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Abstract: We study the impact of power state transitions on the lifetime of base stations (BSs) in
mobile networks. In particular, we propose a model to estimate the lifetime decrease/increase
as a consequence of the application of power state changes. The model takes into account both
hardware (HW) parameters, which depend on the materials used to build the device, and power
state parameters, that instead depend on how and when power state transitions take place. More in
depth, we consider the impact of different power states when a BS is active, and one sleep mode
state when a BS is powered off. When a BS reduces the power consumption, its lifetime tends
to increase. However, when a BS changes the power state, its lifetime tends to be decreased.
Thus, there is a tradeoff between these two effects. Our results, obtained over universal mobile
telecommunication system (UMTS) and long term evolution (LTE) case studies, indicate the need of
a careful management of the power state transitions in order to not deteriorate the BS lifetime, and
consequently to not increase the associated reparation/replacement costs.
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1. Introduction

Cellular networks are intensely deployed in the whole world, with different technologies
adopted, ranging from legacy 2G networks, to 3G and 4G ones. Focusing on a single base station (BS),
its downlink power depends on the number of terminals connected to it, their signal to interference
plus noise ratio, as well as the amount of received power for each terminal. In the literature, different
solutions have been proposed so far to adjust the power radiated by a BS (see for example [1]).
The goal is to guarantee capacity to the users associated with a BS, and also to reduce the overall
interference with the neighboring BSs (see e.g., the survey [2]). In this context, resource allocation
and interference mitigation are investigated in [3–5].

At the same time, power consumption consumed by a single BS is far to be negligible [6].
Moreover, the total power consumption of a BS is influenced by the radiated transmit power [7].
These facts, coupled also with the high number of deployed BSs in an operator network, have
stimulated researches towards the reduction of power consumption in cellular networks. One of the
most promising approaches to save energy in a cellular network is the exploitation of a sleep mode
(SM) state to BSs. More in depth, a BS is completely powered off during low traffic hours (e.g., during
night). At the same time, both coverage and traffic requirements are guaranteed by the neighboring
BSs that remain powered on. The efficacy and efficiency of BS SM has been extensively studied by
previous work (see for example the survey [8]).
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A power state transition may therefore occur either when a BS passes from full power to SM
(and vice-versa), or when the radiated power is varied. The change in the power state may trigger
a change on a temperature variation of some of the BS components. As an example, the authors
of [9] report that the largest amount of power consumed by a BS is due to the power amplifier,
which is involved when the SM state is activated/deactivated, and also when the radiated power is
varied. Thus, power state changes triggering a temperature variation of BS components are affecting
the everyday life of a BS. However, some natural questions arise: How do SM and radiated power
impact a BS lifetime? Is it possible to build a model to predict the lifetime increase/decrease of
a BS as a consequence of its power state change? What is the trade-off between energy savings
on one side and reparation/replacement costs on the other? The answer to these questions is the
goal of this paper. In particular, we first consider the main effects triggered by the temperature
change on a BS. We then build a simple model to compute the lifetime increase/decrease of a BS
as a consequence of the application of different power states (i.e., a change in the radiated power, or a
SM activation/deactivation). More in depth, when a BS reduces its radiated power or it is put in SM,
its lifetime tends to increase, since the temperature of its components is reduced. However, the power
state change (either from full power to SM or among different values of radiated power) triggers a
negative effect which tends to decrease the lifetime. The combination of these two effects then leads
to the variation of the total lifetime experienced by a BS. Finally, we evaluate the proposed model on
different realistic case-studies, exploiting 3G and 4G technologies.

Our results indicate that the BS lifetime may be negatively affected when power state transitions
take place. This reduction of lifetime will deteriorate the reliability of the network (due to the fact that
BSs increase their failure rate), as well as bringing to an increase in the reparation and replacement
costs. Therefore, we argue that the lifetime should be considered in the process of deciding how and
when to change from a power state to another one. However, we show that the lifetime depends
on the hardware (HW) components used to build the device. The goal of this work is also to show
the impact on the lifetime due to the behaviour of HW solicited by state transitions, and to stimulate
future research in this field, i.e., estimating the values of HW parameters from real measurements.

The rest of the paper is organized as follows. Related works are presented in Section 2. The main
effects related to temperature impacting the BS lifetime are summarized in Section 3. Section 4 then
presents our model for estimating the BS lifetime. Section 5 details our considered scenarios. Results,
obtained from realistic case studies, are reported in Section 6. Section 7 discusses our findings. Finally,
Section 8 concludes our work.

2. Related Work

In the literature, different works have investigated the adoption of energy-aware management
in cellular networks (see e.g., [10–12] for comprehensive surveys). In particular, one of the most
promising approaches to save energy in a cellular network is the adoption of SMs. When a BS is
in SM, the traffic is served by the neighboring BSs that remain powered on [13]. The problem can
be centrally solved [14], i.e., one central node computing the power state for BSs, or in a distributed
way [15], i.e., each BS decides when and how to go in SM. Moreover, each BS that remains powered
on may increase its power in order to cover the users previously served by BSs that are currently in
SM [16], or adopting smart technologies, like coordinated multipoint, to guarantee user coverage and
capacity constraints [17]. All these works prove the efficacy of cellular networks in terms of energy,
without considering the impact on the lifetime.

Even though the topic of energy-aware cellular networks has been deeply studied in the past
years, the application of smart energy-aware policies in real networks is only at the early stage.
In particular, one of the main concerns of mobile network operators is the impact of these approaches
on the equipment failure rate. The reason is quite simple: since cellular components are not designed
to be powered off/on very frequently, the increase in the number of power state transitions triggered
by energy-aware policies may negatively impact the equipment lifetime, leading to an increase in
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the failure rate. In [18] authors consider the limitation of power switching states per day, while at
the same time allowing energy savings. However, as we will show in this paper, the lifetime is not
merely a function of the number of power state transitions, but it depends on multiple parameters,
ranging from the duration of each power state, the characterstics of HW components used to build a
BS, the specific time at which the transition takes place, and the scenario taken under consideration
(i.e., universal mobile telecommunication system (UMTS) or long term evolution (LTE). In this
context, it becomes clear that it is of mandatory importance of investigating failure rate models in
energy-aware networks.

Failures in cellular networks are in general very negative events, due to two main reasons:
(i) the quality of service (QoS) degradation experienced by users; and (ii) the costs incurred for
repairing/replacing the failed equipment. In particular, telecommunication networks are actually
experiencing failures during the daily operation of the network (i.e., without energy-aware approaches
applied) [19,20], and a failure increase would be therefore unacceptable.

Motivated by these issues, in [21] we have investigated the impact of SM approaches in cellular
networks. However, the contribution of radiated power is not taken into account, and the results
are obtained only from a 3G network. Additionally, in [22] we have performed a preliminary
investigation on the impact of lifetime considering also the active power states. We are not aware of
other works on lifetime modeling in green cellular networks. In this work, we go three steps further
with respect to previous work by: (i) considering different models for the failure rates (i.e., a linear
and an exponential model); (ii) evaluating the impact on the lifetime on the single BSs in a network;
and (iii) considering the cost analysis of energy savings vs. reparation and replacement costs over
time. We believe that these improvements are of fundamental importance to capture the impact of
power state transitions on the lifetime of cellular networks.

Finally, it is worthwhile to mention the national project LIFETEL (increasing the LIFE time of
TEL ecommunication networks) [23] which actually supported this work. The goal of LIFETEL is
to evaluate the lifetime in telecommunication networks adopting energy-efficient approaches, and to
propose new solutions to limit the lifetime decrease, or (possibly) to increase it. The project ranges
from backbone to cellular networks, with the aim of giving new directions in the management of
lifetime-aware architectures.

3. Impact of Temperature on a Base Station Lifetime

A first order model to compute the failure rate γT of a device given its temperature T is the
Arrhenius law [24]:

γT = γ0e−
Ea
KT [1/h] (1)

where γ0 is the failure rate estimated assuming a very high temperature, Ea is the activation
energy (i.e., the minimum energy needed to activate the failure variation) and K is the Boltzmann
constant. Interestingly, when the temperature decreases, the failure rate decreases too. Although
more detailed models than the one reported in Equation (1) have been proposed in the literature
(see for example [25]) all of them predict a decrease in the failure rate when the temperature is
reduced. This means that, if the reduction of the temperature were the only effect taken under
consideration, keeping a BS in a low-power state for the longest amount of time would be of benefit
for its lifetime.

In addition, a device may suffer strain and fatigue when temperature conditions change,
in particular when this happens in a cyclic way (i.e., from one temperature to another one).
The Coffin-Manson model [26] describes the effects of material fatigue caused by cyclic thermal stress.
The predicted failure rate γ∆T due to the thermal cycling effect is then expressed as:

γ∆T =
f TC

Nf [1/h] (2)
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where f TC is the frequency of thermal cycling and Nf is the number of cycles to failure. The term Nf

is commonly denoted as:

Nf = C0(∆T − ∆T0)
−q (3)

where ∆T is the temperature variation of the cycle, ∆T0 is the maximum admissible temperature
variation without a change in the failure rate, C0 is a constant material dependent, q is the
Coffin-Manson exponent. From this model, we can clearly see that the more often a device
experiences a temperature variation, the higher will be also its failure rate. In the following, we
build a model to capture this effect and also to consider the impact of Equation (1).

4. Base Station Lifetime Model

In our work, we consider the BS as a single HW entity. More in depth, we derive a model to
express the failure rate of an entire BS. Clearly, this model is an approximation of the real BS behavior,
due to the fact that a BS is composed of different HW components, which may exhibit different failure
rates. However, our model is able to capture the macroscopic behavior of a system like a complete
BS, in order to provide first order insights. We leave the definition of more detailed (and complex)
models considering the single BS components as future work.

We start from the assumption that each BS in the network may choose one power state among
a discrete set of values. The total BS power is composed by two terms [6]: the static power, that has
to be counted if the BS is not in SM, and the dynamic power, which instead depends on the radiated
power. In particular, we assume a set of P power states whose cardinality is K = |P|. Let us denote
with P1,P2,...,PK−1 ∈ P the power consumed by the BS for dynamic power with indexes 1,2,...,(K− 1),
respectively. Moreover, Poff ∈ P is the power consumed when the BS is in SM state. The power states
are ordered in increasing order, i.e., Poff < P1 < P2 < PK−1.

For each power state, we denote as τoff, τ1,τ2,...,τK−1 the time spent by the BS in power state
Poff,P1,P2,...,PK−1, respectively. The total amount of time under consideration is denoted with T.
Moreover, we associate a failure rate to each power state: γoff,γ1,γ2,...,γK−1.

The average BS failure rate γs considering only the impact of different power states is then
defined as:

γs = γoff
τoff
T

+
K−1

∑
i=1

γi
τi
T

[1/h] (4)

which is the sum of the different failure rates, weighed by the normalized amount of time spent in
each power state.

In the following, we consider the impact of the thermal cycling effect on the failure rate, which
is triggered by the power state transitions. In particular, we denote with δi−j the failure rate triggered
by the transition between the power state i and the power state j. Similarly, we denote as δoff−j the
failure rate when passing between the SM state and the power state j. By assuming that the amount
of time required for passing from one power state to another one does not influence the failure rate,
we express the failure rate δt due to power state transitions as:

t =
K−1

∑
j=1

δoff−j +
K−1

∑
i=1

K−1

∑
j>i

δi−j [1/h] (5)

The total average failure rate of BS γtot is then the sum of the failure rates considering the
different power states and the failure rates due to power state transitions:

γtot = γs + δt [1/h] (6)

γtot is the sum of failure rates as we have assumed that the failure rates due to the different effects are
statistically independent from each other [27].
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In the literature, it is common to evaluate the increase/decrease of the current failure rate γtot

with respect to a reference failure rate γref
tot. This metric is called acceleration factor (AF) [26], which we

denote as:

AF =
γtot

γref
tot

(7)

In particular, if the current failure rate is lower than the reference failure rate, the AF is lower than
one, and therefore the lifetime is increased. On the contrary, if the AF is greater than one, the lifetime
is decreased. Ideally, the AF should be always kept below one. By moving γref

tot inside Equation (6)
we can express AF as:

AF = AFs + AFt (8)

where AFs = γs/γref
tot is the acceleration factor due to the time spent in different power states, while

AFt = δt/γref
tot is the acceleration factor due to power state transitions.

We can express the term AFs as:

AFs = AFoff
τoff
T︸ ︷︷ ︸

SM

+
K−1

∑
i=1

[AFi
τi
T
]︸ ︷︷ ︸

radiated power

(9)

where AFoff = γoff/γref
tot is the acceleration factor in SM, which is always lower than one

since we have assumed that the SM failure rate is lower compared to the reference one.
Similarly, AFi = γi/γref

tot is the acceleration factor in power state i, which is again lower or equal
than one since the failure rate at power state i is always lower or equal than the reference one.
Moreover, since the failure rate at power state i is lower than the one at state (i + 1), it holds that:
AFoff < AF1 < AF2 < ... < AFK−1 ≤ 1.

We then consider the second term AFt of Equation (8). According to Equation (2), the failure rate

due to power transitions between state i and state j can be defined as δi−j =
fi−j

N f
i−j

, where fi−j is the

frequency of power switching between the states and N f
i−j is the maximum number of cycles between

state i and state j before a failure occurs. The ratio between δi−j and γref
tot is then defined as:

δi−j

γref
tot

= χref
i−j fi−j (10)

where χref
i−j = 1

N f
i−jγ

ref
tot

is the weight for power state frequency fi−j. The acceleration factor due to

power state transitions is then defined as:

AFt =
K−1

∑
j=1

χref
off−j foff−j︸ ︷︷ ︸
SM

+
K−1

∑
i=1

K−1

∑
j>i

[χref
i−j fi−j]︸ ︷︷ ︸

radiated power

(11)

AFt may assume values larger than one, since both foff−j and fi−j may be larger than one (especially
when different power state transitions occur during the time period T). As a consequence, this term
tends to increase the total acceleration factor and therefore to decrease the BS lifetime.

We now consider the different parameters included in the AF metric. In particular, the weights
χref

off−j and χref
i−j are depending on the HW characteristics, i.e., they are fixed given the reference failure

rate and the number of cycles to failures. Similarly, also the terms AFoff and AFi may be known
by measuring the failure rate at a given power value. On the contrary, the terms τoff and foff−j
depend on the implementation of the SM approach. In practice, these terms need to be carefully
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planned by taking into account the current BS and the neighboring ones, i.e., to avoid a coverage hole
or an overloading of the neighboring BSs. Similarly, the terms τi and fi−j depends instead on the
policy to allocate power to users, which is influenced by the number of active terminals and their rate
requirements.

Since both SMs and power allocation states are varied considering a set of BSs as a whole, an
operator might be interested to observe the acceleration factor over the set of BSs Z . In particular, we
can define the average AF as:

AFtot =
∑z AFz

|Z| (12)

where AFz is the acceleration factor of BS z computed with Equation (8). Intuitively, if AFtot < 1, BSs
in the network fail less often compared to the reference failure rate, and therefore the average lifetime
tends to be increased. On the contrary, when AFtot > 1 the lifetime tends to be decreased. Similarly,
the operator might be interested to observe the worst case acceleration factor, i.e., AFmax = maxz AFz.

4.1. Base Station Hardware Parameters Setting

The BS lifetime model takes as input the power state transitions parameters, which depend on
the policy used to change BS power, and HW parameters, which instead depend on the components
used to build the BS. The following subsections detail the BS HW parameters setting, considering a
linear model and an exponential model, respectively.

4.1.1. Linear Model

We first assume that the reference failure rate γref
tot is the one obtained when a BS transmits at

maximum power, i.e., 40 W [28]. γref
tot is normalized to one for simplicity. The actual BS lifetime will

be then computed in Section 6.3. Our goal is then to compute the BS AF over the whole day under
consideration. To this extent, we have to sum the acceleration factor due to the time spent in different
power states (AFs of Equation (9)) and the one due to power state transitions (AFt of Equation (11)).

Focusing on AFs, we report in Table 1 the AFi parameters for the active power states.
In particular, we assume that the values of AFi are linearly chosen between 1 − (1−AFoff)

2 (which
corresponds to the AF experienced when the BS transmits at 10 W) and 1 (which corresponds to
the maximum transmission power). The reason for choosing such values is the following. First, the
maximum AF is the one at full power, which is taken as reference in our scenario. Second, the
minimum AFi (when the power is equal to 10 W) is always much larger than AFoff, since we expect
that even with radiated power equal to 10 W a large amount of components has to be powered on,
leading to a higher failure rate w.r.t. the SM case.

Table 1. AFi values for each power state — linear model.

Power state P1 (10 W) P2 (20 W) P3 (30 W) P4 (40 W)

AFi 1− (1−AFoff)
2 1− (1−AFoff)

3 1− (1−AFoff)
6 1

As next step, we consider the AF due to power state transitions (AFt). Since the setting of all
the frequency weights χ in Equation (11) would be very challenging in practice, we assume that:
(i) the same weight χoff

ref is paid when passing from each active power state to SM (and vice-versa);
(ii) the same weight is paid when the same difference in terms of radiated power occurs (e.g., from
10 W to 20 W, or from 20 W to 30 W); (iii) the weight paid when the radiated power is changed
is much lower compared to χoff

ref. Table 2 reports the adopted frequency weights, together with the
corresponding notation for denoting the frequency (e.g., F1 accounts for all the transitions involving
a change in the radiated power equal to 10 W). As such, the term AFt is computed as follows:
AFt = Wχoff

ref ∑3
k=1 kFk + χoff

refFoff, being W a small value (W << 1). The reasons for choosing these
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settings are the following ones. First, we assume that BS components are optimized to limit the
thermal cycling effect triggered by radiated power variations. Therefore, we have set the frequency
weights in such a way that they are always much smaller than χoff

ref (by setting the W parameter).
Second, we expect that the highest failure rate change is triggered when the BS enters/leaves a SM
state, which justifies the same weight paid when passing from an active power state to SM. Third,
as reported in Equations (2) and(3) the most important factor impacting the thermal cycling effect
is the difference in temperature between two power states (and not their absolute values). This fact
motivates the adoption of a frequency weight based on the difference in power (i.e., off, 10 W, 20 W
or 30 W).

Table 2. Frequency notation and frequency weight for each power variation—linear model.

Power variation Off 10 W 20 W 30 W

Frequency notation Foff F1 F2 F3

Frequency weight χoff
re f Wχoff

ref 2Wχoff
ref 3Wχoff

ref

Summarizing, we are now able to compute the AF for a single BS AFz, leaving AFoff, χoff
ref and W

as HW input parameters. Figure 1 reports the main steps to obtain AFz. In particular, we start from
a traffic variation over time, and scenario constraints (e.g., coverage, capacity). Given these input
parameters, we compute the set of power states over time adopting an energy-aware approach, i.e., a
solution which tends to assign the minimum power consumption to satisfy the constraints. We then
compute the power state transitions parameters (i.e., τoff, τi, Foff, F1, F2, F3) which take into account the
duration of power states and their transitions rate. Given these parameters and the HW parameters
(namely AFoff, χoff

ref and W), we compute with our model the BS AF (and consequently the lifetime).

Power state
transitions
parameters

computation

Power
states

Pi , Po f f
over time

Energy-aware
approach

Traffic
variation
over time

Scenario
constraints

Power state
transitions
parameters
τo f f , τi ,
Fo f f , F1,

F2, F3

Lifetime
model AFz

HW
parameters

χ
o f f
re f ,

AFo f f , W

Figure 1. Main steps to compute the AF for the z-th base station (BS) in the network.

From now on, we assume that the BSs in the considered scenarios have the same HW
characteristics, i.e., AFoff, W, and χoff

ref are the same for all the BSs. Clearly, in case of different HW
parameters, the effects for applying power state transitions will be not the same for all BSs. We leave
this aspect for future work.

Table 3 reports the main notation introduced so far.

4.1.2. Exponential Model

We consider also an exponential model for setting the AF and the frequency weight values in
active power states. The reason for this model is that, actually, there are not available measurements
for expressing the HW parameters. Thus, our aim is to investigate the impact of different models for
estimating the lifetime given the power state variations. In particular, the exponential model may be
adopted for devices which are less susceptible to power state changes compared to the linear one.
At the same time, the gain for exploiting low power states (in active mode) is higher w.r.t. the linear
model. Figure 2 reports the parameters set for the AFi and the frequency weight values, respectively.
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Focusing on the AFi values (reported in Figure 2a) we can see that a good gain in the AF can be
reached by setting 30 W compared to the 40 W case. Focusing then on the frequency weight values
(reported in Figure 2b) we can note that power state transitions of 10 W and 20 W basically have the
same influence on the AF, while the 30 W case implies a more notable variation of the AF.

Table 3. Main notation

Symbol Measurement unit Description

P - Set of power states (active and sleep mode (SM))
K [units] number of power states
Pi [Watt] Power consumed by the base station (BS) in active state i ∈ P

Poff [Watt] Power consumed by the BS in SM state
τi [h] Time spent by BS in active state i ∈ P
τoff [h] Time spent by BS in SM state
T [h] Total period of time under consideration
γi [1/h] BS Failure rate in active state i ∈ P
γoff [1/h] BS Failure rate in SM state
γs [1/h] BS Failure rate considering only the impact of different power states
δi−j [1/h] BS Failure rate when passing between state i and state j
δoff−j [1/h] BS Failure rate when passing between SM state and state j
δt [1/h] BS Failure rate due to power state transitions
γtot [1/h] Total BS failure Rate
γref

tot [1/h] Total reference BS failure Rate
AFs [units] Acceleration factor due to the time spent in different power states
AFt [units] Acceleration factor due to power state transitions
AF [units] Total acceleration factor

AFoff [units] Acceleration factor in SM
AFi [units] Acceleration factor in power state i
fi−j [cycle/h] Power switching frequency between state i and state j

Nf
i−j [cycle] Number of cycles to failure between state i and state j

foff−j [cycle/h] Power switching frequency between SM state and state j
Nf

off−j [cycle] Number of cycles to failure between SM state and state j
χref

i−j [h/cycle] Weight parameter for the power state frequency fi−j

χref
off−j [h/cycle] Weight parameter for the power state frequency foff−j

AFz [units] Acceleration factor for the z-th BS
Z [units] Set of BSs in the network

AFtot [units] Total acceleration factor in the network
W [units] Frequency Weight multiplier

χoff
ref [h/cycle] Weight parameter for a power state frequency between SM and an active sate

Foff [cycle/h] Frequency for a power transition between SM and an active sate
F1 [cycle/h] Frequency for a power transition between two active states with 10 W of difference
F2 [cycle/h] Frequency for a power transition between two active states with 20 W of difference
F3 [cycle/h] Frequency for a power transition between two active states with 30 W of difference

10 W 20 W 30 W 40 W
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Figure 2. Exponential model: AFi values and frequency weight values. (a) AFi values; (b) frequency
weight values.
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5. Scenario Description

We first describe the scenario based on UMTS, and then we consider the LTE case. The reason
for choosing these scenarios is to evaluate the impact on the lifetime in both cases, since they are
quite different in terms of adopted devices, resource management policies, deployment strategies
and algorithms to manage BSs power states.

5.1. Universal Mobile Telecommunication System Scenario

We consider an energy-aware algorithm and a realistic UMTS cellular deployment scenario,
both obtained from [29]. We refer the reader to [29] for a comprehensive description. In brief, we
consider a scenario with 33 UMTS macro BSs and a service area (SA) of 9.2× 9.2 km2. Each macro BS
consumes a fixed amount of power, that has to be counted if the BS is powered on, and a dynamic
one, which depends on the radiated power. The radiated power can be set to 10 W, 20 W, 30 W or
40 W, respectively. Inside the SA, we assume more than 3000 user terminals (UTs) requesting voice
and data services. Unless otherwise specified, we assume the maximum data rate for each UT is equal
to 384 kbps. Moreover, we assume a day-night traffic variation with a periodic profile over the 24 h,
with a minimum traffic granularity equal to one hour.

Over such scenario, we solve the optimization problem of minimizing the energy consumption
of active BSs while guaranteeing the required coverage and capacity demand for all the UTs which
are active in each time period. We refer the reader to [29] for more details about the optimization
model and the obtained results. For each BS, we collect the frequency and duration of each power
state obtained from the solution of the problem.

5.2. Long Term Evolution Scenario

We assume a hierarchical LTE network in which a single macro provides coverage over the SA,
while micro BSs provide capacity in hot-spot areas. The main parameters are reported in Table 4.
In particular, the micro BSs are randomly deployed inside the SA. However, in order to prevent micro
BSs overlapping, we impose a minimum distance between the micro BSs. Focusing on users, 30% of
users are randomly placed inside the SA, while 70% of them are placed close to the micro BSs in order
to generate hot-spot zones. Focusing then on user traffic, we assume that users request voice over
internet protocol (VoIP), data and web services. More in depth, 10% of users are VoIP, 40% data and
50% web. The service distribution is taken from [30].

Table 4. LTE scenario parameters.

Parameter Value

Macro BS Radius 1000 m
Number of micro {10,20,30}

Maximum number of users Nmax {227,300,380}
Minimum micro BS distance 200 m

Receiver node power –97.5 dBm
Min receiver sensitivity –107.5 dBm

User voice over internet protocol (VoIP) rate 64 kbps
User data rate 0.512–2 Mbps
User web rate 0.064–4 Mbps

Maximum BS TX power 37 dBm (micro), 46 dBm (macro sector)
BS antenna gain 10 dBm (micro), 16 dBm (macro sector)

BS operating frequency 2 GHz
BS bandwidth 5 MHz (micro), 10 MHz (macro)

Number of resource blocks per BS 25 (micro), 50 (macro)
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Walfisch-Ikegami model [31]. The main parameters for this model are reported in Table 5.
In brief, we consider an urban scenario where the macro BS is deployed on top of the buildings,
while the micro BSs are installed at the intermediate floors. Moreover, users are assumed to be placed
at the ground level where no line-of-sight (NLOS) exists.

Table 5. Parameters for the walfisch-ikegami model.

Parameter Value

BS height 10 m (micro) 23 m (macro)
Average building height 20 m

Average road width 20 m
Average building separation 36 m

Receiver height 1.5 m

In order to compute the propagation loss between each user and each BS, we adopt the Users
are associated to each BS assuming a best server allocation policy. In particular, the allocation of
resources to users requests to consider resource blocks (RBs) [32]. More in depth, RBs are assigned
first to VoIP users, then to data users, and finally to web ones. Each web user obtains at least one RB,
and the remaining RBs available at the end of the procedure are assigned to the web users (ordered
with decreasing channel quality indicator (CQI)), until there are RBs available. Finally, we always
guarantee the resources to the control channels.

Unless otherwise specified, we consider that the number of users Nt varies over 24 h with a
sinusoidal function between Nmax and 0.2Nmax, since we assume a day-night behavior [13]. Since our
goal is mainly to perform a first order analysis, we vary the number of users with a simple function.
The investigation of more complex traffic profiles is left for future work. Additionally, we consider
a time-period of 14 days by repeating the variation of the users over the days. Note that while the
variation of the number of users is repeated over the days, the actual user placement may be different
from one day to another one. The minimum time granularity is set to 1 h.

In order to compute the set of BSs in SM, we consider the least load algorithm (LLA) of [33].
In particular, the original LLA (denoted as LLA-O in the following) always starts with all BSs powered
on. Then, BSs are sorted in increasing value of load. For each BS (starting from the least-loaded ones),
the current BS is put in SM. If coverage and capacity constraints are satisfied, the BS is kept in SM.
Otherwise, the current BS is powered on again. The procedure is repeated for all the BSs. In our
case, due to the fact that the LLA-O algorithm always starts with all BSs powered on, there are a
lot of power state transitions between the current traffic matrix and the previous one. Therefore, we
expect a strong impact on the average AF. In order to be more conservative, we consider an improved
version of LLA (denoted as LLA-I in the following). In particular, the LLA-I algorithm works exactly
in the same way as the LLA-O one, but we compute in the AF only the transitions between the current
network configuration (in terms of BSs powered on) and the previous one. Clearly, LLA-I represents
an optimistic scenario, which may be challenging to be implemented in practice.

6. Model Evaluation

We first consider the results derived from the UMTS scenario, then we consider the LTE one, and
finally we detail a cost analysis based on the actual lifetime experienced by the BSs in our scenarios.

We first compute the total AF in the network AFtot as defined in Equation (12), considering a
period of time T equal to 24 h. Figure 3 reports the AF computed considering the variation of HW
parameters AFoff, χoff

ref and W. From the figure, we can clearly see that as AFoff is reduced, AFtot tends
to decrease. Ideally, AFoff may be equal to zero, meaning that the BS lifetime is increased to infinity
when a SM state is set. However, even in this case, the network AFtot is strictly larger than zero since
a subset of BSs in the scenario has to be powered on to meet user coverage and capacity constraints.
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On the contrary, AFtot tends to increase when χoff
ref is increased. Interestingly, two distinct regions

emerge: one with AFtot < 1 (i.e., increase of lifetime), and one with AFtot ≥ 1 (i.e., equal lifetime or
decrease of lifetime). Thus, power state transitions may even decrease the BS lifetime compared to
the case in which BSs always transmit at maximum power. Finally, when W is increased (from left to
right subplots), the region in which AFtot < 1 is promptly reduced. Since in all the cases power state
transitions have an impact on the lifetime, we argue that they should be carefully planned, i.e., either
to maximize the BS lifetime or to limit the lifetime decrease.
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Figure 3. AFtot in the network vs. different values of parameter W (blue bars: AFtot < 1, green bars:
AFtot ≥ 1). (a) W = 0.05; (b) W = 0.1; (c) W = 0.15; (d) W = 0.2.

6.1. Universal Mobile Telecommunication System Case-Study Results

In the next step, we consider the impact of our model on the single BSs. To this extent, Figure 4a
reports the normalized time spent in each power state (SM, 10 W, 20 W, 30 W, 40 W). Interestingly, all
the BSs tend to use the entire set of available active power states (corresponding to a normalized time
spent in τ1, τ2, τ3 and τ4). This sugggests that the radiated power tends to follow the dynamics
of traffic (i.e., the maximum during peak hours and then the minimum during off peak hours).
Moreover, the SM state τoff is reached by a subset of BSs, since it is not possible to put in SM all
the BSs. To give more insight, Figure 4b reports the frequency of each transition. In this case, most of
transitions involve difference of power equal to 10 W and 20 W, while the 30 W variation rarely occurs.
More in depth, the frequency Foff of BS 28 and BS 19 is around 0.4 cycles/h, suggesting that these BSs
are put in SM and then in active power several times during a day. Additionally, Figure 5 reports
the AF for each BS in the network for different values of AFoff and χoff

ref. Unless otherwise specified,
W is set to 0.1. Interestingly, we can see that the impact of AF is not the same for all the BSs in the
network, with some BSs that tend to steadily increase their AF (e.g., BS 28 has a maximum AF equal
to 1.7, which means a lifetime reduction of 70%), and others which instead are able to decrease their
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AF. Thus, we argue the need of a wise strategy in selecting the power state transitions considering the
lifetime of the single BSs.
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Figure 4. Normalized time spent in each power state and frequency of power transitions.
(a) Normalized time spent in each power state; (b) frequency of power transitions.
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Figure 5. AF for the single BSs in the network.

In the following, we focus on the acceleration factor due to the time spent in different power
states (AFs) and the one due to power state transitions (AFt). In this case, we consider AFoff = 0.5,
χoff

ref = 2 (h/cycle) and W = 0.1. Figure 6 reports the values of AFs and AFt, by differentiating also
between the amount due to radiated power and the one due to SM. Interestingly, we can see that the
BSs showing the highest total AF are also the ones having the highest AFt in SM, which accounts for
the frequency at which BSs enter/leave SM, as well as the HW parameter χoff

ref. The values of AFs on
the contrary are always lower than one, due to the fact that AFoff, AFi, τoff/T and τi/T, are always
lower than one. Moreover, we can see that the radiated power has a small impact on AFt. However,
for some BSs, the term AFt (which depends on the radiated power) tends to bring the overall AF
larger than 1, which means a decrease in the lifetime.
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Figure 6. AF components in the network.
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Finally, we have considered how the AF evolves over time. In particular, we have computed the
AF for each hour in the network, i.e., starting from 00:00 and computing the AF in the current hour
considering the power state variations occurred from 00:00 to the current hour. Figure 7 reports the
AF evolution considering AFoff = 0.5, χoff

ref = 2 (h/cycle) and W = 0.10. The figure reports two BSs
exploiting SMs (BS29,BS28) and one which is always powered on (BS7). Interestingly, we can see that
the network AF is initially lower than one, then at 11 a.m. it becomes higher than one. This suggests
that the energy-aware algorithm has initially decreased the BSs power as a consequence of periods
of low traffic. However, since user traffic increases during the following morning hours, different
BSs have to change their power state. As a result, the lifetime in the network is decreased at the end
of the day. Moreover, the acceleration factor of the single BSs exhibits very different trends, being
for example BS28 experiencing different power states during the day which negatively impact its
lifetime. Thus, we can conclude that the management of power state transitions should not only take
into account the short-term objective of reducing current energy (i.e., hour by hour) but also the long
term objective of increasing the lifetime in the network.
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Figure 7. AF evolution vs. time.

6.1.1. Impact of Exponential Model

In this part, we have considered the impact of the exponential model detailed in Section 4.1.2.
Figure 8 reports the AF for the single BSs in the network. Interestingly, the impact of the exponential
model compared to the linear case is rather limited: this is due to the fact that, in both models, the
application of SM has the highest impact on the lifetime, while the variation of radiated power has a
rather limited effect.
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Figure 8. AF for the single BSs in the network (exponential model).
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To give more insight, Figure 9 reports the term AFt (which depends on the radiated power)
for different values of χoff

ref. Clearly, as the parameter χoff
ref is increased, the impact on AFt is higher.

However, the total impact of AFt due to radiated power is rather limited. This is due to two main
reasons: (i) the power switching weight between the active states is lower compared to a power state
involving SM; (ii) the highest power variation (i.e., 30 W) is seldomly applied in the scenario under
consideration (see also Figure 4b).

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

BS
ID

A
F

t (
ra

d
ia

te
d
 p

o
w

e
r)

  

 

 

χ
off

ref
=2 h/cycle

χ
off

ref
=1 h/cycle

χ
off

ref
=0.5 h/cycle

Figure 9. AFt (radiated power) with the exponential model.

6.2. Long Term Evolution Case Study Results

We then consider the impact on the lifetime for the LTE scenario. Unless otherwise specified,
we have set a number of micro BSs equal to 10. Differently from the UMTS scenario, we take into
account a time scale of 15 days. The daily traffic variation is repeated over the set of days. For each
time slot we randomly place the users. We always ensure that 70% of users are placed close to the
micro BSs, while 30% of users are uniformly distributed over the service area. Figure 10 reports
the variation of AFtot in the network versus time for different HW parameters. In this case, the AF
tends to be always increased in the network, since the micro BSs frequently change between full
power and SM. As expected, the AF tends to increase when AFoff is decreased and χoff

ref is increased.
To give more insight, Figure 11 reports the obtained AF at the end of the observation period for the
different micro BSs. Also here we can clearly see that the impact on the AF is not the same for all
the micro BS. For example, BS 6 experiences very frequent activations/deactivations, resulting in a
lifetime reduction of a factor between two and four. On the contrary, BS 1 experiences a relatively low
number of transitions, resulting in an AF always quite close to one.
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Figure 10. AFtot in the network vs. time for different HW parameters for the LTE scenario.
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Figure 11. AF for the single BSs for the LTE scenario.

In the following, we consider the variation of the number of micro BSs in the LTE scenario in
order to generalize our findings. Figure 12 reports the obtained AF for different HW parameters and
a number of micro BSs varying between 10 and 30. Bars report average values, while error bars report
confidence intervals (with 95% of confidence). All the results are obtained with 20 independent seeds
for generating the scenario. Interestingly, we can see that the AF is influnced by the HW parameters,
while the number of BSs does not consistently impact it. This is due to the fact that also the number
of users grows with the number of BSs. As a result, the BSs tend to adopt a similar power scheme as
NBS is varied.
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6.3. Cost Analysis

In the last part of our work, we consider the impact of monetary energy savings driven by
energy-aware policies vs. the costs incurred from the lifetime change. In particular, we consider
two distinct cases when a failure occurs on a BS: (i) a reparation can be performed (thus triggering
the costs needed to pay the reparation crew); or (ii) the failed BS has to be replaced with a new one.
In this analysis, we neglect the impact on users, which may bring additional costs, due to the fact a
service degradation is experienced by them.

More formally, let us denote with AFtot(t) and S(t) the average network AF at time t and the
percentage of network power saving at time t, respectively. Moreover, D is the average equipment
lifetime at full power, which we assume to be equal to 10 years in our case.

The monetary saving until time t can be expressed as:

|Z| ·
∫ t

0
S(b)db · Peq · CkWh [$] (13)
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where Peq is the power consumption of the BS at full power, while CkWh is the electricity cost.
(We assume in this case a time granularity equal to 1 h.)

Additionally, we compute the reparation costs at time t as:

|Z| · AFtot(t)
D

·MTTR · Pers. · Cm [$] (14)

where MTTR (mean time to repair) is the average time needed to repair a BS, Pers. is the number
of reparation crew members, and Cm is the hourly cost for a reparation member. Note that here we
have normalized AFtot(t) with D, i.e., we are translating the AF into the inverse of the actual lifetime
experienced by the BS ( D

AFtot(t) ).
Finally, we compute the replacement costs at time t as:

|Z| · AFtot(t)
D

· Ceq [$] (15)

where Ceq is the BS equipment cost. Also in this case we consider with D
AFtot(t) the actual lifetime

experienced by the BS.
The parameters used for the cost analysis are reported in Table 6. The input data come from

publicly available sources. We refer the reader to [21] for more details. In brief, we focus on three
key equipments: a three sector UMTS macro BS, a LTE micro Radio Resource Unit (RRU), and a LTE
micro BS.

Table 6. Parameters used for the cost analysis. Mean time to repair: MTTR.

Equipment type MTTR (h) Pers. Cm Ceq (USD×1000) Peq (kW) CkWh ($)

UMTS 3 Sector Macro BS 5 2 190 32.5 1.7 0.16
LTE Micro radio resource unit (RRU) 1.5 1 190 0.65 0.05 0.16

LTE Micro BS 2 1 190 3.9 0.1 0.16

We then compute the costs/savings by considering a period of time equal to one year.
In particular, we consider the UMTS scenario with 33 BSs presented in Section 5.1, and the LTE
one with 10 BSs presented in Section 5.2. We then repeat the traffic profile over the whole year,
and we compute the power states for each BS by applying the energy-aware algorithms. We then
compute the average saving in the network S(t). The saving is computed by adopting the power
model presented in [29,33] for the UMTS case and LTE one, respectively. Moreover, we collect the
time spent in each power state and the frequency of power transitions for each BS, and we compute
the average acceleration factor in the network vs. time AFtot(t). Given S(t) and AFtot(t), we then
compute the savings/costs reported in Equations (13)–(15).

Figure 13 reports the obtained results for the UMTS case and two different HW parameters.
In particular, we set AFo f f = 0.2, χoff

ref = 0.5 (h/cycle) in one case and AFoff = 0.5, χoff
ref = 2 (h/cycle) in the

other one. When the costs of power transitions are low (i.e., χoff
ref = 0.5 (h/cycle)), the electricity energy

savings are much higher compared to the reparation costs, suggesting that the gain from exploiting
low power modes surpasses the increase of costs as a consequence of the lifetime decrease. However,
the replacement costs are in the same order of magnitude than the savings. This suggests that, if
energy-aware approaches lead to critical failures involving the device replacement, the electricity
savings may be surpassed by the replacement costs. Thus, the energy-aware approaches should be
carefully planned in order to integrate lifetime constraints. On the other hand, when the power
transition cost increases (i.e., χoff

ref = 2 (h/cycle)), the replacement costs steadily increase too, suggesting
that in this case energy-aware approaches are not convenient any more for the operator.
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Figure 13. Cost Analysis for the UMTS scenario. (a) AFoff = 0.2, χoff
ref = 0.5 h/cycle; (b) AFoff = 0.5,

χoff
ref = 2 h/cycle.

In the following, we consider the LTE scenario with 10 micro, and a period of time equal to one
year. Figure 14 reports the results for this scenario. In particular, we consider two possible targeted
devices (i.e., a micro LTE RRU and a micro LTE BS), and two settings for the HW parameters (like in
the UMTS case). Focusing on the micro BS results (reported in Figure 14a,b) we can clearly see that
the replacement costs are always higher than the electricity savings. On the contrary, the reparation
costs are lower. Thus, the savings may be higher of lower than the costs. This suggests again the
importance of a careful management of the energy-aware approaches, in order to limit the impact on
the costs due to the lifetime decrease. Finally, Figure 14c,d report the results for the LTE RRU case.
Interestingly, in this case the electricity savings always compensate the lifetime reduction costs when
the power transition cost is low (i.e., χoff

ref = 0.5 (h/cycle)). On the contrary, when the power transition
cost is equal to 2 (h/cycle) both the replacement and the reparation costs are always higher than the
savings, suggesting that also the design of the device (and consequently its HW parameters) plays a
crucial role in determining the effectiveness of energy-aware approaches.

7. Discussion

The presented results show that it is of mandatory importance to develop solutions to limit the
impact of power states parameters on the lifetime. Note that this approach is completely new and
different from previous solutions (like e.g., [18]) which focus on the limitation of the number of power
switching transitions throughout the day. More in depth, limiting the number of power switching
transitions per day may not be the best choice for the lifetime, since the lifetime requires a longer
time scale. In particular, the lifetime model is not considered in previous works. This fact then brings
to two negative effects. First, the lifetime increase as a consequence of the adoption of low power
states is not taken into account. Second, the number of transitions should not be the same over time.
When the device is new, it may change the power state more frequently. However, when different
power changes are applied, the number of new transitions has to be reduced, as a consequence of the
lifetime decrease. The effects of power state transitions (both positive and negative) are considered
in our work. We believe that our model can be applied for the definition of new algorithms for the
maximization of the lifetime in cellular networks.
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Figure 14. Cost Analysis for the LTE scenario. (a) LTE Micro BS-AFoff = 0.2, χoff
ref = 0.5 h/cycle; (b) LTE

Micro BS-AFoff = 0.5, χoff
ref = 2 h/cycle; (c) LTE RRU Micro-AFoff = 0.2, χoff

ref = 0.5 h/cycle; (d) LTE RRU
Micro-AFoff = 0.5, χoff

ref = 2 h/cycle.

Additionally, we have shown that the lifetime is also influenced by HW parameters, which
instead depend on the components used to build the device. Since mesurements of these parameters
are not yet available in the literature, we have performed a sensitivity analysis on them. However, we
stress the importance of precisely estimating these parameters in a cellular network. We believe that
this task can be an interesting direction for future work. In particular, measurements of temperature
vs. power consumption of a BS in operation would ease the setting of the HW parameters presented
in this paper. In addition, the validation of the presented failure rate models in a real cellular
deployment is another open issue. This activity can then lead to the definition of new failure rate
models, more tailored to cellular networks. Finally, our model is applied to the whole BS. However,
the impact on lifetime on the single components should be also investigated, i.e., to assess how much
each component is critical for the BS lifetime.

8. Conclusions and Future Work

We have presented a model to evaluate the lifetime of a BS taking into account the different
power states and the transitions between one state and another one. The model integrates both
HW parameters and power state transitions parameters, that depend on the policy used to change
the device power. We have proposed both a linear model and an exponential model for the HW
parameters. We have then evaluated the lifetime increase/decrease compared to a reference lifetime
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by means of the AF, a metric that is inversely proportional to the lifetime. Finally, we have evaluated
the model on different scenarios (based on UMTS and LTE technologies), and different BS types
(e.g., micro, macro, RRU). Our results indicate that the lifetime may be negatively impacted when
frequent power state transitions take place. In particular, the largest lifetime decrease is experienced
when the BS passes from SM to an active state (and vice-versa). Moreover, we have shown that the
lifetime varies over a set of BSs, with some BSs increasing it and other showing a lifetime decrease.
Additionally, we have shown that the lifetime varies over time, and that the reparation/replacement
costs influenced by the lifetime decrease may even surpass the electricity saved by reducing energy.
All these facts suggest that the impact of lifetime should be carefully considered when power state
transitions (especially the ones involving SMs) are planned. As future work, we plan to propose new
algorithms that integrate lifetime, energy consumption and user constraints in order to decide when
and how to change the power state for each BS in the network. Moreover, we plan to perform lifetime
measurements on real devices considering different BS types, different BS technologies, and different
failure types (e.g., triggered by HW failures and/or software ones). Finally, we plan to apply our
model also to future cloud radio access networks (C-RANs) [34].
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