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REVIEW

The bias-extension test for the analysis of in-plane shear 
properties of textile composite reinforcements and prepregs: 
a review

P. Boisse1 
& N. Hamila1 

& E. Guzman-Maldonado1 
& A. Madeo2 

& G. Hivet3 
& F. dell’Isola4

Abstract The bias-extension test is a rather simple ex-
periment aiming to determine in-plane shear properties
of textile composite reinforcements. However the me-
chanics during the test involves fibrous material at large
shear strains and large rotations of the fibres. Several
aspects are still being studied and are not yet modeled
in a consensual manner. The standard analysis of the
test is based on two assumptions: inextensibility of the
fibers and rotations at the yarn crossovers without slip-
page. They lead to the development of zones with con-
stant fibre orientations proper to the bias-extension test.
Beyond the analysis of the test within these basic as-
sumptions, the paper presents studies that have been
carried out on the lack of verification of these hypoth-
esis (slippage, tension in the yarns, effects of fibre
bending). The effects of temperature, mesoscopic model-
ing and tension locking are also considered in the case
of the bias-extension test.

Keywords Bias extension . In-plane shear . Textile composite
reinforcements . Prepregs

Introduction

Textile composite reinforcements are usually made of yarns
themselves composed of thousands of fibers, the diameter of
which is very small (7 μm for a carbon fibre). The link of two
initially orthogonal sets of yarns (warp and weft) allows to
obtain a textile that can be seen as a quasi-continuousmaterial.
Warp and weft yarns can be woven following a 2D pattern
(plain weave, twill or satin). In NCF (Non Crimp Fabrics) two
layers (or more) of parallel yarns are linked by stitches in order
to both insure coherence of the reinforcement and avoid crimp
of the yarns. The interlock and 3D weavings link serval warp
and weft yarn layers to obtain a large thickness. When the
reinforcements are made of two yarn directions and when
these yarns are linked by weaving or stitching, they can be
shaped on a double curve surface. The fibres used in compos-
ites are quasi inextensible, consequently this shaping is ob-
tained by in-plane shear of the textile reinforcement. For in-
stance Fig. 1 shows the in-plane shear in the case of a hemi-
spherical forming. Shaping (or draping) of prepregs is broadly
similar. The resin present in the preimpregneted reinforce-
ments is soft enough to render the forming by in-plane shear
possible. In thermoset prepregs the resin is soft because it is
not yet polymerized. Thermoplastic prepregs are heated over
matrix melting temperature before forming. In all these cases
in-plane shear of the textile reinforcement is the main defor-
mation mode to obtain double curved shapes. For a given
reinforcement they is a limit to shear angle. Over this value,
wrinkling will appear (Fig. 2) [2–5]. This limit, often called
‘locking angle’, depends on textile reinforcement properties
although there is no direct relation between shear angle and
wrinkling. Wrinkling is a global phenomenon depending on
all strains and stiffnesses and on boundary conditions [5].

Because in-plane shear is the main deformation mode of
textile reinforcement during forming, it is the most studied
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property of textile composite reinforcement. It is an important
data for draping simulations [6–10]. In LCM processes, the
shear angle in the preform after draping modifies the perme-
ability [11–14].

Studies on experimental fabric in-plane shear behavior
started in the sixty’s in particular with the works of Lindberg
[15] and Grosberg [16, 17]. The physical phenomena during
in-plane shear, such as contact and friction between the yarns
are related to shearing properties. Spivak introduced in 1968
the ‘test of bias-extension’ as a relatively simple test that can
be compared to ‘rather sophisticated instrumental or experi-
mental methods’ that have been previously used to analyze in-
plane shear properties [18]. Nevertheless the geometry and the
resulting kinematics of the test are not yet specified. Skelton
determines the limit shear angle from the geometry of the
fabric and of the yarns [19]. McGuinness and O. Bradaigh
experimentally analyses the shearing of fabric reinforced ther-
moplastic sheets using a picture frame test [20]. This picture
frame test is one of the two main experiments used to measure
textile reinforcement properties. The bias-extension test is the
second one. The description of the bias-extension test with it
specificities, the geometry of the specimen and the different
shear zone was made byWang et al. in 1998 [21]. The authors
completed this work especially in term of prediction of the

shear force and analysis of yarn slippage [22, 23]. The bias-
extension test is used to measure the in-plane shear character-
istic of cross-plied unidirectional prepregs in [24].

The bias-extension test highlights several specific aspects
due to the fibrous constitution of the specimen associated to
large strains. The works on this shear test are numerous and
some of them are recent. The objective of this paper is to make
a survey of the works concerning the bias-extension test for
textile composite reinforcements. First, based on basic as-
sumptions, equations are given i.e. the relation between the
in-plane shear angle and the specimen extension and the rela-
tion between the in-plane shear stress and the load on the
tensile machine. This is not a simple point because the ‘shear
stress’ is not defined in a consensual manner. Extension of the
bias-extension test to high temperature tests that are necessary
to analyze thermoplastic prepreg will be presented. Then, be-
cause the bias-extension test is based on strong assumptions,
many studies concern their lack of verification. In particular,
the influence of tension and of slippage in the specimen have
been studied. The numerical simulation of the bias-extension
test highlight difficulties especially, tension locking. The basic
assumption assume constant in-plane shear zones and conse-
quently a sharp transition of the fibre orientation at the change
of zone. Actually transition areas exist between the zones that
are due to fibre bending stiffness. These transition areas in the
textile reinforcement can be modelled using macroscopic con-
tinuum models by introducing energies depending on second
gradient of displacement. Finally the slippage in the bias-
extension test will be analyzed by mesoscopic F.E. analyses
i.e. modeling each yarn in contact and friction with its
neighbors.

The two experimental tests to analyze in-plane shear
properties of composite reinforcements

The picture-frame (trellis-frame) test (Fig. 3) and the bias-
extension test (Fig. 4) are the two experimental tests mainly
used for in-plane shear characterization of composite rein-
forcements and prepregs [25]. Some other tests have been
proposed in which a rectangular fabric specimen is clamped
on two opposite edges that prescribe an in-plane shear defor-
mation to the specimen [15, 17, 26]. In these tests the speci-
men is generally subjected to shear and tensions. To avoid
tensions, rigid bar can be added to the two free edges. In this
case the test is close to picture frame. A shear test by means of
torsion have been recently proposed for the analysis of UD
prepregs (limited to small shear strains). Their mechanical
behavior are specific because of the lack of cohesion in the
direction normal to the fibres [27].

A picture frame, shown in Fig. 3 is a hinged frame with
four rigid bars with equal length. A tensile force is applied
across diagonally opposing corners of the picture frame rig

Shear angle =45°

Fig. 1 Forming a woven reinforcement on a double curve shape requires
in-plane shear deformations

Wrinkles

Shear angle > 50°

Fig. 2 Wrinkling induced by large shear angles [1]
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causing the picture frame to move from an initially square
geometry into a lozenge. The specimen within the picture
frame is theoretically subjected to a pure and constant in-
plane shear strain [2, 20, 25, 28, 29].

The bias-extension test consists in a tensile test on a rect-
angular textile reinforcement such that the warp and weft tow
directions are orientated initially at 45° to the direction of the

applied tension (Fig. 4). The initial length of the specimen
must be more than twice the width of the specimen in a bias
test. Under this condition, yarns in the central zone C are free
at their both ends. If there is no slip between warp and weft
yarn and assuming yarns being inextensible, the deformation
in zone C is trellising and zone C is in pure shear. The shear
angle in zones B is half those of zone C. One end of both warp
and weft yarns of zone A is fixed in the clamp, consequently,
assuming yarns being inextensible and no slip occurs, zone A
remains undeformed. Finally, assuming the yarns do not ex-
tend, that there is no slip and neglecting the bending stiffness
of the yarns, the bias-extension test leads to zones with con-
stant in-plane shear (C), half in-plane shear (B) and unde-
formed (A). It is assumed that the in-plane shear is constant
in each zone and this is first verified experimentally on bias-
extension tests. Nevertheless it will be shown below that this
assumption can be discussed.

The deformed shape with three zones, A,B,C is less simple
that those of the picture frame where all the specimen is as-
sumed to be subjected to a constant in-plane shear.
Nevertheless a strong advantage of the bias-extension test lies
in the fact that the yarns of the sheared zones are free at their
edge (at least one) and consequently there is no tension in the
yarns (or only small tensions due to the warp-weft interac-
tions). In the picture frame all the yarns are clamped in the
frame and any misalignment of the specimen will lead to an

Fig. 3 Picture frame equipped with an optical system

f20
f10

e20

e10

45°

Fig. 4 Bias-extension test
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increase of the measured load. Several comparison studies
have be performed [30–33]. Figure 5 shows the shear force
obtained with both experiments on a carbon woven fabric
[33]. The picture frame result is much larger than the shear
force measured by the picture frame. The picture frame used
in this study allows to measure the tensions in the yarns and to
adjust it to a given value. When this tension is set to zero, the
result given by the picture frame is close to those of the bias-
extension test. Measuring the in-plane shear in a textile mate-
rial is difficult because the in-plane shear stiffness is small in
comparison to tensile stiffness. Consequently any spurious
tension during a test strongly perturbs the in-plane shear anal-
ysis. One main advantage of the bias-extension test lies in the
absence of spurious tensions in the yarns of the sheared zones.
Another advantage is its relative simplicity and its moderated
size. This is important when the test is performed at high
temperature in an oven. An in-plane shear benchmark has
been realized by an international group of academic and in-
dustrial researchers on different composite reinforcements
using both picture frame and bias-extension tests [25]. This
benchmark has proved valuable for the community of com-
posite materials because the materials and the tests are very
different regarding continuous materials such as polymers or
metals. It has been shown that the determination of the shear
angle from the crosshead displacement is correct until 30–35°.
Beyond this value, the direct measurement of the shear angle
by optical methods is necessary. Finally the benchmark has
shown that standardization methods are useful to obtain shear
properties that can be used in numerical simulations.

Kinematics of the bias-extension test

Two relations are necessary to analyze the results of an in-
plane shear test. A kinematic relation that relates the in-plane
shear angle to the extension of the specimen and a relation
between the shear stress in the fabric and the measured force

on the tensile machine. To establish these relations, the fol-
lowing assumptions are made:

– yarns are inextensible (more precisely, their elongation is
null in the bias-extension test),

– there is no slippage between warp and weft yarns at the
cross over points,

– bending stiffness of yarn is neglected.

These three first assumptions correspond to those of the
“kinematical models” or ‘fishnet algorithm’ used for fabric
draping simulations based on geometry [34–36].
Consequently, the shear angles in the three zone A,B,C are
constant in each zone.

The two relations of the bias-extension tests (kinematic
relation and shear load versus force on the tensile machine)
have been established gradually [25, 31, 33]. The first one is
the relation between the shear angle γ in the central zone C
and the length of the stretched specimen (given by the dis-
placement of the tensile machine d) (Fig. 4):

γ ¼ π
2
−2Arccos

Dþ dffiffiffi
2

p
D

� �
ð1Þ

D=L− ℓ (Fig. 4) is the length of the central zone C. The
shear angle γ can also be measured directly by an optical
measure. Figure 6 shows the shear angle field obtained using
a DIC measure (digital image correlation) [25, 37, 38]. This
optical method is well suited for measurements of textile ma-
terials for which sensors in contact with the fabric are difficult
to use. Optical analyses of the strain field at mesoscopic scale
i.e. within the yarn have been done for in-plane shear test
(Fig. 7) [37, 39]. The displacement field within the yarn is
obtained by a DIC analysis at different stages of the shear test.
For small angles the relative displacement field inside a yarn is
a rotation field. Strains in the yarn are negligible. The shear
load is mainly due to friction between the warp and weft

Fig. 5 Comparison of the shear force measured by a picture-frame and a
bias-extension test [33]

Fig 6 Shear angle in a plain weave fabric bias-extension test obtained
from DIC [25]. (The angles given on the scales are 90°- γ)
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yarns. Then the geometry of the woven cell leads to yarns
lateral contacts. The yarn is transversely compacted and this
compaction is more important as the shear increases. It can
lead to off-plane wrinkling.

Determination of shear forces

The shear angle is well accepted as the significant kinematic
quantity in an in-plane shear test. The change of angle be-
tween warp and weft directions is simple and meaningful.
There is no such simple and consensual quantity to character-
ize the efforts in the material during an in-plane shear test. In a
bias-extension test the load on the tensile machine is mea-
sured. But it is a global quantity on the specimen. In order to
compare the in-plane shear property obtained with different
specimens or different devices and especially to use the in-
plane shear properties in a model, this global load is not suf-
ficient. It is necessary at least to transform this global load to a
quantity that account for the geometry of the specimen. The
vocabulary used in many articles by authors to achieve this, is
‘normalisation’. That means obtain, from the load on the spec-
imen, a load quantity independent of the geometry of the test
and consequently that can be compared to other tests. Many
papers have been written on this subject even recently [25, 32,
40–42]. The question is not simple. In a tensile test, the tensile
stress can be obtained simply from the tensile load and the
section of the specimen. For a shear test at small strains the
shear stress can be calculated in the initial orthogonal
Cartesian frame. It is not the case for in-plane shear test on
textile reinforcement for which the shear angles are large. The
directions of the warp and weft yarns rotate much and they
must be followed to express the shear loads or shear stresses.
In addition, if the comparison of two different tests is a justi-
fied goal, to model forming processes, it could also be inter-
esting to have a ‘load’ quantity that is conjugated to the shear
angle to obtain a power or a strain energy.

Shear load calculation

The shear load Fsh has been introduced in [25, 32, 33, 40, 43].
It is defined as the tangential load along the side of a fabric
rhomboid element with unit dimensions (Fig. 8). These shear
load create on the fabric element a torque (or moment) Ms :

Ms γð Þ ¼ Fsh cosγ ð2Þ

γ=π/2-α is the shear angle.α is the angle between the two
warp and weft directions (Fig. 8).

It is possible to relate the shear load Fsh to the load on the
machine F of the bias-extension test. Denoting SB and SC the
initial areas of zone B and C [25, 33]:

F d
•
¼ Ms γð Þ SC γ

• þMs
γ
2

� �
SB

γ•

2
ð3Þ

Fig. 7 Displacement field within
a yarn at different stage of
shearing

Fsh
Fsh

Fig. 8 Normalized load and shear load on a rhomboid with unit side
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Ms γð Þ SC γ
• is the power of shear in the central part C of

the specimen andMs
γ
2

� �
SB

γ•

2 is the power of shear in the zones
B.

From the geometry of the specimen this leads to:

Ms γð Þ ¼ F D

ℓ 2D−ℓð Þ cos
γ
2
− sin

γ
2

� �
−

ℓ
2D−ℓ

Ms
γ
2

� �
ð4Þ

Using equation 2,

Fsh γð Þ ¼ F D

ℓ 2D−ℓð Þcosγ cos
γ
2
− sin

γ
2

� �
−

ℓcosγ=2
2D−ℓð Þcosγ Fsh

γ
2

� �
ð5Þ

Equation 5 gives Fsh(γ) incrementally.

Shear moment calculation

The shear load, as defined above, permits to compare the bias-
extension tests performed by different groups using different
specimen geometries. It also permits to compare these results
with picture frame tests [25]. Nevertheless it is not a quantity
that is conjugated to the shear angle γ.

On the other hand, it is the case of the moment per surface
Ms defined in equation 2. The loads on a woven unit cell
(Fig. 9a) lead to the resultant tensions T1, T2, to the resultant
bending moment M1, M2 and to the in-plane shear moment
Ms. In a virtual displacement field η, the virtual in-plane shear
work is

Ws ηð Þ ¼ γ ηð ÞMs ð6Þ

The shear moment Ms is a stress resultant. It is a result
given by a bias extension on the specimen since it is related
to the global load by equation (4). This in-plane shear virtual
work (equation (6)) can be used in particular for the formula-
tion of finite elements made of textile material [7, 39, 44, 45].
It can be notice that equation (5) that relates the shear load to
the load on the machine, has been established using the shear
moment Ms because it appears in the power balance
(Equation 3).

Static approach

The relation between the shear moment and the load on
the machine (4) can also be obtained from a static equi-
librium. In Fig. 10, the case L= 2ℓ is considered. The
bias-extension test can be modeled as a hinged frame,
the bars of which are submitted to a shear moment
M12 =M1+ M2. The shearing of the central zone C of
the specimen leads to a moment M1 and the shearing of
the zone B lead to a moment M2. Denoting Lb the
length of the bar AB, the equilibrium of ABD leads
to Ax = 0 (Fig. 10). The equilibrium of AB leads to:

Bx ¼ 0 and By ¼ M12=Lbsin
α=2
� � ð7Þ

Taking into account that ℓ ¼ ffiffiffi
2

p
Lb and α

2 ¼ π
4 −

γ
2, the

load F on the machine is,

F ¼ ℓ

cos
γ
2
− sin

γ
2

Ms γð Þ þMs
γ
2

� �� �
ð8Þ

This is consistent with equation (4) when L=2ℓ.

Cauchy stress components

In the bias-extension test the textile specimen is consid-
ered as a continuum. Consequently the internal loads
within the material can then be represented by a stress
tensor. The components of this tensor, especially the
shear stress components can be an alternative to the
shear load and shear moment to quantify the internal
shear efforts in the materials. The mechanical behavior
of a woven textile material is strongly dependent on
directions of directions of the warp and weft yarns.
Consequently the basis defined by these yarn directions
are preferred to express the stress tensor components
and the mechanical behavior of the textile material.
These fibre directions do not remain perpendicular during the

Fig. 9 (a) Loads on a unit woven cell and resultants: (b) tensions, (c) in-plane shear moment, (d) bending moments
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reinforcement deformation especially in the bias-extension test.
Consequently, there are different variances for the stress com-
ponents in the frame defined by warp and weft yarns. The
relationships between these components and the exterior ap-
plied loads can be determined but are not straightforward [46].

The curvilinear material coordinates ξ1 and ξ2 (Fig. 11)
along warp and weft yarns define the material covariant base
vectors at point M:

g
1
¼ ∂OM

∂ξ1
and g

2
¼ ∂OM

∂ξ2
ð9Þ

The associated contravariant base vectors gα are such as :

g
α
⋅g

β
¼ δα

β ð10Þ

Where α, β, are indices taking the values 1 or 2 and δα
β is the

Kronecker symbol. The covariant, contravariant and mixed
components of the Cauchy stress tensor in the frames defined

by the material covariant base vectors g
α
and contravariant

base vectors gα are considered [47]:

σ ¼ σαβ g
α
⊗g

β
¼ σαβ g

α
⊗g

β
¼ σα

β g
α
⊗g

β

¼ σα
β g

α
⊗g

β
ð11Þ

⊗ denotes the tensorial product [47]. Denoting nα and nα

the unit normal vectors in g
α
and gα directions, and dSnα , d

Snα the corresponding elementary surface, the elementary
force vector dFnα on dSnα has two components, the first

one, denoted dTnα , on the normal nα in the material direction
α, the second one, denoted dRnα , in the perpendicular direc-
tion n3−α (Fig. 11) [46]:

dFnα ¼ dTnαnα þ dRnαn
3−α ¼ dTnα

g
α

g
α

			 			 þ dRnα

g
3−α

g
3−α

			 			
ð12Þ

As,

dFnα ¼ σ⋅nα
� �

dSnα ð13Þ

The stress components in equation (11) can be related to d
Tnα and dRnα . These relations are given in [46]. In the case of
a pure shear loading (dT ¼ 0 ), two sets of components
(σ ¼ σαβg

α
⊗g

β
and σ ¼ σα

βgα⊗gβ ) enable to obtain both

null direct stresses and a direct relationship between the trans-
verse load components and the transverse stresses. Thus, these
frames and the corresponding stress components are those
suited to analyze a pure transverse loading. For the others
the pure shear will lead to direct stress components.

In a textile material with two fibre directions the elementary
section dSnα of normal nα is parallel to the fibres (3-α)
(Fig. 12a). Consequently, these fibres do not exert any load
on this section. The load on the section dSnα is only due to the

Fig. 10 Static analysis of the bias-extension test

M

n
n

dFn

dRn

dTn

dSn

Fig. 11 Material coordinates, normal, elementary surfaces and elementary loads
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tension in the fibres α, dFnα ¼ dTnαnα. A pure tensile load-
ing is characterized by

dRnα ¼ 0 α ¼ 1; 2ð Þ ð14Þ

The loads dTnα are the tension in the fibres α.
In the case of a pure in-plane shear loading the tensions in

the fibres are equal to zero (Fig. 12b):

dTnα ¼ 0 α ¼ 1; 2ð Þ ð15Þ

In any case, because section dSnα of normal nα is parallel to
fibres (3-α), the tensions of these fibres do not contribute to
dFnα . dTnα is the tensile load in fibres α. dRnα is the in-plane
shear load. In textile materials, in a pure tensile state there are
only loads in the fibre directions. In a pure shear state, the
tensions are equal to zero. Denoting ℓ the specimen width
(Fig. 4) and e its thickness, in the central zone, the static
equilibrium leads to [46]:

σ1
2 ¼ σ2

1 ¼
F cos

γ
2
− sin

γ
2

� �
ffiffiffi
2

p
e ℓ

ð16Þ

Finally, the shear stress components can be considered as
results of a bias-extension test. Nevertheless, only two vari-

ances (σ ¼ σαβg
α
⊗g

β
and σ ¼ σα

βgα⊗gβ ) enable to obtain

null direct stresses. The fact that the vectors g
α

and gα

are not normed and does not remain perpendicular dur-
ing a shear test does not render the use of the stress
components simple.

Energetic approach for the PK2 shear stress calculation

Eq. (16) gives the shear Cauchy stress σ1
2 in function of the

measured load on the specimen. Nevertheless the different
variances of the Cauchy stress components (equation 11)
can appear as few easy to use. As it has been done in Eq. (2)
to (5), an energetic approach can be used in the initial config-
uration to determine the second Piola-Kirckkoff (PK2) shear
stress component in function of the global tensile load [48].

The kinematics of the bias-extension test gives the deforma-
tion gradient F.

F ¼
ffiffiffi
2

p
sin

π
4
−
γ
2

� �
e10⊗e10 þ

ffiffiffi
2

p
cos

π
4
−
γ
2

� �
e20⊗e20 ð17Þ

(e10, e20) is the orthonormal frame where e20 is in
the tensile direction (Fig. 4). Consequently the right
Cauchy Green strain tensor C =FTF and its time deriv-
ative C� are:

C ¼ 1−sin γð Þð Þ e10⊗e10 þ 1þ sin γð Þð Þ e20⊗e20

C
•
¼ γ

�
cos γð Þ − e10⊗e10 þ e20⊗e20ð Þ

ð18Þ

The equality of internal and external power in a quasistatic
test relates the load on the specimen F to the second Piola
Kirckkoff stress S:

F d
�
¼ 1

2

Z
Ω0

S : C
•
dV 0 ð19Þ

Taking into account the three zones A, B, C in the specimen
with constant shear angle (Fig. 4)

F d
•
¼ 1

2
e γ

•
Sccosγ S22 γð Þ−S11 γð Þð Þ þ 1

2
SBcos

γ
2

S22
γ
2

� �
−S11

γ
2

� �� �
 �

ð20Þ
where Sαβ are the components of the PK2 stress tensor
S=Sαβeα0⊗ eα0 (α, β =1 or 2) in the frame (e10, e20). S11(γ)
et S22(γ) are the diagonal stress components in the central zone
C of the specimen and S11

γ
2

� �
et S22

γ
2

� �
those in zone B.

Otherwise, Eq. 1 leads to:

γ
� ¼

ffiffiffi
2

p
d�

Dsin
π
4
−
γ
2

� � ð21Þ

Consequently, noting Sαβ
′ the components of the PK2 stress

tensor S=Sαβ
′ fα0⊗ fα0 (α, β =1 or 2) in the frame (f10, f20) in

the initial directions of the yarns (Fig. 4), the shear stress

a Pure tensile loading b Pure in-plane shear loading 

M
n

n

dFn =dTn n

dSn

3-

M

n3-
n

dFn =dRn n
3-

dSn

3-

n
3-

Fig. 12 (a) Pure tensile loading
(b) Pure in-plane shear loading
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component S
0
12 ¼ 1

2 S22−S11ð Þ can be calculated incrementally
from the load on the specimen F.

S
0
12 γð Þ ¼

FD cos
γ
2

� �
−sin

γ
2

� �� �
2SCecosγ

−
SBcos

γ
2

4SCcosγ
S

0
12

γ
2

� �
ð22Þ

The inverse approach

In order to overcome the calculation of the force quantities
defined in the previous sections, the inverse approach [49,
50] can be a way to identify the parameters relatives to in-
plane shear of the used constitutive law. Finite element anal-
yses of the bias-extension test are performed within an opti-
misation loop in order to determine the in-plane shear coeffi-
cients of the constitutive law that give the nearest F.E. analyses
of the bias extension test. This approach avoids the use of the
explicit relation between in-plane shear stresses and the load
on the machine. Nevertheless this approach is not without
drawback. In particular, the identified coefficients may depend
on the initial values used for the simulation.

Bias-extension tests at high temperature

The in-plane shear tests are used to measure the shear proper-
ties of both dry composite reinforcements (used as preforms in
the RTM process) and thermoset and thermoplastic prepregs.
The in-plane behaviour of prepregs is significantly different
from that of dry textile reinforcements. Depending on the state
of the resin, the in-plane shear are substantially modified.
Nevertheless the manufacturing process needs that in-plane
shear stiffness is weak enough in order to achieve doubly
curved shapes. In the case of thermoset prepregs, manufactur-
ing and consequently the in-plane shear tests are performed
before curing. In the case of thermoplastic prepreg,
manufacturing and shear tests are performed at a temperature
slightly over melting point. The in-plane shear tests must be
performed at all the temperatures in the material processing
range. The temperature may vary during the process and it is
important that the actual properties are taken into account in a
process simulation. Low temperature in a zone of a part during
a thermoforming process can lead to a high shear stiffness and
wrinkling [51]. The bias extension test can be used to test
prepregs in the material processing range because the resin
is weak enough in this case so that the fibres lead to the
deformed shape of Fig. 4. This shape is due to inextensibility
of the yarns and rotations at the yarn crossovers without
slippage.

Some in-plane shear tests have been performed fairly
soon within an oven [20, 31, 32]. A study of the effect
of temperature on, in-plane shear behaviour of carbon

satin/ Peek and carbon satin/ PPS prepregs using a bias-
extension test has been made recently in [52]. The bias-
extension test is compact and can be easily performed
within an environmental chamber (Fig. 13). It neverthe-
less presents several difficulties. First the clamp of the
specimen is difficult since its efficiency decrease when
the matrix reach the melting point (Fig. 14a). The most
important point is the necessity to have a constant tem-
perature field in the specimen. If it is not the case the
shear stiffness is not constant and the deformation of
the specimen is no more those of the bias-extension
test. Some zone, especially near the clamps that cool
the specimen can remain undeformed (Fig. 14b). In ad-
dition it is not possible to wait a long time for a ther-
mal equilibrium because the matrix are usually oxidized
by high temperature and the test must be achieved in a
matter of some minutes [53].

The bias-extension tests are carried out for tempera-
tures on both sides of the manufacturing temperature.
This temperature is slightly larger than melting temper-
ature. The objective of these experiments is to account
for the effect of the temperature on the prepreg proper-
ties in a forming simulation. A thermal analysis gives
the temperature of the prepreg during the forming. This
one may vary over the part. The resulting change of
shear stiffness can affect the thermoforming process
[51]. The loads on the specimen measured for bias-
extension tests at temperature around the melting point
(343 °C) for a carbon satin / PEEK matrix prepreg are
shown Fig. 15. The influence of the temperature is
strong. The in-plane shear stiffness is much larger at
320 °C than at 360 °C. Nevertheless over 360°, the
shear stiffness does not decrease anymore because it is
mainly those of the textile reinforcement.

In the case of the thermoplastic prepreg, the temper-
ature is a main issue and the bias-extension tests must
be done in function of the temperature. For these pre-
pregs, the influence of the strain-rate can be tested
using bias-extension test at different speeds. Figures 16
[8] and 17 [51] show the influence of the strain rate on
in-plane shear force for two close prepreg with both
PPS matrix. The influence of strain rate exists, but it
is less important than the influence of temperature.
Depending on the process it can be taken into account
in the constitutive model or neglected [54, 55].

Influence of the tensions; biaxial bias-extension test

When a textile reinforcement is submitted to tension, the in-
plane shear stiffness is increased. The influence of tension on
in-plane shear behaviour has been investigated in the picture
frame test [30, 33, 56] and by modelling approaches [57]. In
the picture frame test it is possible (although technically
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difficult) to add devices that impose tension in the yarns in
addition to the in-plane shear prescribed by the picture frame.
It has been shown that the influence of those tensions are
important. In particular they strongly influence the onset of
wrinkling [5, 58]. This is also a main difficulty of the
standard picture frame test because it is difficult to
avoid spurious tensions in the specimen that perturb
the in-plane shear measurement [33]. On the other hand,
in the bias-extension test the yarns have one or two free
extremities. Consequently the tensions in the yarns are
small and they don’t disrupt the in-plane shear measure-
ment. It is a main advantage of this test. The bias-
extension test have been modified to analyse the
shear-tension coupling. The biaxial bias-extension test
is shown in Fig. 18 [58–60]. The objective of this test
is to characterize wrinkling onset and tension in-plane
shear coupling for woven textile reinforcements.

Nevertheless the kinematics of the test is not simple
and the use of this test needs to be strengthened.

Slippage mechanism during the bias-extension test

A main advantage of the bias-extension test is that the
extremities of the yarns are free and consequently that
there is no (or small) tension in the yarns. On the other
hand the reinforcement is weakly held in position. The
kinematics of the test is based on weaving that ensures
that the cross over points act as fixed pin-jointed
nodes. When the shear angles are large, slippage be-
tween the warp and weft yarns occurs. It is a weakness
of the bias-extension test. This slippage has been
analysed from the first studies on the bias-extension
test [21, 22, 61]. Wang et al. observed that the slippage

Fig. 13 Bias-extension test on a
thermoplastic prepreg in an
environmental chamber [51]

Cold zone 
under the 
mel�ng 
temperature

No 
deforma�on

Slippage in 
the jaws

Sliding of 
heels

Fig. 14 (a) Sliding of heels. (b)
Inhomogeneity of temperature
and fusion (c) The bias extension
test shape is not achieved because
of slippage in the jaws
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occurs mainly near the frontiers of the zones with con-
stant in-plane shear (Fig. 19). Actually the importance
of the slippage during a bias-extension test depends on
the cohesion provided by the weaving (or the stitching
for NCF materials). Figure 20 shows the shear angle
versus displacement for two composite reinforcements
(a glass plain woven textile pattern [62] and a G1151
interlock carbon fabric (manufactured by Hexcel) [63]).
The theoretical angle (equation 1) obtained from the
specimen extension is compared to the angle measured
with a camera. For shear angles inferior to 40°, the
agreement between theoretical and measured shear an-
gles is good. Over 40°, slippage between yarns occurs
and the measured angles are smaller than the theoreti-
cal ones [62, 63]. Depending on the fabric and on the
cohesion due to the weaving, the angle from which the
slippage is significant (40° for the G1151) can differ
and can be smaller. Anyway, even if there if some
slippage, the bias-extension test can be used to mea-
sure the in-plane shear properties but the shear angle
must be measured independently of the grip displace-
ment. This is in particular possible by using optical
strain measurements.

Bias-extension test on NCF reinforcements

Among the textile composite reinforcements, the NCF
(Non Crimp Fabrics) are made of continuous parallel
fibres linked by stitching. They are made of one (UD-
NCF), two (biaxial NCF) or three (triaxial NCF) direc-
tion of fibres that are linked by stitching. The biaxial
NCF are the more common (Fig. 21). They have two
directions of fibres (that are initially orthogonal) as wo-
ven reinforcements. As stated in their name, the fibres
are straight (non crimp) and they avoid the loss of stiff-
ness and strength due to yarn crimp. In the other hand
the stitching insures a cohesion to the reinforcement that
can be formed on double curved shapes [6, 63–66]. As
the bias-extension test of woven material is based on
the assumption that there is no slip between warp and
weft yarns, one can ask whether the bias-extension test
is possible for NCF. This depends on the stitching pat-
tern. If the stitching insures a sufficient link between
the two fibre directions of the biaxial NCF and allows
the rotation between warp and weft yarns, it plays the
role of the weaving. In this case the bias-extension test

Fig. 15 Bias-extension test load in function of the temperature [52]

Fig. 16 Bias-extension tests at different rates on a PPS glass fabric
prepreg [7]]

Fig. 17 Load versus displacement curves for carbon/PPS prepreg at
300 °C for different displacement rates [51]

Fig. 18 The biaxial extension test (a) initial state (b) Deformed state [58]

Int J Mater Form



can be considered to measure the NCF in-plane shear
properties [63, 64, 66, 67]. The in-plane shear angle is
defined as the change in angle between the fibres of the
two layers (initially orthogonal). It can be measured
using two synchronised cameras, one on each side of
the specimen [63]. For a given axial displacement of
the grips of the tensile machine, the measured angle
are smaller than the theoretical angle given by equation
(1). For example, for the NCF shown in Fig. 21, there
is a difference about 30 % between the theoretical angle
(equation (1)) and the angle measured with the two
cameras (Fig. 22)[63]. The theoretical kinematic is nor
more valid, the non-slippage assumption between the
two plies is not verified. An analysis of the deformation

of the bottom of the specimen shows some local slip
that are shown Fig. 23. Consequently it is not possible
to use the theoretical equations given in (1) to (5) and
based on the non-slippage assumption. It is necessary to
use the shear angle measured by the two synchronised
cameras.

In [64] the bias-extension test of NCF is analysed by a
mesoscopic approach. The yarns are modelled by 3D finite
elements and the stitches by bar elements. This analysis allows
frictional sliding between the yarns and the stiches. It leads to
results that are in good agreement with the experimental de-
formation. However a mesoscopic analysis is not a simple
way to analyse a bias-extension test. The mesoscopic ap-
proach of the bias-extension test will be detailed in a next
section.

The slippage between the two plies of a biaxial NCF
is often important in a forming process. The simulation
of this process must take this slippage (some cm) into
account [63].

The UD-NCF are sewed unidirectional non crimp
fabric. They are closer to UD reinforcements than to
woven fabrics. There is a single direction of parallel
continuous fibres in the material. Bias-extension tests
have been performed on such UD-NCF [68]. The de-
formed shape is far enough of the theoretical shape of
the bias-extension test, but it is interesting to understand
the deformation modes of the material. Some specific

Fig. 19 Indication of slippage areas in a bias-extension test specimen
[21]

Theore�cal angle

Mesured angle

Displacement (mm)

Fig. 20 Theoretical and measured shear angle during a bias-extension
test (a) Glass plain woven textile pattern [62] (b) G1151 interlock carbon
fabric [63]

Fig. 21 NCF warp yarns side, NCF weft yarns side

Fig. 22 Bias-extension test on a NCF. Comparison between theoretical
and experimental shear angle versus displacement of the grip. Angle
deviation from theoretical angle (dashed line) [63]

Int J Mater Form



developments will be necessary to use this test to deter-
mine the in-plane shear properties of UD-NCF.

Numerical difficulties in the simulation
of the bias-extension test. tension locking

The simulation of the bias-extension test needs to be
perform at finite strain with material non-linearities.
The approach can be implicit or explicit [7, 8, 64,
69]. A specific numerical problem which is a locking
phenomenon has been highlighted [70–72]. In the bias-
extension test, fibre yarns are oriented at ±45° to the
specimen axis. Since the specimen is rectangular, the
simplest mesh is obtained by a regular division into
square or rectangular four node elements as in
Fig. 24a. The result of the simulation is not correct.
The obtained shape (Fig. 24b) is not those of the bias-
extension test (Fig. 4). The computed load on the spec-
imen is strongly overestimated (Fig. 24c). In the other
hand, a mesh oriented in the fibre direction gives a
correct result (Fig. 25). This problem is due to the very
large tensile stiffness of the woven reinforcement in the
warp and weft yarn directions. This leads to quasi
inextensibility conditions in warp and weft directions
at each Gauss point. As there are four gauss points
per quadrangular element, the eight inextensibility con-
ditions (two fibre directions at each Gauss point) cannot
be verified as there are only two displacement degrees
of freedom in a four node element (on average). This
leads to locking called the tension locking.When the yarns are
aligned with the element sides, the inextensibility equations in

Fig. 23 Deformation of the
bottom of the NCF specimen.
Simplification of the deformation
[63]

Fig. 24 (a) Initial mesh aligned with the specimen. The fibers are
oriented at ± 45° (b) Deformed mesh for a 65 mm displacement (c)
Load on the tensile machine obtained by simulation and by experiments
and fibre extensions [72]
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the different Gauss points are identical and there can be
verified. There are many cases of locking in finite ele-
ment analyses: locking of incompressible materials [73],
of transverse shear locking of C0 plate or shell elements
when the thickness small [74] among other locking phe-
nomena [75]. Under-integration can be a solution to
locking in particular to tension locking. The number of
inextensibility constraints per quadrangle decrease to
two and solutions exist. Nevertheless spurious singular
modes can develop without deformation energy. The
stabilization of these hourglass modes is necessary. A
specific stabilization method has been developed in
[72]. It is based on a Γ-projection method. It only acts
on the non-constant part of the in-plane shear strains.
This approach is numerically efficient. It is shown that
locking is eliminated in the case of four node elements.
Figure 26 shows that a rectangular mesh based on the
specimen sides gives a correct solution when the meth-
od is used. Some multi-field finite elements have been
proposed in order to avoid tension locking in [71].

Fiber bending stiffness and second gradient
continuum

The idealized kinematics of the bias-extension test has been
presented in Fig. 4. It is made of 7 zones of 3 types (A,B,C)
with constant in-plane shear in each of them. This corresponds
to a pin-joint kinematics. It is assumed that a continuous fibre
has a constant orientation in each of these zones with a sharp
change between zones. On the other hand, it is shown Fig. 27
that the change of direction is not instantaneous but that a
transition area can be observed (Fig. 27b) (highlighted by
means of two yellow lines). Such transition area is due to
the bending stiffness of the fibres that lead to a curvature
radius between the two zones with a different fibre direction
(C and B on Fig. 27b). The kinematics based on the pin-joint
assumption described at the beginning of the paper leads to
different and constant directions of the fibres in zone A, B, C.
The experimental observations, on the other hand, show that
the bending stiffness of the fibres actually leads to transition
areas. These zones cannot be described by the pin-joint

Fig. 25 (a) Simulation with a
mesh aligned with the yarns (c)
Load versus displacement curve
obtained with an aligned mesh
and fibre extensions [72]

Fig. 26 (a) Simulation with a
mesh aligned with the specimen
using the stabilization approach
(c) Load versus displacement
curve obtained with an aligned
mesh and fibre extensions [72]
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kinematics nor by a classical continuum approach. In order to
describe these zones, a generalized continuum theory may be
used. A second gradient hyperelastic orthotropic continuum
theory for fibrous materials has been developed in [76, 77].
The strain energy density depends both of the Right Cauchy-
Green deformation tensorC=FT F and of its gradient∇C (F is
the deformation gradient tensor).

W C;∇Cð Þ ¼ WI Cð Þ þWII ∇Cð Þ ð23Þ

WI is the first gradient strain energy, WII is the second
gradient strain energy. Definitions and identifications of the
first gradient strain energies for different fibrous reinforce-
ments can be found in [78, 79] and of the second gradient
strain energy in [76, 77, 80]. The simulation of the bias-
extension test based on the strain energy with a second gradi-
ent part (equation 22) shows the transition areas that have been
highlighted at the frontiers of the zones A, B, C (Fig. 28).

More generally, the second gradient approach is a way to take
into account the local bending stiffness of the fibres. This
cannot be described by classical continuum mechanical
models. However the implementation of these models into
numerical codes shows some difficulties which are being re-
cently studied by means of other methods [81, 82]. Another
way to account for the local fibre bending stiffness is the
introduction of a rigidity related to the curvature in continuum
finite element [83]. A detailed generalised plate model includ-
ing geodesic bending energy, i.e. energy related to second
gradient in-place displacement, has been recently developed
in [84–86].

Bias extension test on an unbalanced woven
reinforcement

A significant part of the textile composite reinforcements are
unbalanced. Warp yarns are much larger than weft yarns. The
strong warp yarns withstand the loads in the composite part.
The small weft ones ensure the cohesion of the reinforcement.
The importance of the in-plane bending stiffness of the fibres
that have been highlighted in the previous section and has
been shown to be significant in the case of balanced fabric
becomes even more important for unbalanced reinforcements.
In particular, it has been shown that the asymmetric S-shape
obtained when an unbalanced reinforcement (Fig. 29) subject-
ed to a bias extension test (Fig. 30) is due to the very different
in-plane bending stiffness of the warp and weft yarns [87, 88].
In order to account for most fundamental deformation mech-
anisms occurring in unbalanced reinforcements, a second gra-
dient, hyperelastic, initially orthotropic continuum model has
been introduced in [87, 88]. The deformed shape obtained
from this approach shows a good agreement with the experi-
ment (Figs. 30 and 31). It can be seen that the S-shape is due to

C

B B

A

Fig. 27 Transition layer between the zones with constant shear in a bias-
extension test

Fig. 28 Simulation of a bias-extension test base on a second gradient
theory. Transition layers for the shear angle. [76] Fig. 29 Unbalanced fabric
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very different curvatures of the warp and weft yarns in the
deformed configuration.

Mesoscopic analysis

It has been seen above that slippage occurs in a bias-extension
test especially for large shear angles. It can even happen for
smaller angles when the cohesion between warp and weft
fibres is weak. This is the case for most NCF reinforcements
as shown above. In this case, the continuum mechanic ap-
proaches are no more valid. In a mesoscopic approach each
yarn is considered as a solid in contact and possible sliding
with friction with its neighbours. The yarn is modelled as a
continuous material with a specific mechanical behaviour in
order to take into account that it is made of many (thousand)
fibres. It is not a completely discrete modelling as the so called
microscopic approach where each fibre is modelled by a beam
element in contact-friction with the other fibres [89]. The
mesoscopic approach allows to simulate the sliding between
the yarns (and the stitch in case of a NCF). Consequently the
simulation of the bias-extension test in case of slippage is
possible. The F.E. model used to described a woven cell must
be simple enough to permit the computation of the whole
reinforcement. Figure 32 shows a simplified unit woven cell
where the yarns are described by shell finite elements [90].
Contact with Coulomb friction between the elements is con-
sidered. The mechanical constitutive model of the yarn must
take into account that it is made of thousands of fibres. Both
specific hypoelastic [91–93] and hyperelastic [78, 94] laws
have been developed. The bending stiffness of the shell ele-
ments is not related to the membrane stiffness because of the
fibrous nature of the yarn. It is directly measured by a canti-
lever bending test [95, 96]. Figure 33 compares the

experimental deformation of a bias-extension test on a glass
plain weave specimen with the result of a mesoscopic simu-
lation and with the theoretical shape based on the pin joint
assumption. Up to 40° both theoretical and mesoscopic
approach give shear angles in correct agreement with
the experiments. Over 40° slippage occurs and the ex-
perimental shear angle is smaller than the theoretical
one. The mesoscopic simulation using shell elements is
on correct agreement and tracks the sliding of the yarns
over 40°. Membrane elements give poor results because
the lack of bending stiffness leads to underestimated
normal contact loads and consequently underestimated
friction loads and too large sliding.

A mesoscopic simulation of the bias-extension test
for NCF reinforcements is done in [64]. The yarns are
model by solid elements and the stitches by bar ele-
ments. Yarns and stitches are in contact with friction.
The analysis of fibre slip in the specimen is analysed by
the mesoscopic model and compare to experiments.
Other mesoscopic analysis are presented in [97]. Meso
modelling is an accurate approach to analyse the bias-
extension test. These simulations allow to track the yarn
slip. Nevertheless, the finite element models are com-
plex with many contacts with friction. They must be
used when the classical pin joint assumption for the
bias extension test is not satisfactory.

Fig. 31 Simulation of the deformation using a second gradient approach
[87]

Fig. 32 The mesoscopic model of unit cell of plain weave

Fig. 30 Experimental S-shape [87]

Int J Mater Form



Conclusion

The bias-extension test is one of the two main experiments
used to determine the in-plane shear properties of textile ma-
terials and in particular of continuous fibres composite rein-
forcements. The test is rather simple as it consists of a tensile
test on a rectangular specimen where the fibres are oriented at
45°. The yarns have all one or two free edges and the test
avoids spurious tensions in the fibres. This is an important
advantage. Nevertheless it is a test on a very anisotropic ma-
terial, at finite strains with large rotations of the fibres. It is
driven by the quasi-inextensibility of the fibres. Research
work on this test have been and are numerous. A first ap-
proach based on the absence of slippage at crossover and fibre
inextensibility gives basic kinematics and shear load relations.
The internal actions due to shear are represented by shear
loads, shear moments, shear stresses but there is not a unified
point of view on these quantities.

Beyond the above basic assumptions there are several
aspects that must be better analysed in the bias-
extension tests. Possible slippage is one of the weak

point of the test. It is necessary to know when it hap-
pens, rendering obsolete the basic assumptions and the
associated equations. The analysis of the bias-extension
test with slippage can be possible in particular thanks to
optical measures. The in-plane bending stiffness of the
fibres modifies the theoretical zones with constant shear
of the bias-extension test. This test may be a way to
measure bending stiffness of the yarns. Meso F.E.
modelling enables to analyse and model the bias-
extension test beyond the basic assumptions. Slippage
between the yarns, tension in the yarns, bending stiff-
ness can be analyzed through this approach. The bias-
extension test is one of the main in-plane shear test for
composite reinforcements. Many work has been carried
out concerning this test. Nevertheless many progresses
are possible beyond the basic assumption generally
used. Indeed microscopic complexity of considered me-
chanical systems may require for their macro modelling
the introduction of richer continuum models.
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