − f

(21)

where Λ is a diagonal matrix that collects the squared frequencies obtained from the eigenvalue problem, D, fnl and f
are the modal damping matrix, the modal cubic restoring force vector and the modal external load vector, respectively.

fz is the vector of the modal hysteresis force representing only the nonlinear part of z, since its linear contribution is

absorbed in the linear problem.

4. Multiple Scales Analysis

The method of multiple scales is again employed to study the primary resonance expressed by Ω = ω1 + εσ1

occurring between the primary structure and the external excitation, but also the 1:1 internal resonance expressed by

ω2 = ω1 + εσ2 involving the two modes. The hysteresis force is treated separately, as described before, in order to

obtain the Taylor series expansion up to third order. By introducing the ordering parameter ε, the displacements and

velocities are expressed as

q = ε q1(t∗0 , t1, t2) + ε
2 q2(t∗0 , t1, t2) + ε

3 q3(t∗0 , t1, t2) and p = ε p1(t∗0 , t1, t2) + ε
2 p2(t∗0 , t1, t2) + ε

3 p3(t∗0 , t1, t2). (22)
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Since it is of interest to study the nonlinear interactions arising at higher orders, it is convenient to scale the external

load and the damping terms so as to have them appear at second order, i.e., f = ε2 f̄ and ξ1 = ε ξ̄1. Under these

assumptions, the typical hierarchy of problems can be obtained as:

Order ε :
∂0q1 − p1 = 0
∂0p1 + Λ q1 = 0

Order ε2 :
∂0q(i)

2
− p(i)

2
= −∂1q1

∂0p(i)

2
+ Λ q(i)

2
= f (i)

2
+ fe cos(Ωt0)

Order ε3 :
∂0q(i)

3
− p(i)

3
= −∂2q1 − ∂1q(i)

2

∂0p(i)

3
+ Λ q(i)

3
= f (i)

3

(23)

The superscript i has the same meaning of branch index as in the one-dof problem.

4.1. Linear Problem

The first order problem reduces to the linear undamped problem whose solution can be written as

q1,k = Ak(t1, t2) cos(ωk t∗
0
+ θk), p1,k = −ωk Ak(t1, t2) sin(ωk t∗

0
+ θk) with k = 1, 2. (24)

To apply the procedure it is necessary to identify the time instants where the inter-branch transitions take place over

the linear oscillation period. Here, the first-order displacement of the VA is governed by the two modal coordinates

according to x2,1 = φ21 q11 + φ22 q21. This implies that the characteristic time instants T0 and T1 depend on the relative

phase Γ2 := θ2 − θ1 + σ2 t1 between the two modes. To obtain the expressions of T0 and T1 it is necessary to introduce

the time shift t∗
0
= t0 − θ1/ω1, so that the first order solution becomes x2,1 = φ21 A1 cos(ω1 t0) + φ22 A2 cos(ω1 t0 + Γ2).

Accordingly, the time instants are expressed as

∂x2,1

∂t0

= 0 ⇒ T0 =
k0 π

ω1

− 1

ω1

arctan

[
φ22A2 sin Γ2

φ21A1 + φ22A2 cos Γ2

]
, (25)

x2,1 = 0 ⇒ T1 =
k1 π

ω1

− 1

ω1

arccot

[
φ22A2 sin Γ2

φ21A1 + φ22A2 cos Γ2

]
. (26)

The integer numbers k0 and k1 represent the periodicity of the solution and must be set appropriately to obtain positive

and sequential time instants over the oscillation period that spans the entire hysteresis loop. The other time instants

can be obtained by the same periodicity conditions adopted for the one-dof system and are collected in the vector τ.

4.2. Modulation Equations

The procedure to obtain the modulation equations of the two-dof system mimics that described for the one-dof

system. The quadratic and cubic problems are solved by imposing the solvability conditions

4∑
i=1

∫ τi+1

τi

w�
1,k

r(i)

j
dt0 = 0 and

4∑
i=1

∫ τi+1

τi

w�
2,k

r(i)

j
dt0 = 0, with j = 2, 3 (27)

where w1,k and w2,k with k = 1, 2 represent the solutions of the adjoint homogeneous problem.

The response of the system can be studied by reconstituting the time derivative of the amplitudes and phases, thus

arriving at the modulation equations. The relative phases are introduced as Γ1 = σ1t1 − θ1 and Γ2 = θ2 − θ1 + σ2t1. The

modulation equations are then given by Ȧk = ε∂1Ak + ε
2∂2Ak and Γ̇k = ε∂1Γk + ε

2∂2Γk. The four equations are solved

numerically by employing a path-following algorithm.

5. Numerical results

By solving the modulation equations it is possible to construct the frequency-response curves both for the primary

oscillator and the absorber in terms of relative displacements x1 and x2, respectively. Figure 4 shows the frequency-

response curves obtained for a set of parameters of the absorber chosen so as to have an equal-peak response of the

primary system.
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Fig. 4. Frequency-response curves both for the primary oscillator (left) and the absorber (right). The black solid line describes the numerically

obtained solution. The red and blue solid lines describe the asymptotic solution truncated at second and third order, respectively.

5.1. Vibration Absorber Optimization

The obtained expressions for the displacements of the primary system and the VA allow to compute the system

frequency response very efficiently. The proposed procedure is embedded within an in-house implemented differential

evolutionary optimization algorithm20, to investigate the VA design parameters that give rise to optimal vibration

mitigation. This can be achieved by assuming as objective function the area below the frequency-response curves in

the frequency bandwidth [Ω1, Ω2], according to A = ∫ Ω2

Ω1
||x1|| dΩ where ||x1|| denotes the amplitude of the primary

system displacement. As shown in Fig. 5, a manageable optimization enabled by the analytical solution leads to a

better controlled response leveraging on the hysteretic nonlinearity of the VA.

Fig. 5. Optimization of the hysteretic VA. The thin black line represents the uncontrolled structure, the thick black line is the linear VA control,

the red line indicates the hysteretic VA control. Left part: the primary system is linear (i.e., linear mass-spring-damper system). Right part: the

primary system is nonlinear due to a cubic restoring force.

6. Conclusions

The method of multiple scales was adopted to investigate the behavior of a nonlinear hysteretic device subject to

primary resonance. The nonlinear frequency response was obtained in closed form together with the corresponding

backbone curves and the loci of fold bifurcations for various hysteresis parameters. The same procedure was adopted

to study the vibration control problem using a two-dof system, whereby the hysteretic VA is attached to a nonlinear

primary structure. The external harmonic excitation is involved in a primary resonance with the fundamental mode,

while a 1:1 internal resonance between the two modes (one associated with the primary structure and the other to the

VA) takes place at the same time. The nonlinear interactions were described by constructing the frequency-response
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curves both for the primary structure and the absorber, showing a good agreement with the numerically obtained

solution based on path following. Finally, the asymptotic procedure was embedded into a differential evolutionary

optimization scheme to derive a semi-analytic optimization strategy capable of determining the design parameters for

an optimal mitigation of the dynamic response.
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