
Automatic Invariant Selection for
Online Anomaly Detection

Leonardo Aniello1, Claudio Ciccotelli1, Marcello Cinque2, Flavio Frattini2,3,
Leonardo Querzoni1, and Stefano Russo2

1 Università di Roma Sapienza - Rome, Italy
{aniello, ciccotelli, querzoni}@dis.uniroma1.it

2 Università degli Studi di Napoli Federico II - Naples, Italy
{macinque, sterusso}@unina.it

3 RisLab - Research and Innovation for Security Lab - Naples, Italy
flavio.frattini@rislab.it

Abstract. Invariants are stable relationships among system metrics ex-
pected to hold during normal operating conditions. The violation of
such relationships can be used to detect anomalies at runtime. However,
this approach does not scale to large systems, as the number of invari-
ants quickly grows with the number of considered metrics. The result-
ing “background noise” for the invariant-based detection system hinders
its effectiveness. In this paper we propose a general and automatic ap-
proach for identifying a subset of mined invariants that properly model
system runtime behavior with a reduced amount of background noise.
This translates into better overall performance (i.e., less false positives).

1 Introduction

Anomaly detection techniques based on the usage of invariants have long been
introduced to discover anomalous behaviors in processing systems [1, 2]. An in-
variant is a property of a system that is expected to hold while the system runs
correctly. The idea of invariant-based anomaly detection is that it is possible to
automatically analyze the evolution of the system at runtime to identify stable
correlations among some monitored metrics. Such a detection process involves an
initial training phase to learn invariants representing the correct behavior of the
system. Then, whenever an invariant is broken or violated during operation—i.e.
the underlying correlation between metrics is lost—it is considered a sign of a
probable malfunction in the system.

The use of invariants is gaining interest in the field of systems where faults
may have severe impacts. These systems are characterized by a great complexity
that, on one side, increases the possibility of malfunctioning and, on the other
side, hampers the adoption of classic fault detection techniques based on design-
time modeling of normal operation conditions [3]. The practical adoption of
invariants for anomaly detection is limited by their sensitivity to the number and
quality of monitored system variables, however. A moderately complex system
may expose hundreds of invariants, and only a subset of them stably captures

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54537028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

its correct behavior, while a large fraction are either useless (because not linked
to malfunctions) or excessively unstable (e.g., they are easily broken even if the
system behaves correctly). Blindly monitoring all mined invariants introduces
noise and fluctuations in the detection output, which create false positives; 4

this hampers the practical usability of this technique. Currently, there is no clear
approach to “filter” the invariants space to get rid of such unwanted effects.

In this paper we present a practical and repeatable approach to analyze
a (possibly very large) set of mined invariants to automatically select a core
subset of them that properly captures the correct runtime system behavior,
while showing a good degree of insensitivity to exogenous factors not linked to
malfunctions. The approach exploits information provided by both the correct
and the anomalous behavior of the system.

The approach is evaluated in a testbed equipped with a real web-based appli-
cation (e.g., a web-banking portal) where we inject faults (from a defined fault
model), to force the anomalous behavior. Results show the effectiveness of the
proposed invariant selection approach, especially in reducing false positives.

The rest of this paper is organized as follows. Section 2 discusses related
works. Section 3 introduces our invariant selection approach; Sections 4 and 5
present a case study based on a real application scenario and discuss the results
of applying our approach to it. Finally, Section 6 concludes our work.

2 Related Work

A.B. Sharma et al. [4] proposed to use invariants to detect faults in distributed
systems: a mining tool is described, and mined invariants are used for the de-
tection. Their application can then be extended to support log analysis [2, 5].
In [6] automatically mined invariants are used for online anomaly detection in a
cloud-based processing system.

Invariants can be classified [7] in control-flow, execution-flow, and value-
based. In this paper, we focus on an extension of value-based invariants, known
as flow intensity invariants. They have been introduced to measure the intensity
with which internal monitoring data, treated as time series, react to the volume
of user requests. In general, time series may be mined from system/application
logs and resources utilization data through common monitoring tools. Hence,
the approach does not depend on the particular system under monitoring.

A flow-intensity invariant is commonly selected among all the combinations
of the collected metrics by estimating its ability in describing a phenomenon. As
an example, in [1] an invariant is built when two measurements are available;
then, it is incrementally validated when new observations are available. If, after
a certain number of measurements, a confidence score of the model is less than a
threshold, the invariant is discarded. However, this approach does not scale with

4 A false positive is an error in the detection, in which an anomaly is reported when
no anomalies occurred. A false negative is an omission of the detector, which does
not report an occurred anomaly.

3

the size of the system, and generates a “background noise” of broken invariants
that undermines its efficiency for anomaly detection.

For these reasons, [8] introduced a filtering stage where it is estimated the
probabilitythat an invariant would have been mined when considering a ran-
dom input: if this probability is larger than a certain threshold, the invariant
is selected, otherwise it is filtered out. Another approach consists in considering
the number of times an invariant is violated [2]. However, as discussed in the
remainder, also invariants broken too often should be treated with care: if an
invariant is easily violated, it may be useful for detection completeness, but it
may also generate many false positives, thus negatively affecting the accuracy.

Differently from such approaches, we introduce an automatic filtering stage,
identified as filtering 2 hereafter. It is based on both correct and anomalous
runs of the system, instead of only considering correct executions, as for the
commonly adopted selection procedure, which we identify as filtering 1.

3 Approach

The invariant-based approach we propose (Figure 1) is based on three steps:
1) Mining, 2) Automatic Filtering, and 3) Detection. The invariants mining
step consists in the analysis of data characterizing the correct system behavior
to identify invariant relationships between pairs of observed variables. Step 2
consists in the automatic filtering of found invariants in order to extract a subset
of them that can be usefully exploited in step 3 for the detection of anomalies.

Existing invariant-based detection approaches, such as the ones proposed
in [5] and [6], only consider a training dataset representing the correct behavior
of a system to be used for the mining and the filtering is based on goodness of fit
(filtering 1). This way, many invariants are mined. In this paper, we introduce a
further filtering step (filtering 2), which also considers known faulty behaviors.
To identify the invariants that are potentially good symptoms of anomalies, we
consider a further dataset representative of the system when faults are activated.
Thus, given the fault model for the considered system, the idea is to inject
instances of such faults in the system (for details, see Section 4) in order to

SAMPLING

TIME SERIES

INVARIANT
MININGCHARACTERIZING

DATA
(correct)

INVARIANTS

FILTERING 1
(GoF filtering)

INVARIANTS

FILTERING 2
(Fault aware)

DETECTING-
INVARIANTS

DETECTION ANOMALY
(if any)

DETECTING-INVARIANTS MINING DETECTION

MINING

CHARACTERIZING
DATA

(with faults)

CHECKING

INVARIANTS’
BREAKS

FILTERING DETECTING

Fig. 1: Approach for invariant mining and filtering for anomaly detection.

4

collect the data that characterize the faulty behavior and that are then used to
check when invariants are actually violated. The following sections describe the
details of the three steps.

3.1 Invariant mining

The first step consists in sampling the available data in order to have time series
for mining invariants. As characterizing data, we consider data collected from the
monitoring of the processing system, i.e., related to resources’ utilization, such
as CPU use, memory use, network packets, etc. This makes the approach generic
and not dependent on the specific system workload. A time series is a sequence
of values corresponding to measurements of parameters, uniformly spaced, with
a certain sampling time, over a time interval. Thus, a time series is a function f
over a domain of real numbers R and of a discrete time argument t ∈ T , f :T → R.
Collected data may require some manipulation in order to have all the time series
with the same sampling time. The selection of the sampling time is important
for the results of the detection [5]. In our case, examples of considered time
series are f1(t) =cpu system metric and f2(t) =proc run metric representing
the use of the CPU in non user mode and the number of running processes,
respectively. Observations of the time series at different times results in a relation
as f2(t) +a1f2(t−1) + · · ·+anf2(t−n) = b0f1(t−k) + · · ·+ bmf1(t−k−m); by
considering the vectors of coefficients and samples θ = [a1, . . . , an, b0, . . . , bm]T

and ϕ(t) = [−f2(t − 1), . . . ,−f2(t − n), f1(t − k), . . . , f1(t − k −m)]T , we have
f2(t) = ϕ(t)T θ. For the parameters estimation, and thus for the mining process,
we use the least squares method, as described in [5].

3.2 Automatic Filtering

Filtering operations aim to improve the detection by removing redundant and/or
inaccurate invariants, e.g., the ones that break either too often, leading to a large
number of false positives, or too seldom, generating false negatives. They consist
of three phases: checking, filtering 1, and filtering 2, described in the following.

Checking phase is used to verify when invariants are broken if faults are in-
jected. Thus, apart from monitored data related to the correct behavior, also
collected data of anomalous behaviors are used. In this case, as during the oper-
ational phase of the system, a set of time series is used as input. The assessment
of broken invariants is discussed in Section 3.3.

The second part of the filtering step is made up of two phases. The goal is
to filter those invariants that are not actually able to detect anomalies. Such
filtering operations are performed on vectors associated to each invariant and
reporting their behavior in an observation period. Considering the time lapse t0
. . . tn−1, for each invariant ij , we consider a vector vj of size n, where n are the
instants of observation, and

vj [k] =

{
0, if ij is not broken at tk

1, otherwise

5

Filtering 1 phase is based on the Goodness of Fit test. It considers only
the correct behavior of the system and is also used in [5, 6]. The basic idea
is to remove invariants with a goodness of fit (GoF) outside a specific range.
Clearly, invariants with a low GoF are invariants that do not provide a good
modeling, i.e., are not able to properly describe system behavior. Conversely,
invariants with a too large GoF are likely mined from too similar time series and
are thus meaningless. Consider, as an instance, an invariant relating CPU use
time CPU util and CPU idle time CPU idle (CPU util=1-CPU idle). The two
time series are linearly dependent, thus, the resulting invariant has a very large
GoF and is always verified, but it is useless. To discard invariants by testing
the quality of their fitting, we use the Coefficient of Determination R2, which
represents the percentage of the variation that can be explained by the model.
The closer the value of R2 to 1, the better the regression.

Filtering 2 phase uses a dataset representative of the system when anomalies
occur, unlike the existing approaches based only on the system correct behavior.
This dataset is obtained by means of fault injection (see Section 4). This is the
main novelty of the invariant selection strategy we propose, aiming at removing
invariants that may provoke erroneous evaluations, i.e., false positives and false
negatives. This phase includes the following five filtering operations.

1) Never-broken invariants filtering. We remove invariants that are never
broken. As a matter of fact, there could be a relation between two time series
that is also able to well describe the variance of the system, but the relation
always holds. Thus, it is not useful to detect anomalous events.

2) Correlated invariants filtering (Corrth). When applying the GoF filter-
ing, invariants relating to similar time series are removed. There could still be
invariants representing similar relations and that are broken at the same time.
Previously, we considered the example of CPU util and CPU idle measurements;
the invariant relating them is filtered; but, let now also consider memory utiliza-
tion Mem util ; if there is an invariant Mem util = αCPU util, there will also
be an invariant Mem util = α′CPU idle. Nevertheless, those invariants provide
the same information, and considering both of them would be redundant. By
considering the vectors vj associated to all the invariants, we consider all the
possible pairs of invariants 〈ii, ij〉 and compute the correlation by means of the
Pearson’s correlation index. If the correlation is larger than a threshold Corrth,
invariant ij is removed and only invariant ii is considered.

3) Too-often broken invariants filtering (Oftall). Some invariants may be
too weak, i.e., they are broken too often and, similarly to never-broken invariants,
are not useful to detect different-than-common behaviors that are likely related
to anomalies’ occurrence. We filter invariants that are broken more than Oftall
times the average number of times all the invariants are broken, in the examined
lapse of time.

4) Invariants broken before injection filtering. Some invariants may be
broken before a fault is injected, when the system behavior is expected to be
correct. Consider an invariant that is not broken too often (thus, it is not filtered
at step 3) but it is always broken before an injected fault is activated, i.e., before

6

the anomaly occurs. This invariant would report not occurred anomalies, thus
generating false positives, so we filter all the invariants that are broken when no
anomaly is occurring in the system.
5) Seldom broken invariants fault-specific filtering (Sldspec). Invariants
that are seldom broken for a specific fault are filtered. Even though at step 3
invariants broken too often are filtered, the remaining ones should break often
enough to detect the forced anomaly and avoid false negatives. We remove in-
variants that are broken less than Sldspec times the average number of times the
invariants are broken, in the examined lapse of time, for a specific injected fault.

3.3 Detection

A detector implements a distance function δ, which evaluates at runtime the
distance of the actual system behavior from the expected one, and consider a
threshold τ that, when exceeded by the value of δ, triggers an alarm.

At a time t, with respect to a specific system parameter θ̂ and an input
f1(t), the detector has to compute the distance of the actual response of the

system f2(t) from the estimated response f̂2(t|θ̂). As in [6], we adopt the residual

function as a distance function: Rf1,f2(t) = |f2(t)− f̂2(t|θ̂)|. Thus, an invariant
is broken at time t, if Rf1,f2(t) > τ , where τ represents the tolerance of the
detection system.

On the selection of the value of τ heavily depends the results of the detection,
as discussed in [5]. As a matter of fact, if considering a detector with τ = 0,
invariants would be broken too often, generating many false positives; on the
contrary, a too large τ would reduce too much the number of breaks, and too false
negatives would take place. In [5], it is shown that when adopting a threshold τ
which adapts to the specific prediction, the detection appears both complete and
accurate. Specifically, we consider the prediction interval (p.i.) of the output with
respect to the provided input [9]: the invariant is considered broken if the actual
output of the system is outside the p.i. of the model’s output. This happens
if, for a certain value f1(t), the difference between the actual value f2(t) of the

system and the estimated value f̂2(t|θ̂) is larger than the standard deviation of

f̂2(t|θ̂). The standard deviation is computed as:

σ = Serr[1 +
1

n
+

(f1p − f̄1)2∑
f21 − nf̄1

2]1/2 (1)

where Serr is the standard deviation of the model error (square root of the mean
squared error), f̄1 is the sample mean of the predictor variable (the input of the
model), and f1p a specific value of f1.

4 Case Study

In order to evaluate the feasibility and performance of the proposed approach
for invariant selection we set-up a testbed and deploy on top of it a web-based

7

application with the aim of mimiking a typical online service offered, for example,
by a bank to its customers. We monitor the system to collect time series related to
several metrics. Different workloads are submitted to the system, to collect data
from different load conditions. The testbed is used to produce both a training
set, to be used for invariant mining, and a training-test set, for the assessment.
Time series are collected for both correct executions, i.e., executions where no
anomalies occur, and faulty ones, where one or more anomalies take place as a
consequence of injected faults.
Testbed — The testbed is composed of 4 servers, each equipped with an Intel
Xeon X5560 Quad-Core CPU clocked at 2.28 GHz and with 24 GB of RAM. The
system presents a standard 3-tier architecture with one of the servers (master)
hosting a centralized load balancer based on the Apache 2 Web Server and
mod cluster 2.6.0 module. The business tier hosts a JBoss AS 7.1.1.Final cluster
running an instance on each machine, one master co-located with the Web Server
and three slaves in execution on each of the other servers. The storage layer is
based on a single instance of MySQL 5.5.38 running on the master node. On
top of the JBoss cluster, we deployed a web application [10] working on both
the business tier, with a front-end web application, and on the storage tier,
interacting with the database. The testbed is monitored by means of the Ganglia
monitoring system.
Workload — We generate workloads from a fifth machine running Tsung 1.5.0
[11]. The load consists in the number of requests per second sent to the web
application. Each request involves the generation of ∼400 packets in the testbed.
We consider three load levels, in order to cover several operational conditions:
low, medium, and high. By means of a preliminary analysis, we identify the
high level, which uses almost all the resources of the system. medium and low
levels are selected by considering a load that is 2/3 and 1/3 of the high level,
respectively. The three workload levels are generated from a normal distribution
by varying the mean (µ) and the standard deviation (σ) of the connections per
second. Specifically, we consider low with µ = 5, σ = 1, medium with µ = 10,
σ = 2 and high with µ = 15, σ = 2
Faultload — Candidate faults for injection are selected to include those that
(i) are often the cause of problems in real settings, especially after changes to
the deployment setup (e.g. where the deployment of a new application version or
the reconfiguration of an existing one may trigger some of such faults), and (ii)
that can not be easily detected through basic monitoring tools (e.g., a crashing
process that leaves a debug trace in some log). We consider faults related to
actual anomalies that can occur in processing systems and identify them on
the basis of both our direct experience on real operational datacenters, and
information drawn from scientific literature and online resources. The defined
fault model is also compliant to the well known and widely adopted taxonomy
defined by Avizienis et al. in [12]. In particular we considered the following faults:

– Misconfiguration faults that derive from human errors caused by the wrong
configuration of a system. Configuration errors are both common and highly
detrimental, and detecting them is desirable [13]:

8

Table 1: Invariant filtering parameters considered as factors.

Factor Level 1 2 3 4 5 6 . . . 11 12

Oftall 0.1 0.2 0.4 0.6 0.8 1.0 . . . 2.0 4.0

Sldspec 0.1 0.2 0.4 0.6 0.8 1.0 . . . 2.0 4.0

Corrth 0.70 0.75 0.80 0.85 0.90 0.95

• SQL misconfiguration: we reduce significantly the connection pool used
by the application server to connect with the DB.

• AJP-long misconfiguration: we reduce the thread pool for the AJP pro-
tocol (which allows the communication between the Apache web server
and the JBoss slaves) to a very small size.

• AJP-short misconfiguration: same as AJP-long misconfiguration, but we
also reduced the length of the queue associated with the thread pool.

– Reconfiguration faults, representing changes of configuration during mainte-
nance that cause unexpected failures [14,15]:
• Write permissions: we revoke write permissions to one of the JBoss in-

stances on its working directory.
– Denials of service faults, either malicious or not, that cause the system un-

availability due to the saturation of some hardware resources:
• CPU stress: we impose an abnormal CPU load on the target machine

by running a strongly CPU-intensive task.
• Memory stress: we impose an abnormal level of memory activity that

causes high memory contention on the target machine.
• Disk stress: we cause an abnormal disk access activity on the server

hosting the SQL server.
• Full partition: we cause the disk partition on the machine hosting Apache

and the SQL server to become full.
– Development faults that typically produce erratic output or software aging

phenomena [16]:
• Memory Leak : we run a process affected by memory leak that causes the

memory of the target machine to progressively saturate. The memory
exhaustion in turns triggers the thrashing phenomenon.

Plan of experiments — The implemented testbed and the planned injections
allow us to obtain both correct executions, i.e., executions where no anomaly
occur, and faulty executions, where, from a certain time ta, one or more of the
considered faults are injected. These executions are used to produce both a
training set, to be used for mining and filtering the invariants, and a test set
to be used for assessing performance. Each execution for the training set lasted
on average ∼ 9 minutes (time needed to reach a steady state, where metrics
can be collected while excluding impact from any transient effect). For the test
phase, we produced a single 90 minutes long test set were the system transitions
among all the possible combinations of workloads and faults.

Filtering operations are performed on the training set by considering several
values for the filtering parameters introduced in Section 3, considered as factors:

9

Corrth, for filtering correlated invariants, Oftall, for removing too-often broken
invariants, and Sldspec, for seldom broken invariants fault-specific filtering. Table
1 shows the values used in our tests. We consider a design of experiments (DoE)
[9], where the factors are the filtering parameters. The levels (i.e., the values
assigned to the factors) are in a wide range to cover several cases. As response
variables, we consider common metrics for detection assessment. Coverage (Cov)
is the portion of kinds of anomalies that are found by a detector. If n kinds of
anomalies occur, and the detector finds r of them, Cov = r/n. Completeness
(Cpl) is the portion of anomalies that are found by the detector over the occurred
anomalies. If o anomalies occur, the detector may find p of such anomalies, with
p ≤ o; Cpl = p/o. Accuracy (Acc) is the portion of anomalies correctly reported
by a detector. A concrete detector finds s anomalies over s′ ≤ s actual anomalies.
Acc = s′/s. Detection latency (Lat) is the time required by the detector to report
the occurrence of an anomaly.

5 Results

In this section, we present results related to the application of the approach to
the training set and to the test set, and compare them to the common approach
of invariant mining that only filters by considering the GoF (Filtering - Goodness
of Fit filtering, discussed in Section 3.2). Also, we discuss how the configuration
of the filtering influences detection performance.

5.1 Training

The mining and filtering steps have been applied on the training set in order
to identify the invariants and find the best configuration of filtering parameters
for the system at hands. As a result of the plan discussed in Section 4, the
experimentation produces 1,176 outputs for each response variable; to evaluate
the anomaly detection performance, we also consider the F-measure (F), defined
as the harmonic mean of completeness and accuracy: F -measure = (2 · Cpl ·
Acc)/(Cpl + Acc). The larger the completeness and accuracy (ideally, Cpl = 1
and Acc = 1), the better the detection quality of the detector, since it avoids
false positives and false negatives.

To identify the values to be used for the filtering parameters Corrth, Oftall,
and Sldspec, we use the Pareto multi-objective optimization algorithm [17]. The
algorithm returns a Pareto front with 16 combinations of the configuration pa-
rameters. Among such configurations, we consider the one allowing the detector
to identify all the anomalies occurring in the system. Invariant-based detection
approaches, in fact, are expected to have a large completeness given the large
number of invariants that can be violated when anomalies occur [5]. Results with
this combination are reported in Table 2. They are achieved for Corrth = 0.85,
Oftall = 1.8, and Sldspec = 3.

On the training set, the invariant based approach detects all the kinds of
anomalies that occur in the system, and over all the anomalies, of all the kinds, all

10

Table 2: Results of the training related to the best combination of the filtering param-
eters. Corrth = 0.85, Oftall = 1.8, Sldspec = 3.

Cpl Acc Lat F -m # inv

1.00 0.80 33.33 0.89 25

Table 3: Results of the tuned detector applied to the test set. First row: results of the
proposed approach. Second row: results without the proposed filtering.

Cpl Acc Lat F -m # inv

0.99 0.76 65.55 0.86 25

1.00 0.57 47.78 0.73 265

are detected. The accuracy is 80%; thus, there are few false positives. Anomalies
are detected within 33 seconds.

We also observe a large reduction of the number of used invariants (around
90% of reduction) after filtering. 78 metrics are monitored, thus, the possible
invariants (considering all the combinations) are 3, 003. The GoF filtering selects
265 of these invariants, which involve all the 78 metrics. The proposed filtering
reduces the number of used invariants by about 90%, which involves only 19
metrics out of the 78 monitored. In practical terms, this implies a significant
reduction of the monitoring overhead.

Due to space limitation, we report as examples of the mined invariants the
ones that are often violated when an anomaly occurs: one relates the use of
the CPU in non user mode (cpu system metric) to the number of running
processes (proc run metric), another one relates the average size of incoming
packets (avg packet size metric) and CPU usage (cpu idle metric).

5.2 Test

The configuration of the filtering defines the invariants to be used by the detec-
tion module that we run on the test set. This allows us to assess the behavior of
the detector in the operational stage, when ground truth is available. Achieved
results are compared to the ones of the detector using not filtered invariants,
and reported in Table 3. The first row of the table reports results related to the
detector based on the proposed filtering approach. Results in the second row are
related to the detector without filtering.

The comparison of the two detectors, with and without the fault aware filter-
ing, shows that the proposed approach outperforms the detector not using the
introduced filtering. When no filtering is done, coverage and completeness are
maximum. In fact, having a large number of invariants implies there is a large
chance that there is a violated invariant, and the anomaly is detected, whatever
its kind is. Latency is small due to similar observations: the larger the number of
invariants, the sooner one is violated and the anomaly detected. The chance that
an anomaly is erroneously signaled is large, however. Among all the invariants,

11

one may be broken even if there is no anomaly, generating false positives and,
then, reducing the accuracy. A result of 0.57 for the accuracy implies that out
of 100 anomalies reported by the detector, only 57 have been caused by faults,
while the remaining 43 represent false positives.

The adoption of the proposed approach significantly improves the perfor-
mance of the detector, making the approach practicable in our experimental
settings. While the completeness remains high, as expected for invariant-based
approaches (as also shown in [6]), the filtering approach proposed in this paper,
by selecting the right subset of invariants, improves the accuracy pushing it to
0.76, i.e. reducing false positive to 24% of the reported anomalies. Thus, the per-
formance improves even if less than 10% of the original invariants are adopted
(from 265 to 25), hence reducing the overall monitoring overhead. On the other
hand, the use of a reduced set of invariants slightly increases the latency to 65s,
i.e., the anomaly is detected within one minute from the activation of the fault
causing it. Note that, since the effects of the fault may affect the system several
seconds after its injection, this is an upper bound of the latency.

Analysis of variance is then used to figure out which filtering parameters
mostly impact the results of the detection. Results show that detection mainly
depends on Oftall and Sldspec parameters, while the impact of Corrth is not
statistically significant. Specifically, the variance of coverage and completeness
is explained by Oftall for 55% and by Sldspec for 45%. variance on accuracy is
explained by Oftall for 89%.

6 Discussion and Conclusion

Invariant-based detectors discussed in the scientific literature present a number
of false positives, given the high chance of invariants being violated, when also
negligible conditions change in the system. Presented results demonstrated that
the proposed invariants’ filtering approach improves the performance of common
invariant-based detectors, which remove invariants by only considering their ca-
pacity of properly modeling the correct system behavior. The proposed approach
exploits knowledge on the faulty behavior of the system to select those invariants
that are sensible enough to be violated in the case of anomaly, thus not causing
false negatives, but not weak enough to break also when the system is correctly
behaving, producing false positives.

The achieved detector outperforms the detector not using the introduced fil-
tering. It covers all the anomalies of the injected kinds, and, over all the occurring
anomalies, reveals 99% of them, with an accuracy of 76%. Clearly, reported fig-
ures are specific to the case study system, but the proposed approach is general
enough to be applied to a wide range of systems. Moreover, while many invariant
mining approaches consider application-specific monitored data, this one uses re-
sources’ usage information common to every processing system and collectable
with any of the existing, free and open source, monitoring tools.

12

Acknowledgments

This work has been supported by the TENACE PRIN Project (n. 20103P34XC)
funded by MIUR. The work by Cinque and Russo has also been partially sup-
ported by EU under Marie Curie IAPP grant n.324334 CECRIS (CErtification
of CRItical Systems).

References

1. G. Jiang, H. Chen, and K. Yoshihira, “Discovering likely invariants of distributed
transaction systems for autonomic system management,” Cluster Computing,
vol. 9, no. 4, pp. 385–399, Oct. 2006.

2. J.-G. Lou et al., “Mining invariants from console logs for system problem detec-
tion,” in Proc. of the USENIX annual technical conference, 2010.

3. X. Xu, L. Zhu, I. Weber, L. Bass, and D. Sun, “Pod-diagnosis: Error diagnosis of
sporadic operations on cloud applications,” in Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International Conference on, 2014.

4. A.B. Sharma et al., “Fault detection and localization in distributed systems using
invariant relationships,” in Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference on, 2013.

5. S. Sarkar, R. Ganesan, M. Cinque, F. Frattini, S. Russo, and A. Savignano, “Mining
invariants from saas application logs,” in Tenth European Dependable Computing
Conference (EDCC 2014), May 2014.

6. F. Frattini, S. Sarkar, J. Khasnabish, and S. Russo, “Using invariants for anomaly
detection: The case study of a saas application,” in Software Reliability Engineering
Workshops (ISSREW), 2014 IEEE International Symposium on, 2014.

7. S.K. Sahoo et al., “Using likely program invariants to detect hardware errors,” in
IEEE Int.l Conference on Dependable Systems and Networks (DSN), 2008.

8. M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discovering
likely program invariants to support program evolution,” Software Engineering,
IEEE Transactions on, vol. 27, no. 2, pp. 99–123, 2001.

9. R. Jain, The Art of Computer Systems Performance Analysis. Wiley-Interscience,
NY, 1991.

10. Ticket Monster. http://www.jboss.org/ticket-monster/.
11. Tsung. http://tsung.erlang-projects.org/.
12. A. Avizienis et al., “Basic concepts and taxonomy of dependable and secure com-

puting,” IEEE Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.
13. J. Zhang et al., “Encore: Exploiting system environment and correlation informa-

tion for misconfiguration detection,” SIGARCH Comput. Archit. News, vol. 42,
no. 1, pp. 687–700, Feb. 2014.

14. Rice University - Division of Information Technology, “Why Are My Jobs Not
Running?” April 2013, http://rcsg.rice. edu/rcsg/shared/scheduling.html.

15. IGI - Italian Grid Infrastructure, “Troubleshooting guide for CREAM,” April 2013,
https://wiki.italiangrid. it/twiki/bin/view/CREAM/ TroubleshootingGuide.

16. A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo, “Workload characteri-
zation for software aging analysis,” in Software Reliability Engineering (ISSRE),
2011 IEEE 22nd International Symposium on, 2011.

17. D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

