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1. INTRODUCTION 

Even with relatively simple model packages and modem computers, it is not feasible to test 
combinations of model input variables to see which combination gives the 'best' outcome. 
Neither is it usually possible to solve the models analytically for the optimum. Consequently, 
there is a potential role for a methodology which takes as input the results from a relatively 
small number of runs of the model package and then models the response surface in the region 
containing the optimum, in such a way that it can be analytically solved for the optimum. This 
paper will set out such a methodology together with a Case Study. 

2. PURPOSE AND BACKGROUND 

In the UK, local authorities bid for government funding for transport, in the form of 'Transport 
Supplementary Grants'. The UK Department of Transport is making it clear that, where 
appropriate, it would like to see such bids backed by modelling. Furthermore, in 1993 the UK DOT 
introduced what it called the 'Package Approach' for urban areas. Briefly, this requires a range of 
transport initiatives to be considered, not just highway construction, and a combination selected 
which complement one another in their pursuit of defined objectives. For large urban areas facing 
current and forecast transport problems, usually resulting from the inability of the current highway 
network to cater for growing automobile use, possible solutions other than highway construction 
might involve restraining automobile use (eg by direct prohibitions or charges for road use or 
parking) and the promotion of alternative modes (eg enhancing public transport frequencies, 
subsidising public transport fares, constructing light rapid transit systems or improving 
conditions for pedestrians and cyclists). Local politicians are now keen to investigate a wide 
range of such policies, with a view to incorporating them in an overall strategy to best tackle 
local transport needs. 

In order rapidly to evaluate a range of strategy variants, a new type of 'strategic model' has been 
developed (see for example Bates et al., 1991). Compared to earlier 'four stage' models these 
are much quicker and cheaper to run, allowing considerable interrogation. The models are 
generally based on hierarchical logit structures with few zones and highly aggregated 
relationships (eg for speed/flow) and parameters based on relatively limited sampling or even 
totally imported. While such sirnplifications facilitate a larger number of model runs, it is still 
not feasible to run sufficient to be sure of having identified the optimum. The purpose of this 
paper is to present a method whereby a relatively small number of strategic model runs are used 
as the basis for the construction of a relatively simple regression model which can be 
analytically solved for its optimum. The method will be illustrated using the JATES model 
(Bates et al., 1991) for the Scottish capital, Edinburgh. The method expounded below was 
developed during a project funded by the UK Engineering and Physical Sciences Research 
Council. The initial concept was first suggested to us by Mick Roberts of The MVA 
Consultancy, who conducted the JATES study for Lothian Regional Council. We are grateful 
for the support of all the above but our conclusions do not necessarily ~ f l e c t  their policies. 



3. METHOD DEVELOPMENT 

Initially, we developed our methods using a model of a hypothetical city. Full details can be 
found in Bristow et al(1994), an edited version in Bonsall et al(1994) and a brief description in 
May et al(1995). Briefly, we found that the regression approach offered no improvement (over 
previous methods) where the policies consisted solely of discrete options. The regression model 
required information on which pairs of projects were substitutes, such that they should never be 
combined in a strategy no matter how good they were individually. After careful consideration, 
we defined two projects as substitutes if the value of the target indicator for the pair together 
was less than that for either of the two projects taken separately. The only way we could 
operationalise this test in a systematic way, without making use of prior knowledge or expert 
opinion, was to run all pairs of projects as well as all projects singly. As we had set ourself a 
problem with 10 possible projects which might be implemented in any combination, we 
immediately required 55 runs (i.e. 10 projects singly and 45 pairs) of the strategic model in 
order to inform the regression model. Compared to that, it was clear to us that simple trial and 
error interrogation of the strategic model would locate the optimum combination with about 20 
runs of the strategic model. Effectively, only those substitutes relevant to the optimum needed 
to be discovered. Even our attempts at trying to introduce prior or expert knowledge into our 
method did not suggest that a regression model could improve on the trial and error method, 
using the strategic model only, given the same prior or expert knowledge. 

However, we had much more success with our regression method when we introduced 
continuous variables, such as road pricing charges, public transport fares and frequencies, and 
parking charges The problem we set ourselves this time was to find the highest social Net 
Present Value (NPV), which may be thought of as a measure of economic efficiency. We used 
as policy variables: road charges, at one of six cordon positions we could choose; bus fares 
(peak and off peak) and off peak bus frequency. After 26 runs of the strategic model we were 
satisfied that we were sufficiently close to the optimum. While it was extremely difficult for us 
to establish how this problem would have been tackled by analysts not using a regression model, 
we were satisfied that the interactions between the policy instnunents were sufficiently complex 
to make it unlikely that such a high NPV value would have been discovered without a very large 
number of runs of the strategic model. 

On the basis of our experience we drew up Figure 1. Although this looks very precise it must 
be emuhasised that considerable discretion is necessarv in its usage. In order to illustrate this 

A - 
we will later give a case study. Before going on to do that, we first describe the method in 
more detail. 
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4. THEMETHOD 

Even in the context of optimising over continuous policy variables (eg road charging fees, 
public transport fares) our view is that a fully systematic approach would be inordinately 
expensive. Such an approach would probably comprise some form of grid of, say, three levels 
of each policy variable arranged according to some statistical experimental design, probably 
orthogonal. In practice, such designs would be likely to throw up some very uninteresting and 
uninformative combinations, possibly contradicting assumptions built into the strategic model 
and so running the risk of producing misleading outputs from the model. For example, would 
we wish to consider charging higher bus fares in the off-peak than in the peak? 

.- 

In our view, in the light of our experimentation, we believe that our regression model can learn 
all it needs about such situations by inference from more sensible combinations. Furthermore, 
we may often wish to include with our continuous policy variables some discrete ones, such as 
the infrastructure projects discussed earlier. Some pairs of these may be alternative ways of 
achieving the same end, and should never be carried out together. Other combinations might 
incorporate synergy and give progressively better performance as each is implemented. An 
example of this would be a highway widening scheme, where the benefits of widening the 
stretch between junctions 12 and 13 is increased if the stretch between junctions 11 and 12 is 
also to be widened, and increased still further if the stretch between junctions 10 and 11 or 13 
and 14 are also to be widened. We feel the complexities here implicit are not amenable to a 
rigid systematic statistical experimental design approach, and that subjective designs 
incorporating prior and expert opinion should be used instead. 

Another, particularly potent, reason for wishing to avoid including in the experimental design 
(many) particularly poorly performing combinations is that we wish to avoid exactly modelling 
the actual function forms of the relationships involved (with respect to the continuous policy 
variables). An 'exact' model would use up many more degrees of freedom than we have. 
Following experimentation, we have settled on using quadratic forms as approximations to the 
true underlying forms, with some success in the locality of the optimum. In other words, if we 
have strategic model runs for three or four levels of a given continuous policy variable, and 
these all produce outcomes close to the optimum with all else held equal, then a simple 
regression model of constant, linear and squared terms in this variable will permit a good 
estimate of the optimum level of this variable (for other variables at their current settings) by 
elementary calculus. 

Let Y be the target variable (STEP l), and suppose that we wish to maximise it. With all else 
held equal we have a number (at least three!) of combinations (Xi, Yi) resulting from setting 
policy variable X equal to level Xi and observing the outcome level of the target indicator, Yi. 
Simple regression will fit an equation like 



dY = b + 2cX = 0 for a turning point - 
dx 

d2y = 2c - < 0 for a maximum 
dx2 

In order to have a maximum we must have c negative, in which case the optimum level of X is 
-b - 
2c . In this way it can be seen that our method involves inspection of the quadratic zoefficients 
in the regression to ensure they are of the correct sign (negative for a maximisation) and then 
checking the linear coefficients to see if (once divided by twice the absolute value of the 
respective quadratic coefficients) they give sensible predicted optimal levels. 

Our experimentation indicates that, to begin with, a regression with only slightly fewer variables 
than observations (ie strategic model runs) will provide worthwhile (but limited) help in 
determining what further strategic model runs should be conducted. If all the independent 
variables are so defined that they take the value zero in the do-minimum, and the dependent 
variable is defined as the change in the target indicator with respect to its value in the do- 
minimum, then a constant term is not strictly needed. However, the time and effort of 
performing additional regressions with a constant in is more than repaid by the additional 
robustness this gives to the interpretation process, given that our quadratic relationships will be 
only a very crude approximation. A large constant is (in these circumstances), of course, an 
indication of problems. We suggest trying runs with and without constants. 

Consider now the general case (STEP 2) where we wish to model n continuous policy variables 
(using quadratic approximations) and m discrete project levels (using dummy variables). 
Together with the constant, this takes up 2n + m + 1 degrees of freedom, without considering 
yet any interaction effects. As a rule of thumb, we would suggest conducting roughly 2n + m + 
5 strategic model runs before trying some initial regression models (STEP 3). Furthermore, it 
will often be the case that some strategic model runs have already been carried out. These runs 
will very probably be of use to us, but should be 'balanced out' by careful choice of the rest of 
the experimental design, so that the regression model has a good spread of input data. 

Once we have sufficient strategic model runs for the initial regression modelling (STEP 4), this 
should be carried out in a free-ranging way, without expecting any good fit. Variables with 
significant coefficients of the wrong sign are an immediate problem, and suggest 
experimentation with interaction terms, although for the time being this will be severely 
constrained by the few degrees of freedom. Wrong sign non-significant coefficients can often 
be induced to change their sign by minor adjustments to the (regression) model form. Any 
remaining wrong sign non-significant variables should be dropped from the equation, together 
with any variables whose coefficients are very small. In this way further degrees of freedom 
become available for experimentation. 

All regression results should be kept for further perusal, not just the preferred ones. Particular 
attention should be given to the residuals for the target indicator (dependent variable). As we 
are interested in optimising this, we strongly suggest that a weighting be used in the regression, 



giving greater weight to 'good' strategic model runs. Experimentation with different weightings 
is to be encouraged since if the weighting is too uneven there will be a deterioration in the 
regression model. With so few degrees of freedom we cannot afford to effectively throw away 
observations by being too fierce with our weighting and effectively giving some observations 
zero weighting. 

Since we are using a quadratic approximation to, presumably, much more complex 
relationships, we must not expect it to fit well over all possible policies. The approximation 
only needs to be good in the vicinity of the optimum. Elsewhere we will wish to tolerate much 
larger errors. Technically, this raises the problem of heteroscedasticity, a violation of one of the 
usual assumptions of regression modelling. By weighting 'poor' runs lowly we X: implicitly 
adjusting to overcome this problem, allowing the regression model to be not unduly distracted 
by these poor runs. 

Here we should give a word of warning. Conventional goodness of fit statistics (such as the 
coefficient of determination, R') are not very helpful, since the fewer degrees of freedom we 
have the better the model fits, until with no degrees of freedom (observations = coefficients) the 
model fits exactly. Such a model will have little, if any, ability to generalise, and so cannot be 
expected to tell us the location of the optimum. 

After this initial regression modelling, we should have some idea of what additional strategic 
model runs will help us to better calibrate our regression model, given its purpose of fmding the 
optimum. A predicted optimum set of policies (strategy) can be found (STEP 5) from the initial 
regression and the temptation to run this on the strategic model will probably be too great to 
resist. Nevertheless, the statistical precision of this prediction can be expected to be very poor 
indeed, and so the second tranche (STEP 6) of strategic model runs should contain a mix. 
Correlations in the data set should be considered. Particular difficulties encountered during the 
initial regression modelling should be addressed. Important variables having non significant 
regression coefficients should be favoured by being given precedence in the choice of their 
levels, probably being given a wider range than hitherto. Variables, especially dummy 
variables, where the message is already clear should no longer be experimented with - if a 
particular project is clearly worthwhile it should be included in all the following strategic 
models m s ,  and projects that are clearly no good should be excluded from all following runs. 
We can always go back to check at the end to see if any important interaction effect has thereby 
been missed. Likely interactions should be specifically allowed for. In all, we would suggest 
carrying out about five or six further strategic model runs (of which one will probably be close 
to the previously predicted optimum from the initial regression model) before returning to 
further regression work. 

The second round of regression modelling (STEP 7) should be more systematic than the first. 
Rather than looking for a path of continual improvement from the starting model, various 
alternatives should be specifled and tried in turn, eg dropping non significant variables one by 
one. It will be particularly instructive now to study the effect on the residuals of the 'good' runs 
as this is done. A major goal should be to find a regression model whose predictions for the, 
say, five best (i.e. the five most optimum) observations are in the correct order. Again, the 
weighting scheme can be helpful, but inclusion of the right variables and interaction terms is 
paramount. For each candidate regression model the predicted optimum variable levels can be 
determined as shown above, and then input into the regression model to get a prediction for the 



target variable. By definition this will be better than the predicted values for any of the runs in 
the data set (ie, they S), but may well not be better than the actual best value from the strategic 
model runs (ie the Ys). For poor regression models, however, the predicted optimum may be 
vastly better than any actual run conducted so far. This is merely a characteristic of the method 
and does not necessarily indicate that such an improvement is actually achievable. In all 
probability it will not. As the predicted optimum indicator value comes closer to previously 
achieved values (ie gets worse) we can have greater confidence in our regression model. 

We should stress here, as indicated in Figure 1, that there may be a protracted iterative process. 
At whatever stage in such an iteration, if we have calibrated a regression model at STEP 7, we 
should estimate the predicted optimal policy (STEP 8) and consider its adequacy ZTEP 9 and 
STEP 10). Firstly (STEP 9) we should consider if the strategic model run for this predicted 
optimal policy is actually any better than existing model runs - if it isn't, we should return to 
STEP 6. Secondly (STEP 10) we should consider how close the modelled (Y) and predicted 
(Y) target values are for the predicted optimum policy. If the strategic model value is even 
better than the optimum policy, then it would seem safe to stop, although large disparities might 
suggest some lack of understanding which might beneficially be remedied by further 
investigation. If the prediction is greatly above the strategic model value then there is a clear 
case for continuing the search (i.e. returning to STEP 6). 

5. APPLICATION TO EDINBURGH 

This section applies our method to a strategic model for Edinburgh. A study, called JATES, 
was carried out for Lothian Regional Council by the MVA Consultancy (May et al, 1992). The 
JATES model was constructed on a hierarchical logit basis (Bates et al., 1991). Many model 
runs were conducted, but because a full cost-benefit analysis was not always conducted, and 
because the model was ever evolving, only 32 compatible runs with complete output were 
supplied to us, and there was no possibility of performing further compatible runs. Therefore 
our case study of Edinburgh consists of two distinct parts. 

The 32 runs on which information was available were subjected to statistical analysis, reported 
below in section 5.1. The second part of our work involving new runs carried out on a revised 
version of JATES is reported in section 5.2. 

5.1 STATISTICAL MODELLING OF EXISTING JATES RUNS 

The 32 runs available were based on combined strategy tests run by The MVA Consultancy 
during the JATES study. The dependent or target variable to be optirnised is NPV. The 
independent or policy variables are described below. They are all expressed in terms of 
differences from the do-minimum run. 



Policy Variable Name Definition 

Fares 

Road Pricing 

F1 F1 = 0 where fares are the same as in the do-minimum, otherwise 
expressed as a proportionate change from the do-minimum, e.g. 
F1 = -0.5 expresses a 50% reduction in fares over the do- 
minimum. 

FlSQ F1 X F1 

RRAT There is no charge in the do-minimum. This variable is defied 
as a ratio of the charge in the TIC1ll.O run, such &L: the charge 
in T/C1/1.0 = 1 and the charge in the do-minimum = 0. The 
actual charges in this strategy run are £0.50 all day and a £1.50 
peak direction in the peak surcharge. 

The ratio of the all day charge to the peak surcharge is 1:3 in all 
cases. 

RSQ RRATxRRAT 

Infrastructure 
Investment NS North/South metro, dummy variable equal to 1 if present, 

otherwise 0. 

EW EasttWest metro, dummy variable equal to 1 if present, 
otherwise 0. 

WRR Western Relief Road, dummy variable equal to 1 if present 
otherwise 0. 

PARK Additional parking space dummy variable equal to 1 if present 
otherwise 0. 

Road Capacity 
Reductions RC1 Smallest reduction in road capacity, dummy variable 1 if present 

otherwise 0. 

RC2 Reduction, > RC1, < RC3, dummy variable, 1 if present 
otherwise 0. 

RC3 Pedestrianisation in city centre and extensive traffic calming 
leading to the most significant reduction in capacity, dummy 
variable 1 - if present, otherwise 0. 



Interaction terms RClR A dummy variable equal to 1 where RC1 and road pricing are 
present otherwise 0. 

PARR A dummy variable equal to PARK where road pricing is present, 
otherwise 0. 

FARR Equal to F1 if road pricing is present otherwise 0. 

A number of further interaction terms were specified and experimented with, e.g. road capacity 
and road pricing, infrastructure investment and road pricing, and between the different 
infrastructure investment projects and road pricing. 

After some experimentation the model that we found to perform best is shown in Table 5.1. 

Table 5.1: Regression Model of Existing Data Set. 

We then interpret the model to give a prediction of the optimum policy combination, this gives 
us:- 
Predicted NPV= -92.7 

-13.4 

Standard error 

8.97 
8.34 

10.84 
7.70 
5.58 
2.29 
2.42 
5.91 
7.02 

23.81 
13.36 
7.25 

17.03 
10.33 

Variable 

RC1 
RC2 
RC3 
RClR 
NS 
EW 
WRR 
PARK 
PARR 
F1 
FlSQ 
FARR 
RRAT 
RSQ 

RC1 the minimum possible road capacity reduction 
RClR interaction between road capacity reduction and 

road pricing 
NS noahlsouth metro 
EW eastlwest metro 
WRR Western relief road 
PARK parking investment 
PARR interaction between parking investment and road 

Coefficient 

-92.7 
-146.7 
-359.3 
-13.4 
+143.7 
+ l52 
+18.4 
+104.7 
-29.7 
-177.8 
-25.9 
+21.4 
+69.1 
-19.8 

pricing 
+21.4 FARR interaction fares and road pricing 
-177.8 F1 Fare 
-25.9 FlSQ Faresquared 
+69.1 RRAT Road pricing 
-19.8 RSQ Road pricing squared 



It is necessary to solve the quadratic terms in this equation, in order to identify the best fare and 
road pricing levels. Solving for fare:- 

(i) NPV = -177.8 F1 + 21.4 FARR - 25.9 FlSQ 

(WPV= - 177.8 + 21.4 RDUM - 51.8 F1 
dE1 

Some interpretation of this result is necessary, the fare is specified as a ratio where -1 is the 
equivalent of zero fares. Thus, it is reasonable to interpret -2.96 as a recommendation to set the 
fare level as low as possible, in this case zero, so F1 = -1. 

Road pricing gives a similar equation:- 

(ii) - = 69.1 RRAT - 19.8 RSQ 
dRRAT 

0 - - 69.1 - 39.6 RRAT 

RRAT - - 69.1 - 
39.6 

This implies a road pricing level 1.74 times that in ClRl1.0, giving a charge of 87p all day, 
with a peak direction in the peak surcharge of £2.61. 

Substituting into the main equation we have 

Predicted W - - 92.7 (1) - 13.4 (1) + 143.7 (1) + 15.2 (1) + 18.4 (1) + 104.7 (1) - 29.7 
NPV (1) - 177.8 (-1) - 25.9 (-l)'+ 21.4 (1) + 69.12 (1.74) - 19.8 (1.74)" 

The model tells us to choose the smallest possible reduction in road capacity, to set fares equal 
to zero, invest in both metros, the ring road and parking capacity and impose road pricing at a 
ratio of 1.74 of the ClR111.0 fee. This gives an all day fee of £0.87 and a peak period peak 
direction surcharge of £2.61. 

The above prediction for NPV is derived taking the smallest of the road capacity reductions. 
Because of the way the regression model was set up, it is legitimate to infer that without any 
road capacity reduction NPV would be 92.7 higher, at around E430M. 



There are several significant interaction terms. Firstly, between the investment in parking in the 
central zones and road pricing; in the presence of road pricing the NFV of the parking 
investment is reduced. This is as one would expect, as road pricing reduces the number of cars 
travelling to the city centre so one would expect the demand for parking space to be reduced. 
Secondly, there is an interaction between fares and road pricing, the model suggests that a zero 
fare is the best, in the presence of road pricing the benefits of a zero fare are reduced. Again this 
is the expected result, in that the role of zero fares in attracting car users onto public transport is 
partly fulfilled by the presence of road pricing. 

We found certain interactions to be insignificant and most notably between the metro 
investments and the WRR, and between road pricing and the metro and W3.. It is not 
immediately obvious why this should be. The interaction term between RC3 and road pricing 
was not valid as there was only one observation. Similarly, the interaction term between the 
two metro lines could not be defined by the model. 

This model suggests that further JATES tests should focus on certain variables in an effort to 
improve the model. 

(1) Test the predicted optimum combination from this model. 

(2) Test zero fares and a number of other variants to introduce a wider range into the 
data. Fares may be better expressed as an average fare in the peak and off-peak 
separately if such information is available. It would then be interesting to test variations 
in the relative levels of peak and off-peak fares, which proved illuminating in the 
PLUTO tests. 

(3) Road - pricing The model suggests a fee higher than any tested, so we need to introduce a 
greater range of values into the tests again. In addition, it would be interesting to test 
different ratio of the charges in the peak dict ion and all other times. 

Unfortunately, the version of the model at lTS could not produce output wholly compatible with 
that in these runs, as the model had evolved over time. It was therefore necessary to treat this 
modelling exercise as complete in itself. 

5.2 APPLICATION OF THE OPTIMISATION METHOD USING JATES 

5.2.1 Policies to be tested l 
The next stage of our work with JATES was to carry out new model runs, following the 
guidelines developed using PLUTO. We selected as our starting point the runs identified in the 
JATES final report (MVA, 1992) as C1 and C6. Their main characteristics are described in 
Table 5.2. 



Table 5.2: Final Report Tests C1 and C6 

where: NS = North - South Light Rapid Transit 
EW = East - West Light Rapid Transit 
WRR = Western Relief Road 

Policy 

Infrastructure 

Capacity reduction (%) 

Fares level (%) - 

Road Pricing 

Npv (m) 

The changes are all relative to the do-minimum run. The capacity reduction is a decrease in 
road capacity in the city centre. The change in fare level is relative to the expected levels in the 
do-minimum in the year 2010. Road pricing is a charge of £1.50 to enter or leave the city centre 
and is payable at all times of the day. Our runs will be tested against the original do-minimum 
run (see Appendix 1) and the trend scenario. 

C1 C6 

NS NS 
EW 
WRR WRR 

10% 10% 

-50% +25% 

Yes No 

410 110 

As a result of certain differences in the evaluation package we obtained slightly different 
estimates of NPV when rerunning these tests, C1 NPV = f453.3M and C6 NPV = E129.9M. 

5.2.2 Road pricing 

Before progressing to tests based on changes in a number of variables, we wished to examine a 
variable that could be defined as continuous. This was intended to test for the quadratic type of 
relationship between NPV and prices, that we identified in the PLUTO tests. Due to the number 
and variety of fare levels and peak: off-peak differentials in the do-minimum run, this is done 
most simply with regard to road pricing. The first step was to look back at the various road 
pricing strategies in tests run by MVA, these are listed in Table 5.3. 



Table 5.3: Road Pricing Tests Extant (in chronological order) 

The strategy in TM1.O appears to be overcomplex for our requirements and so TM1.3  was 
chosen as the starting point for our road pricing tests. The premise was that 'expert' opinion 
contributed to the initial values for the road pricing tests and that therefore they were a good 
place to start. In keeping with our method, where do-minimum values do not exist (eg road 
pricing, new modes) or are deemed inappropriate, an expert opinion should be sought to 
establish starting values for the variables in question. 

Run Code 

TM1.0 

TM1.3 

TM1.4 

TlC111.10 

TlC111.17 

TlC111.18 

Our matrix of three tests has the MVA road pricing strategy of run TM1.3 as the mid-point for 
the tests. We tested around this by halving and doubling the fees, if the second test had shown 
NPV increasing, then the third test would have been a further move in that direction, to ensure 
that the highest NPV is enclosed by our tests. (See Bristow et al 1994, for further details on 
testing quadratic functions). The results are shown in Table 5.4. 

Road Pricing Strategy 

£1.50 ampeak charge to cross 
£0.50 off peak boundary either way 
£1.00 pmpeak 

£0.50 all day 
£1.00 peak direction surcharge 

£0.50 all day 
£2.00 peak direction surcharge 

£0.25 all day 
£0.50 peak direction surcharge 
(TM1.3 X 0.5) 

£1.50 at all times 

£0.75 all day 
£1.50 peak direction surcharge 
(TM1.3 X 1.5) 



Table 5.4: Road Pricing -First test matrix 

These tests were all run using C1 (final report) as the base model, this is included in Table 5.4 
for comparison, the only changes made were to the road pricing levels. At this stage we are 
maintaining the same ratio between the all day charge and the peak direction surcharge, 
although this could be altered at a later stage. The NPVs obtained are very interesting as those 
for CRPl and CRP2 are very similar, one might expect to find the optimum value in between. 
Therefore a fourth test was run using values 0.8 times those in TM1.3. The NPV obtained 
from this run was 478.5M, which is higher than the two values surrounding it as expected. 

Run Code 

CRPl 

CRP2 

CRP3 

Cl 

In this case with four model runs we have reached a point at or near a local optimum. Although 
we cannot be certain that we have reached a global optimum, however, we have tested a fairly 
wide range of road pricing fee levels and used very few model runs. Therefore, the assumption 
of quadratic form for continuous variables is appropriate. 

5.2.3 Combined policy tests 

Road Pricing 

£0.50 all day 
£1.00 peak 

surcharge 

£0.25 all day 
£0.50 peak 

surcharge 

£1.00 all day 
£2.00 peak 

surcharge 

£1.50 all day 

This section reports the application of the optimisation procedure developed using PLUTO (see 
figure l), to the JATES model. As our target (Y) variable, or key indicator (STEP l), we chose 
the Net Present Value of benefits over costs 0, as produced by JATES. 

NPV (Em) 

476.5 

475.6 

440.4 

453.4 

We tested a number of policy variables (STEP 2), to give the optimisation process a variety of 
different variables to deal with at the same time. These were: 

Road Pricing 

Bus fares 

- all day charge (pence) to cross cordon around city 
centre (zero in do-minimum) 

- peak direction surcharge (pence) (zero in do- 
minimum) 

- peak (as a proportion of the do minimum bus 
fares) 



- off peak (as a proportion of current peak fares; 
there was no off-peak reduction in the do- 
minimum) 

Rail fares - as a proportion of the do minimum rail fares 

LRT fares - as a proportion of the do minimum fares 
(since there was no LRT in the do-minimum) 

Infrastructure Investment - two levels, medium and high (medium consists of 
a Western Relief Road and a North, South Light 
Rapid Transit Line, high consists of medium plus 
an East-West Light Rapid Transit Line, none of 
which were in the do-minimum) 

We selected as our starting point the runs identified as successful by the consultants (MVA, 
1991) as C1 and C6. Their main characteristics are described in Table 5.5, where they appear as 
runs 2 and 3 respectively. 

The first task was to establish precisely how physically to set the variables of interest within 
JATES. One or two, especially LRT fares and off-peak discounts, are slightly awkward and 
outside the model menu. The next task was to define the required minimum number of test runs 
and then devise an appropriate matrix of tests. Firstly, we considered the independent variables 
(STEP 2) that we would wish to include in our regression model: 

- road pricing all day charge (to cross cordon around the city centre) 
- road pricing all day charge squared 
- road pricing peak direction peak surcharge 
- road pricing peak direction peak surcharge squared 

- bus fare peak 
- bus fare peak squared 

bus fare off-peak 
- bus fare off-peak squared 

- rail fare 
- rail fare squared 

- LRT fare 
- LRT fare squared 

- Infrastructure level: dummy l = high, 0 = medium 

- Constant 



As a simplification, we are investigating the impact of differing peaktoff-peak fares for buses 
but not for rail or LRT. Rail is of less importance as a mode, and the do-minimum off-peak 
discounts vary according to the origin and destination. It is therefore very diffcult to define 
logical changes in the overall balance of peak and off-peak rail fares that can be defined relative 
to the do-minimum. 

Hence we have 13 variables plus a constant term, before we even consider the possibility of 
inter-action terms. Consequently, the minimum number of runs to begin with is about 18. This 
is the (2n + m + 5) discussed in section 4, where n = 6 continuous variables, and m = 1 dummy 
variable. A matrix of tests was then devised (STEP 3) to contain a wide range of variation of 
values for all the pricing variables. Table 5.5 shows these, together with srl:tum NPV, 
expressed as a change from the do-minimum case. 

Table 5.5: Edinburgh Combined Policy Tests - Matrix of Initial 18 Runs 

The matrix includes the MVA tests C1 and C6 (as runs 2 and 3) and also the three road pricing 
tests (runs 13 to 15) described in section 5.2.2. We are attempting to utilise existing information 
in order to minimise the total number of additional runs required. The 18 runs carried out show 

Note: All changes are with respect to the do-minimum, except for off peak bus fares where a 
change relative to the peak fare is shown. 

Infrastructure 

High = H 
Med = M 

H 
H 
M 
M 
H 
M 
M 
M 
M 
H 
H 
H 
H 
H 
H 
M 
M 
M 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

NPV 
Change 

for 
Run 
(m) 

+220.0 
453.4 
+129.9 
+163.7 
+230.7 
-383.0 
-92.5 

-111.3 
-217.3 
+243.6 
+136.1 
+114.1 
A76.5 
475.6 
4 0 . 4  
+102.8 
-555.3 
-130.2 

Bus Fare 
Change 

(%l 

Road Pricing 
(5) 

Rail 
Fare 

Change 
(%) 

-25 
-50 
+25 
-20 
+25 
+25 
-60 
-40 
+50 
-60 

+l00 
-20 
-50 
-50 
-50 
+50 
+l00 
-40 

General 
Change 

-25 
-50 
+25 
-50 
+25 
+l00 

0 
+l00 
-50 

+l00 
0 

+25 
-50 
-50 
-50 
+25 
-50 
0 

All 
Day 

2.00 
1.50 
0 

0.25 
1.50 
2.50 
0.25 
0 

1 .OO 
0 

2.00 
0 

0.50 
0.25 
1.00 
0.50 
1.50 
2.50 

LRT 
Fare 

Change 
(%) 

-25 
-50 
+25 
0 
0 
0 

+50 
-20 
+75 
-60 
0 

+l00 
-50 
-50 
-50 
-80 
+25 
-40 

Off- 
peak 

-50 
0 
0 

-20 
-50 
-100 
-20 
-50 
-100 
-20 
-50 
-100 

0 
0 
0 

-20 
-50 
-100 

Peak 
Surcharge 

1 .OO 
0 
0 

1 .OO 
0 

0.50 
0 

2.00 
0 

1.00 
0 

0.50 
1.00 
0.50 
2.00 

0 
2.00 
0 



a wide range of NPV outcomes, from -£555.3M to f476.5M. With 18 data points and an initial 
14 independent variables, the regression modelling was never expected to yield a very good 
model, but merely a first indication as to levels for the policy variables that would yield a high 
NPV. 

The first stage in constructing a useful regression model (STEP 4) was to enter all the variables 
and squared terms specified above. 

The second stage was to introduce a weighting on the NPV dependent variable. We have 
already mentioned the wide range of NPV values in the data set; we wish to concentrate the 
explanatory power of the regression model on the cases with high NPV's ratha :\an on the 
negative outcomes. Therefore, we introduced a weight (W2) as follows, 

We also tried 

W 1 = (NPV + 600) 
W3 = (NPV + 600)~ 

and W4 = (NPV + 6 ~ ) ~  

We found W2 to give the most satisfactory performance and that weighting is used throughout 
this paper. We chose the constant '600' as being just sufficient to give all the runs a non-trivial 
positive weight (the smallest NPV being -£555.3M as stated above). 

The model produced was unsatisfactory, with rail fares and both road pricing variables 
insignificant. For the sake of completeness and to allow our modelling process to be followed 
through, models are shown in Appendix 2; this one is model 1. 

The next stage was to remove the unhelpful variables, both linear and squared terms, in 
sequence, to see if the model was improved. 

(i) Remove all day road pricing (and its square) - this model is a slight improvement giving 
a positive peak period peak direction surcharge of 97p. It also suggests free bus fares, a 
reduction of 72% on LRT fares, an increase in rail fares of 17.4%, and the high level of 
infrastructure investment, (model 2). The increase in rail fares, at the same time as large 
reductions in fares on other modes, was counter intuitive but was not significant. 

(ii) Remove peak direction peak period road pricing surcharge - this model (model 3) was 
unsuccessful; the sign on all day road pricing remained negative. The model suggests 
free fares on bus and LRT, an increase in rail fares of 18%, and the high level of 
infrastructure investment. Again, lack of ~ i ~ c a n c e  of variables leads us to investigate 
further. 

(iii) Remove rail fare variables - this yields our most rational model so far, although many 
variables have very large standard errors. This model (model 4) suggests; 



Road pricing - all day 43p 
- peak direction peak period surcharge 89p 

Bus fares - decrease of 22% 
- no off-peak discount 

LRTfares - decrease of 56% 
Rail fares - no change 
Infrastructure - high 

We also experimented with interaction terms to a limited extent, but no improvements to the 
model were noted. 

As model 4 provides a rational picture with logical signs and no inconsistencies, we used this to 
predict our initial optimum run (STEP 5):- 

169.7 constant 
+5.23 bus fares down 22% 

-1-32.35 LRT fares down 56% 
+22.73 Road pricing, peak direction peak period surcharge 89p 
+8.83 Road pricing, all day 43p 

+266.0 High infrastructure investment 
E504.84M Predicted NPV increase 

This policy combination was then run through JATES (Run 19, Table 5.6) and produced an 
actual NPV of £435.9M, which is towards the top end of the NPVs identified so far, but clearly 
not an optimum. However, the regression is starting to point us in the right direction, which is 
the most we can expect with so few runs and so many variables. The next step was to identify 
five more JATES runs (STEP 6) intended to provide the regression model with more 
information. Values were chosen to reflect what the model was telling us and to try to aid it 
where obvious problems were present. The issues which we considered here were:- 

(i) Road pricing - the model is having problems disentangling the two types of charge (all 
day and peak surcharge). We therefore tried three runs where only one was 
implemented and two with different balances between the two. 

(ii) Bus fares - all the models suggest a fares reduction; model 4 actually involves the 
smallest reduction. We can be confident about the direction of change and so can try 
larger reductions, including two runs with zero bus fares. The models are also 
unanimous in rejecting an off-peak discount, so we kept off-peak fares at the same level 
as peak fares for these runs. 

(iii) Rail fares - the models have trouble with rail fares; this is not too worrying as rail is a 
minor mode. We tried three runs with no change in rail fares and three with reductions. 

(iv) LRT fares - all the models suggest fares should be reduced; we tried a range of 
reductions. 

(v) Infrastructure - all the models suggested investing in the high level of infrastructure. 



The run specifications are given in Table 5.6 along with outtum NPV values. Note that we have 
tried to avoid introducing correlation between variables by randomising the levels set for each 
run. In case of indecision as to what specifications are sensible to choose, the predicted NPV's 
of candidate specifications might be inspected. We did this sometimes, but not generally as we 
were more interested in getting a good spread of data for our regression models. In the event, as 
Table 5.6 shows, none of the additional 5 runs (20 to 24) were particularly poor in terms of 
NPV. 

Table 5.6: Edinburgh Combined Policy Tests - An Additional 6 runs 

It can be seen from the above table that we have obtained two NPV values above those in the 18 
run data set by testing around the initial predicted 'optimum'. This data was then combined 
with the previous 18 runs and regression analysis undertaken (STEP 7), again.using weighting 
w2.  

Run 

19 
20 
21 
22 
23 
24 

The initial model including all the variables was imperfect, having a negative coefficient on the 
peak road pricing surcharge (model 5 see Appendix 2). The model suggested an all day road 
pricing level of 51p, zero bus fares, a 50% reduction in LRT fares, a 15% reduction in rail fares 
and high infrastructure investment. The 24 run model is now telling us that all public transport 
fares should move in the same direction. 

Again our strategy was to remove problematic variables in sequence:- 

NPV 
Change 
for 
Run 
(EM) 

435.9  
410.1 
+536.2 
+502.3 
428 .2  
+397.6 

Road Pricing (E) 

(i) Remove peak direction peak period road pricing surcharge, non significant and negative. 
Model 6 results and is a reasonable one:- 

Bus Fare Change 

- 
Allday 

0.43 
0 

0.75 
0.90 
0.60 

0 

Roadpricing - all day 79p 
- no peak surcharge 

Bus fares - reduce by 52% 
- no further off-peak discount 

Railfms - reduce by 2% 
LRTfares - reduce by 53% 
Infrastructure - high 
The predicted optimum NPV is £492.4M, consisting of:- 

Rail 
Fare 
Change 
(%) 

0 
-20 

0 
-10 

0 
-50 

General 
Charge 

-22 
-40 
-60 
-80 
-100 
-100 

Peak 
Surcharge 

0.89 
1.50 

0 
0.40 
1.20 
2.50 

Off 
peak 

0 
0 
0 
0 
0 
0 

LRT 
Fare 
Change 
(%) 

-57 
-40 
-80 
-20 
-100 

0 

Infrastruchm 

(High = H) 

H 
H 
H 
H 
H 
H 



156.9 constant 
4 0 . 0  road pricing 
+13.1 bus fare reduction 
+0 rail fare reduction 

+20.8 LRT fare reduction 
+261.6 High infrastructure 
£492.4M Predicted NPV increase 

The contribution from rail fares is negligible and this variable is highly unreliable having 
a standard error some 10 times higher than the coefficient. 

(ii) Remove rail fare variables as well as peak road pricing surcharge variables (model 7). 
This model's recommendations are:- 

Rodpricing - aU day 75p 
- no peak surcharge 

Bus fares - reduce by 58% 
- no further off-peak discount 

Rail fares - no change 
LRTfares - reduce by 56% 
Infrastructure - high 

Predicted NPV using these values:- 

143.7 constant 
+16.71 Bus fare 
+26.23 LRT fare 
41.99 Road, pricing 

+256.6 Infrastructure 
f485.23M Predicted NPV increase 

Further extensive experimentation failed to improve the regression model, eg trying a combined 
road pricing variable, or introducing interaction terms. 

Models 6 and 7 give very similar recommended input values for the key pricing variables, see 
Table 5.7 shows these, together with their predicted NPV values. Also shown is Run 21 (from 
Table 5.6) which is rather similar but would now be predicted to have a slightly lower NPV than 
Models 6 and 7. For Run 21 we actually know its NPV to be £536.2M (rather than £480M as 
would be predicted from our regression model using Runs 1 to 24). 



Table 5.7: 24 Data Point Model Predictions Compared to Run 21 

It appears that we are now very close to an optimum; the model prediction suggests that a slight 
improvement in NPV may be achieved with further runs. It is a question of judgement and 
resources how far marginal improvements should be pursued. STEP 8 was therefore dispensed 
with and Run 21 adopted as our optimal run. This is our best run (STEP 9), and its performance 
is better than any prediction (STEP 10). In practice, continuous policy variable levels will have 
to be rounded to convenient numbers. Here we would suggest 80p all day road pricing, halve 
bus fares, implement the high level of infrastructure investment, and set LRT fares equal to bus 
fares. 

Variable 

Road pricing - all day 
Bus fare change - all day 
LRT fare change 

NPV increase (EM) 
- Predicted from Runs 1-24 
- Actual 

6. CONCLUSIONS 

In this paper we have presented a new methodology whereby difficult decisions can be made 
much easier. The context is that of strategic transport models, which are themselves not 
sufficiently exact to be worth solving analytically (were that possible) or of investigating by a 
grid search in order to find their 'optimum', as defined by a user. These models allow a wide 
range of transport policy variables to be set. Typically, many runs will be carried out to cover 
the range of policies that were in mind when the study was set up and the decision to build the 
strategic model taken. Once these are done, it is realised that there are an infinite number of 
other policies that could have been tested, consisting of various levels for each of several 
continuous and discrete variables. Even if the users are fairly happy with the best run so far 
from the strategic model, how can they be sure that it really is anywhere near optimal, given 
their own objective. 

Model 6 

7 9 ~  
-52% 
-53% 

492.4 

In this paper we have shown that it is possible to take any existing strategic model runs, do some 
more to provide a suitably rich data set, and then perform regression modelling to derive a 
satisfactorily accurate representation of the response surface of the strategic model in the 
vicinity of its optimum. We have found that, for continuous policy variables, quadratic forms 
are sufficient, so that we need only two parameters for each continuous policy variable to be 
included. Discrete policy variables (such as infrastructure projects) require one parameter for 
each level. Each parameter requires a degree of freedom, and that means another run of the 
strategic model. Consequently we are not interested in accurately representing the strategic 
model. Because the quadratic will not be correct, it will give poor performance over large 
ranges. We have taken the position that we are interested only in the vicinity of the optimum, 

Model 7 

7 5 ~  
-58% 
-56% 

485.2 

Run 21 

7 5 ~  
-60% 
-80% 

480 
536.2 



and so have used a weighting whereby runs are given less weight the further they are away from 
the current best run. In extreme cases, a run may be so poor that it will be best dropped from the 
regression rather than compromise our method. 

Our method clearly works. We have found (in Run 21, Table 3) a combination of policies 
which gives an NPV (relative to the do minimum) of £536.2M, compared to the £453.4M of the 
best run identified by the consultants, i.e. an 18% increase. This was achieved with just 24 runs 
of the strategic model - a grid search method would have hardly got started. 
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APPENDIX 1: JATES DO MINIMUM DEFINITION AND SCENARIOS 

JATES - DO-MINIMUM DEFINITION 

The "Joint Authorities Transportation and Environmental Study" or JATES has at its centre a 
strategic model designed to predict and evaluate the impacts of transport policies. The 
evaluation produces outputs on accessibility, environmental impacts, fuel consumption and 
accidents, as well as the more conventional assessment of Net Present Value o. 
The specification of the do-minimum run with regard to policies in place and assumptions on 
economic growth and distribution is the first issue to be examined. 

JATES do-minimum policies 

The do-minimum strategy is defined here with reference to the JATES Final Report and 
Information Note 13, and included the following changes from the base year; 

(a) M8 extension to the City bypass. 

@) SCOOT UTC in the City centre, zones 1,2 and 12, assumed to give an increase in 
capacity of 5%. This is done by adjusting the base flows by +5% at the base speeds. 

(c) A real increase in public transport fares of +29% between 1990 and 2010, reflecting 
recent trends in fare levels. 

(d) Bus service provision, the final report has bus levels adjusted such that a "constant load 
factor" is maintained. 

(e) Private and public parking supply remain constant overall. 

(f) Parking charges, increase by 50% between 1990 and 2010. 

2.2 Scenarios 

Four scenarios were developed, each making different assumptions on land use and economic 
growth in the future. The base reflects the situation in 1990. The four scenarios are as follows:- 

(a) Trend - involves moderate economic growth, the majority of the growth in employment 
takes place outside the city, especially in West Lothian. There is some population 
transfer from the city to the external zones. 

(b) High - involves a higher level of economic growth than that posited in the Trend 
scenario. Growth is concentrated in the West of the city, leading to higher employment 
in zones 2 and 9. 

(c) Low - involves a lower level of economic growth than that in the trend scenario. There 
is a greater retention of jobs and people within the city. 



(d) Balanced - involves the same level of growth as in the Trend scenario, but with a 
different distribution, "with both population and employment located so as to achieve a 
better balance within each strategic zone with the objective of reducing the need to 
travel". 

The vast majority of the JATES model tests carried out by MVA use the Trend scenario. The 
others are used to cany out sensitivity testing on strategies. 

Given that the bulk of existing output is based on the Trend scenario, it is rational that our tests 
also take the trend scenario as a basis for strategy testing. 

APPENDIX 2: REGRESSION MODELS 

This appendix contains the regression models described in section 5.2.3 

Variable Definitions 

RPA - 
RPP - 
BG - 
BOP - 
W - 
LRT - 
IIW - 

WAS - 
RPPS - 
BGS - 
BOS - 
RFS - 
LRS - 

Road pricing all day charge 
Road pricing peak direction peak surcharge 
Bus fares, change 
Off peak bus fares discount 
Rail fare change 
LRT fare change 
Infrastructure investment dummy 
(1 =high, 0 = medium) 
RPA~ 
RppZ 
B G ~  
BOP~ 
RFZ 
L& 

Weights W2 = (NPV + 600)' 
W3 = (NPV + 600)~ 
W4 = (NPV + 60014 



18 point data set, weight = W2 

Variable 

Constant 

W A  

WAS 

W P  

RPPS 

BG 

BGS 

BOP 

BOS 

RE 

RES 

LRT 

LRS 

INF 

Model l 

194.3 
(44.08) 
-1.214 
(1.452) 
0.002891 
(0.00642) 
-0.5919 
(1.105) 
0.002539 
(0.005342) 
-1.382 
(0.8428) 
0.001001 
(0.01 104) 
3.221 

(2.394) 
0.01064 
(0.02574) 
0.6034 
(0.5697) 
-0.01830 
(0.009264) 
-1.063 
(0.5497) 
-0.001546 
(0.01071) 

314.0 
(45.64) 

Model 2 

168.9 
(40.76) 

0.4963 
(0.6495) 
-0.002564 
(0.00301 1) 
-0.8068 
(0.5054) 
0.0009898 
(0.009153) 
5.287 
(1.773) 
0.02124 
(0.01877) 
0.5739 
(0.4980) 
-0.01653 
(0.007361) 
-0.5455 
(0.3945) 
0.003798 
(0.006673) 
272.4 
(3 1.65) 

Model 3 

187.9 
(35.95) 
-0.7033 
(0.7336) 
0.001085 
(0.003804) 

-1.051 
(0.4710) 
-0.001992 
(0.008252) 
4.154 
(1.414) 
0.1886 
(0.01677) 
0.5792 
(0.4603) 
-0.01624 
(0.006868) 
-0.9894 
(0.4559) 
-0.002109 
(0.0087 10) 
298.7 
(28.83) 

Model 4 

169.7 
(48.98) 

0.4100 
(1.363) 
-0.004762 
(0.005752) 
0.5114 
(1.105) 
-0.002876 
(0.005335) 
-0.4702 
(0.7848) 
-0.01055 
(0.009578) 
4.974 
(2.532) 
0.03594 
(0.02591) 

-1.150 
(0.6307) 
-0.01022 
(0.01104) 

266.0 
(44.25) 



24 Point data set, weight = W2 

Variable 

Constant 

RPA 

RPAS 

RPP 

RPPS 

BG 

BGS 

BOP 

BOS 

RF 

RES 

LRT 

LRS 

INF 

Model 5 

172.1 
(35.59) 
0.5859 
(0.6073) 
-0.005715 
(0.003 152) 
-0.5668 
(0.4502) 
0.0009553 
(0.001891) 
-0.7665 
(0.3245) 
-0.00371 1 
(0.003495) 
3.437 
(1.731) 
0.02250 
(0.01712) 
-0.2437 
(0.3291) 
-0.007939 
(0.005736) 
-1.073 
(0.5009) 
-0.01079 
(0.006066) 
277.5 
(31.56) 

Model 6 

156.9 
(37.45) 
1.006 

(0.6162) 
-0.0006331 
(0.003384) 

-0.5041 
(0,3193) 
-0.004845 
(0.003530) 
4.583 
(1.736) 
0.02831 
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