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The need for robotic systems to be verified grows as robots are increasingly

used in complex applications with safety implications. Model-driven

engineering and domain-specific languages (DSLs) have proven useful in the

development of complex systems. RoboChart is a DSL for modelling robot

software controllers using state machines and a simple component model. It is

distinctive in that it has a formal semantics and support for automated

verification. Our work enriches RoboChart with support for modelling

architectures and architectural patterns used in the robotics domain.

Support is in the shape of an additional DSL, RoboArch, whose primitive

concepts encapsulate the notion of a layered architecture and architectural

patterns for use in the design of the layers that are only informally described in

the literature. A RoboArch model can be used to generate automatically a

sketch of a RoboChart model, and the rules for automatic generation define a

semantics for RoboArch. Additional patterns can be formalised by extending

RoboArch. In this paper, we present RoboArch, and give a perspective of how it

can be used in conjunction with CorteX, a software framework developed for

the nuclear industry.
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1 Introduction

Robotic systems are being used in an increasingly diverse range of applications, and in

more dynamic and unstructured environments. With autonomy and the ability to operate

in close proximity to humans, safety becomes an issue. Furthermore, robotic systems and

their software are becoming more complex. In previous work, we have contributed to the

verification of robotic systems using a domain-specific language with a formal semantics,

namely, RoboChart (Miyazawa et al., 2017, 2019).

In this paper, we present an approach to defining RoboChart models for software that

use architectures of wide interest in robotics. It is based on a novel domain-specific

notation, RoboArch, presented here for the first time. It embeds robotics software

architectural concepts and enables automatic generation, via model transformation, of

partial RoboChart models, that is, sketches of RoboChart models that can be completed by

designers with application-specific descriptions (of actions and state machines).
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The definition of a system’s architecture during its design has

been considered a beneficial technique as the scale of software

systems has grown. The architecture provides a structural

representation that enables the evaluation of system attributes

and of alternative system designs and modifications (Bass et al.,

2012). From experience, practitioners have identified structures

and relationships within system architectures that solve recurring

problems. These solutions have been generalised as architectural

patterns that are reusable in the design of new systems (Gamma

et al., 1995). For the robotics domain, some common patterns

have emerged: notably, the use of layers for robot control

(Siciliano and Khatib, 2016, pp. 286–289).

In many other complex multidisciplinary domains, Model-

Driven Engineering (MDE) is being used successfully to mitigate

complexity (Franz et al., 2018). The core principle of MDE is to

use abstract models of a system as the primary artefact(s) of its

development process. This promotes identification of the

underlying concepts free from specific implementation

dependencies. The use of abstract models also facilitates the

automation of the software development process. In this way

developers can devote their time to understanding and solving

the domain-specific problems.

Domain-specific languages (DSL) facilitate the development

of models by embedding core concepts of a target domain, and

enabling the definition of concise representations understood by

practitioners. This avoids the need for each development team to

identify these concepts, resulting in duplication of work and

hindering reusability. Over the last 25 years, there have been

considerable developments in MDE for robotics, with the

creation of many DSL for its different sub-domains

(Nordmann et al., 2016).

Some examples of DSL for robotics include: RobotML

(Dhouib et al., 2012), SmartSoft (Stamper et al., 2016), and

BCM (Bruyninckx et al., 2013). These DSLs, like the majority

available, do not have formally defined semantics (Cavalcanti

et al., 2021b). Therefore, the support for formal verification of

robotic systems is limited. A recent literature survey (Luckcuck

et al., 2019) found sixty-three examples of the application of

formal methods within the robotics domain. Formal methods

enable the early verification (proof, simulation, and testing) of a

system through the use of rigorous automated techniques with

mathematical foundations. Early use of verification techniques

and high levels of automation enable the development of systems

that are more reliable and cheaper.

RoboChart is a DSL for modelling robotics software

controllers using state machines and a simple component

model; RoboChart makes innovative use of formal methods

for automated verification. The associated tool, RoboTool1,

provides features of MDE, which include a graphical interface

for creating models, and automatic generation of source code and

mathematical descriptions. Additionally, RoboChart supports

automatic verification of properties such as deadlock and

livelock freedom using model checking, along with semi-

automatic verification techniques using theorem proving

(Cavalcanti A. L. C. et al., 2021).

To date, RoboChart has been used to model more than

twenty proof-of-concept case studies. They have facilitated the

development and demonstration of RoboChart and its

verification technology. None of them, however, adopt an

elaborate software architecture. For larger robotic systems,

support for modelling taking advantage of commonly used

architectural patterns can enable explicit modelling of the

structure of systems with potential to assist in reuse and

compositional design and reasoning.

RoboArch allows the description of layered designs for

robotic control software, and of design patterns for each layer.

In this paper, we not only give an overview of RoboArch via a

motivating example, but also present its complete metamodel

and set of well-formedness conditions that specify the valid

RoboArch models. We also describe our model-

transformation approach, based on 50 rules, mechanised to

generate automatically a sketch of a RoboChart model from a

RoboArch architectural design of a system.

Besides supporting the description of architectural designs,

RoboArch formalises a notion of a layered architecture and other

patterns. Most of these patterns are described in the literature

only informally, sometimes with different variations described by

different authors. At best, patterns are realised in an

implementation or programming language. Such descriptions

necessarily mix the core concepts of the architectural patterns

with those of the application or programming language. In

contrast, the RoboArch formalisation identifies the core

concepts of a pattern and their relationship.

The CorteX framework (Caliskanelli et al., 2021) has been

designed for use in nuclear robotics to address the challenges of

developing their complex robotic systems that need to be

maintained over long periods of time, often to deal with

changing requirements due to the unknown operational

conditions. CorteX favours the development of maintainable

and extensible systems through specialised data and

communications designs. Designs for the CorteX middleware

are inherently concurrent.

Our vision is the alliance of RoboArch and CorteX to support

1) the identification and formalisation of the architectural

designs that rely on CorteX and 2) the elicitation of assurance

evidence to increase confidence in CorteX-based software and

support the construction of assurance arguments. By integrating

CorteX with RoboArch, and, via RoboArch, to RoboChart, we

connect CorteX to the RoboStar approach to Software

Engineering for Robotics (Cavalcanti A. L. C. et al., 2021).

With that, we enable, automatic generation of mathematical

models that specify the meaning of the RoboArch designs,1 robostar.cs.york.ac.uk/robotool/
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and automatic and semi-automatic verification of properties via

model-checking and theorem proving. Further specialisation of

the approach can lead to automatic generation of CorteX code for

simulation and deployment.

Our novel contributions in this paper are as follows.

1) Design of RoboArch for description of layered architectures

for robotic control software.

2) Definition of the metamodel and well-formedness conditions

of RoboArch.

3) Description of a technique for model-to-model

transformation from RoboArch to RoboChart.

4) Formalisation of the reactive-skills architectural pattern for

design of control layers, illustrating a general approach to

formalise patterns using RoboArch and RoboChart.

5) Discussion of perspectives for allying the use of RoboArch

and CorteX, and, in particular, of the formalisation of CorteX

in RoboArch and RoboChart.

These results enable use of MDE in the development of

control software for robotic systems in a way that focusses on use

of well-known patterns allied with the advantages of modern

verification techniques. RoboChart, and, therefore, RoboArch,

are part of a design and verification framework, called RoboStar,

that supports automated generation of simulations, tests, and

proof.

In the next section, we describe related work on architectures

for robotics. Section 3 presents RoboArch: metamodel, well-

formedness conditions, and translation to RoboChart. Section

4 shows how a design pattern can be formalised in RoboArch

using the example of reactive skills. In Section 5 we conclude,

discussing our approach for the integration of RoboArch and

CorteX as future work.

2 Related work

In this section, we discuss the literature on architectural

patterns for robotics. Crucially, this justifies our choice of layer as

a core concept in RoboArch, but also indicates other patterns of

interest, including reactive skills, which we also formalise in this

paper.

RoboArch is not related to the homonym in (Bonato and

Marques, 2009), which is a tool to support the development of

mobile robots. The focus in (Bonato and Marques, 2009) is on

implementation, not modelling, of hardware-software co-designs

based on hardware and software components, and code

generation for FPGA, not software architectures. Moreover,

there is no semantics or support for verification beyond

simulation for the notation adopted by RoboArch to define

the compositions.

Other works that share our aim to reduce effort in the

development of control software in robotics focus on the

programming, rather than the modelling, level. The result is a

variety of middleware, encouraging code reuse and component-

based development (Bruyninckx, 2001; Metta et al., 2006; Ando

et al., 2008; Chitta et al., 2017; Muratore et al., 2017). These works

provide useful resources for programming, but do not address

the issues arising from a code, rather than model-based,

approach to development. Work on RoboArch and

RoboChart is complementary. In particular, we consider here

how we can provide direct support for use of the modern CorteX

middleware that has a track record in the nuclear industry.

Historical architectural patterns include Sense Plan Act

(SPA) (Siciliano and Khatib, 2016, p. 285) and subsumption

(Brooks, 1986). SPA is an example of a pattern that is

deliberative: time is taken to plan what to do next, and then

the plan is acted out with no sensing or feedback during acting. A

robot using SPA in a dynamically changing world can be slow

and error prone in response to environmental change.

Conversely, subsumption is an example of an architectural

pattern that is reactive, where the environment is constantly

sensed and used to directly shape the robot’s actions. A robot

using subsumption responds rapidly to a changing world;

however, complex actions are difficult to achieve.

More recent hybrid architectural patterns combine the

principles from SPA and subsumption to benefit from both

the deliberative and reactive properties. In total, twenty-two

architectural patterns used by robotics systems have been

identified from the literature; these are listed in Table 1. Five

have been selected for discussion based upon evidence of

application, reuse, and activity of development. The collective

publications that focus on an architectural pattern have been

used to find evidence of application, with the scale of any

documented application used to give preference to patterns

that have been used in large deployments in the real world.

The number of publications where an architectural pattern was

used in a new application has been used to asses reuse. Finally,

preference has been given to patterns with recent activity,

determined by the date and frequency of publications where

the pattern has been used.

LAAS was developed at LAAS2 in 1998 for autonomous

robots. A fundamental goal of LAAS is to provide both

deliberative and reactive capabilities required for autonomy.

The LAAS pattern is made up of the following three layers.

The Functional Layer provides basic robot actions that are

organised into modules consisting of processing functions,

task loops, and monitoring functions for reactive behaviour.

An Execution Control Layer selects functions from the

functional layer to carry out sequences of actions determined

by the decision layer. Finally, the Decision Layer plans the

2 Laboratory for Analysis and Architecture of Systems CNRS.
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sequence of actions necessary to achieve mission goals and

supervises the execution of the plans.

The functional layer consists of a network of modules that

provide services related to a particular sensor, actuator, or data

resource of the robot. All modules have a fixed generic structure

made up of a controller and execution engine. A tool can be used

to generate module source code. The services provided by the

modules are accessed by the executive layer above and other

modules from the functional layer through the use of a non-

blocking client-server communication model.

The execution control layer bridges the slow, high-level,

processing of the decision layer, and the fast, low-level,

control of the functional layer. It has an executive module

that takes sequences of actions from the decision layer, and

selects and triggers the functions that the functional layer must

carry out. In addition, the executive receives replies from the

functional layer and reports activity progress to the decision

layer.

The decision layer has one or more pairs of a supervisor and a

planner. The supervisor takes a sequence of actions from the

planner and manages their execution by communicating them to

the execution layer, and responding to reports received from it.

The planner creates a sequence of actions to achieve a goal. The

supervisor also passes down situations to monitor and associated

responses within the constraints of the plan. These responses

enable the lower layers to react without the need for involvement

of the decision layer, improving response time and reducing

unnecessary replanning.

LAAS has been used in the implementation of the ADAM

rough terrain planetary exploration rover (Chatila et al., 1995),

and of three Hilare autonomous environment exploration robots

as part of the MARTHA European project. More recently,

Behaviour Interaction Priority (BIP) models have been used to

verify the functional layer of the LAAS pattern (Silva et al., 2015).

CLARAty (Coupled Layer Architecture for Robotic Autonomy)

was developed at NASA in 2001 for planetary surface-exploration

rovers. CLARAty is designed to be reusable and to support multiple

robot platforms; it consists of two-layers: a functional layer, and a

decision layer formed by combining the planning and executive

layers from a three-layer architecture. A key concept defined in

CLARAty is granularity, which reflects the varying levels of

deliberativeness available to the robotic system.

The functional layer provides a software interface to the

hardware capabilities of the robot, and it is structured using an

object-oriented hierarchy. At the top of the hierarchy is the Robot

superclass from which everything inherits. At subsequent levels

down the hierarchy, classes are less abstract and each provide

functionality for a piece of the robot’s hardware. At the bottom of

TABLE 1 The patterns identified from the literature.

Pattern Focus Year

CoSiMA Wigand et al. (2018) Safe real-time robots 2018

aIRSA Backes et al. (2018) Autonomous robots 2018

aSERA García et al. (2018) Decentralised teams 2018

Aerostack Sanchez-Lopez et al. (2017) Autonomous unmanned aerial systems 2017

aCARACaS Huntsberger and Woodward, (2011) Autonomous robots 2011

EFTCoR Álvarez et al. (2006) Service robot control 2006

Syndicate Sellner et al. (2006) Autonomous teams 2006

DDX (Corke et al., 2004) Distributed robot controllers 2004

aCLARAty (Volpe et al., 2001) Autonomous robots 2001

HARPIC (Luzeaux and Dalgalarrondo, 2001) Autonomous robots 2001

aLAAS (Alami et al., 1998) Autonomous robots 1998

Remote Agent (Muscettola et al., 1998) Autonomous robots 1998

ORCCAD (Borrelly et al., 1998) Robot control 1998

Planner Reactor (Lyons and Hendriks, 1995) Autonomous robots 1995

Reactive Skills (Yu et al., 1994) Autonomous robots 1994

CIRCA (Musliner et al., 1993) Real-time intelligent robots 1993

ATLANTIS (Gat, 1992) Autonomous robots 1992

Layered Competencies (Bonasso, 1991) Autonomous robots 1991

Motor Schema (Arkin, 1989) Robot control 1989

NASREM (Albus et al., 1989) Autonomous robots 1989

AuRA (Arkin, 1987) Autonomous robots 1987

Subsumption (Brooks, 1986) Autonomous robots 1986

aSelected for further discussion.
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the hierarchy, each class provides access to a specific piece of

hardware functionality and its current state.

Classes can provide functionality that requires minimal input

from the decision layer, therefore, this type of class can be

considered more reactive. For example, the class for a rover

may offer a method for obstacle avoidance. Alternatively classes

can provide functionality that requires regular input from the

decision layer, therefore, the class can be considered more

deliberative. For example, the class for a robotic arm may

offer a method for setting the position for one of its five motors.

The single decision layer enables state information between

planner and executive to be shared, whichmeans that the planner

becomes tightly integrated with the executive. Consequently,

discrepancy between the planner and the functional layer’s

state is minimised.

The CLARAty pattern has been used for a variety of robot

platforms: Rocky 8, FIDO, ROCKY 7, K9 Rovers, and ATRV Jr

COTS platform (Nesnas et al., 2006). The different platforms

have a variety of deployment architectures, from a single

processor requiring hard real-time scheduling, to distributed

microprocessors using soft real-time scheduling.

CARACaS (Control Architecture for Robotic Agent

Command and Sensing) is an architectural pattern developed

at NASA in 2011 for control of autonomous underwater vehicles

(AUV), and autonomous surface vehicles (ASV). CARACaS-

based software supports operation in uncontrolled environments

ensuring the vehicles obey maritime regulations. A CARACaS

design supports cooperation between different vehicles and

makes use of dynamic planning to adapt to the current

environmental conditions and mission goals.

The five main elements of CARACaS are as follows.

Actuators interface the actuators of the vehicle. A Behaviour

Engine coordinates and enables the composition of behaviours

acting on the actuators. The arbitration mechanisms controlling

the enabling and disabling of behaviours are subsumption,

voting, and interval programming. A Perception Engine creates

maps for safe navigation and hazard perception from the sensors.

A Dynamic Planning Engine chooses activities to accomplish

mission goals while observing resource constraints. For that, it

uses Continuous Activity Scheduling Planning Execution and

Replanning (CASPER) (Chien et al., 2000), and issues commands

to the Behaviour Engine. Finally, a World Model contains state

information including plans, maps, and other agents.

Layers are not defined in Huntsberger and Woodward (2011),

but a CARACaS design can be partitioned into two layers. At the

lowest level, a behavioural layer includes the Actuators, and the

Behaviour and Perception Engine elements. The higher layer consists

of the Dynamic Planning and the World Model.

Although CARACaS is targeted at autonomous water-based

vehicles, it contains all of the required elements to be applied

more generally as a pattern for the control of robots.

IRSA (Intelligent Robotics System Architecture) was developed

at NASA in 2018 to streamline the transition of robotic algorithms

from development onto flight systems by improving compatibility

with existing flight software architectures. IRSA uses concepts from

other patterns: CARACaS and CLARAty.

The main elements of IRSA are as follows. A Primitive provides

low-level behaviours that can have control loops. Behaviour provides

autonomy, transitioning between multiple states during execution.

The Executive receives and executes a sequence of instruction

commands from the planner. The Planner uses the system state

from the world model to produce the sequence of command

instructions. A Sequence contains the instructions that the robot

must perform. A Verifier verifies whether the sequence is valid.

Finally, the Robot World Modelmaintains a model of the robot with

local and global state information.

An IRSA design can bemapped onto a three-layer pattern with a

common world model accessible to all layers. The behavior and the

primitive elements provide control over the robot; so, these two

elements can be placed in the bottom layer. The executive receives

sequences of commands and manages their execution using the

behaviours. Therefore, the executive is the middle layer. The planner

uses the state of the system from theworldmodel to create a sequence

of commands checked by the verifier. Therefore, the planner,

sequence, and verifier elements are in the layer above the executive.

The IRSA architectural pattern has been deployed on a variety of

test beds: comet surface sample return, Europa lander, Mars

2020Controls andAutonomy, and theRoboSimianDARPAchallenge.

SERA (The Self-adaptive dEcentralised Robotic

Architecture) has been developed at the Chalmers University

of Technology in 2018. SERA’s primary goal is to support

decentralised self-adaptive collaboration between robots or

humans, and it is based on the three-layer self-management

architectural pattern. SERA has been evaluated in collaboration

with industrial partners in the Co4Robots H2020 EU project.

The layers of the SERA pattern are as follows. The Component

Control Layer provides software interfaces to the robot’s sensors and

actuators, grouped into control action components responsible for

particular areas of functionality. The Change Management Layer

receives the local mission and creates a plan in order satisfy its goals.

It executes the plan by calling appropriate control actions from the

component control layer. Finally, the Mission Management Layer

manages the local mission for each robot and communicates with

other robots in order to synchronise and achieve the global mission.

The mission management layer receives a mission specification

from a central station as a temporal logic formulae. The mission

manager checks its feasibility and, if it is feasible, passes themission to

the adaptationmanager in the layer below. If themission is infeasible,

a communication and collaboration manager communicates and

synchronises with the other robots involved in the mission. During

the synchronisation, an updated achievable mission that meets the

original mission specification is computed.

This pattern places more functionality in the lowest

component control layer. A key feature of SERA is

communication among robots, which provides greater

flexibility in achieving the mission goals.
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2.1 Discussion

Generally no particular pattern or selection of patterns are widely

used. There is a tendency for each project to establish its own pattern.

Between research groups, however, there is some reuse of patterns.

Layers are a common theme among many of the recent

architectural patterns. Even when layers have not been explicitly

specified, the elements of a pattern are structured such that they

can be mapped onto a layered architectural pattern. All patterns

have a functional layer that interacts with the robots sensors and

actuators. The upper layers following the functional layer vary in

number and purpose.

The functional layer is required by all architectural patterns

because every robot requires a means to sense and interact with its

environment. From the patterns surveyed, this layer can be

categorised as either service or behavioural. CLARAty, LAAS and

SERA are all examples of patterns that have a service-based

functional layer, whereas, CARACaS and IRSA have behavioural-

based functional layers.

Examples of behavioural control patterns that can be used for

functional layer include subsumption (Brooks, 1986) and reactive skills

as used by the control layer of 3T (Bonasso et al., 1997). It is common

for the decision layer to be placed directly above the functional layer.

Patterns that do not use an executive layer take different

approaches to managing the system’s state. For instance, SERA

and CLARAty use information in the decision layer to hold

system state.Whereas, CARACaS uses a worldmodel layer that is

accessible by all other layers to hold system state.

Some patterns such as SERA have an additional social layer

for collaboration between teams of robots. Similarly LAAS

supports this through adding supervisor-planner pairs, but

considers this to be an extension of the decision layer rather

than a new layer. Generally the layered pattern lends itself to the

addition of new layers for extending the level of system capability.

RoboArch directly supports the definition of layered

architectures, with an arbitrary number of layers. A

degenerate layered architecture with just one layer can be

used to define a design that does not actually uses layers. As

indicated above, however, the use of more elaborate layers, some

using specific patterns themselves, is common. In what follows,

we present the RoboArch notation.

3 Materials and methods: RoboArch

In this section, we show how a layered design can be described

using RoboArch.We give an overview using the example of an office

delivery robot from (Siciliano and Khatib, 2016, pp. 291–295)

(Section 3.1). In Section 3.2 we present the complete metamodel

and well-formedness conditions of RoboArch. Finally, in Section 3.3,

we describe the RoboChart model defined by a RoboArch design. In

the next Section 4, we show an example of how a pattern for the

control layer can be characterised and used.

3.1 Overview

RoboArch is a self-contained notation that can be used

independently. As mentioned, however, its semantics is given by

translation rules that define a (sketch of a) RoboChartmodel. This not

only gives RoboArch a precise and formal semantics, but also paves

the way for the use of the RoboStar framework to design and verify

the control software. Figure 1 gives an overview of the possibilities.

As indicated in Figure 1, a key concept in RoboArch is that of

a robotic platform. RoboArch designs are platform independent,

so the robotic platform here describes the services the robot

provides that can be used in the development of the control

software. The services are abstractions of the robot’s sensors and

actuators defined via the declaration of input and output events

and operations that can be realised via actual sensors and

actuators. The same approach is taken in RoboChart.

To give an overview of the RoboArch notation, we consider the

example of a robot whose goal is to deliver items of post within a

typical office building, transporting them from a central mailroom

to each of the offices within the building. To achieve its goal the

robot must safely navigate along the corridors of the building while

avoiding any obstacles such as people and furniture.

Listing 1. A system and its type declarations.

A RoboArchmodel for the mail delivery system is sketched in

Listing 1. A system clause gives a name to a model and

introduces the outer scope to define the layers and the robotic

platform. The robotic platform must be used by a single layer,
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usually the control layer. In addition to the architectural

elements, a RoboArch model also contains definitions for

types, functions, interfaces, and connections. For our example,

Line 1 of Listing 1 declares the system with the name

MailDelivery.

RoboArch adopts the type constructors and typing rules of

the well-established data modelling notation Z (Woodcock and

Davies, 1996), allowing the definition of primitive types, records,

sets, and so on. RoboChart and all RoboStar notations adopt the

same typing approach. By adopting the Z type system, we benefit

from a well-known powerful type system, which has the expected

facilities to define a rich, possibly abstract, data model, and that is

supported by verification tools. In our example, the next few lines

define types. Most type definitions are omitted here, but the

complete example is available3.

Robotic platforms are normally defined in terms of

interfaces. For our example, the robotic platform is named

DeliveryRobot, and its definition references interfaces

Base, Audio, PointCloud, and EnvColourPoints,

some omitted in Listing 1. Interfaces group events or operations,

and are referenced using provides and uses clauses in a

platform definition. The Base interface models the interactions

that control movement. There is one operation Move and two

constants. Move is an abstraction for motor functionality that

can be accessed by the software via a call to this operation. It is a

service provided by the platform, since Base is declared in a

provides clause. The interfaces declared in uses clauses

contain events that represent points of interaction (inputs and

outputs), corresponding to inputs from sensors, or outputs to

actuators. They are used by connecting the platform events to

those of a layer.

The design in Listing 1 is a typical three-layer architecture.

Every layer has a unique name, and optionally can have a type, a

pattern, inputs and outputs. The three specific layer types are

ControlLayer, ExecutiveLayer, and PlanningLayer.

We can also not provide a type so that a customised architectural

structure can be defined. The services of a layer are accessed

through its inputs and outputs.

The layer clause is used to define the layer name and type.

In Listing 1, we show a layer with name Pln and type

PlanningLayer. It has one output deliverMail of type

Office that requests the number of the office to which mail is

currently being delivered. There are two inputs

deliveryComplete and pickupFailed that have no

associated value type; their occurrence indicates an outcome

of the currently requested delivery. The inputs and outputs

are used to communicate with another layer or the robotic

platform; in our example communication is with an executive

layer, omitted in Listing 1.

A layer of control type can directly communicate with a robotic

platform, and so reference platform interfaces. The control layer for

our example is Ctl. Its inputs and outputs communicate with the

executive layer and DeliveryRobot. The requires and uses

clauses reference the interfaces with the operations of the platform

that it requires and, the events that it uses. While an

ExecutiveLayer and a PlanningLayer cannot require or

use services of a platform, a generic layer also can.

The connections among the layers and the robotic platform

are defined under a system’s connections clause. Each

connection is unidirectional and connects an input or output

FIGURE 1
RoboArch in the context of RoboStar. With a RoboArch architectural design, we can generate automatically a sketch of a RoboChart
behavioural model. Using the RoboChart model, we can take advantage of a plethora of modern verification techniques supported by automated
generation of artefacts.

3 https://robostar.cs.york.ac.uk/case_studies/
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on a layer or event of the platform to another. Listing 1 shows

some of the connections for our mail delivery example. For

example, the first declares a connection from the Pln layer’s

deliverMail output event to an Exe layer’s deliverMail

input event. The second connection is between the robotic

platform (DeliveryRobot) and the control layer (Ctl).

Several other connections are omitted.

In the next section, we give a complete description of the

structure of RoboArch designs.

3.2 Metamodel and well-formedness

Figure 2 presents the RoboArch metamodel: the classes,

and their attributes and associations, that represent a

RoboArch design. The main class is System, whose

objects have definitions of layers, robotic platform,

connections, definitions, functions, and interfaces.

The classes TypeDecl, Function, and Interface defining

types for attributes of System come from the RoboChart

metamodel (Miyazawa et al., 2020).

The RoboticPlatform class also comes from the

RoboChart metamodel. RoboticPlatforms have a name

and can declare events and variables as well as reference

interfaces.

Layers can optionally have a pattern that defines their

behaviour. (An example is presented in the next section.)

Layers can also have inputs and outputs, which are Events, a

concept also from RoboChart. An Event can have a type, which,

if present, defines the values that can be communicated.

Systems, RoboticPlatforms and Layers are

NamedElements: they have a name attribute.

RoboticPlatforms and Layers are also ConnectionNodes:

elements that can be connected via their events. Connections

are between a source efrom and a target eto event that belong to

the to and from ConnectionNodes.

Layer is further defined in Figure 3; it has four subclasses.

A GenericLayer represents the most general kind of layer,

without a declared type, offering flexibility to model systems

with minimal restrictions. The three other kinds of layers,

ControlLayer, ExecutiveLayer, and PlanningLayer, have

specific well-formedness conditions (discussed later) that

characterise the connections and patterns of a valid

architectural design.

GenericLayers and ControlLayers can communicate with

the RoboticPlatform. They are, therefore, represented by

subclasses of an abstract class PlatformCommunicator. The

objects of this class have required and defined attributes that

record the interface declarations.

As mentioned, Layers can have a pattern. Figure 3

includes examples of patterns represented by subclasses of

Pattern, namely, ReactiveSkills, Subsumption, Htn, and

PlannerScheduler. To formalise a pattern for use in

RoboArch designs, we need to add a subclass of Pattern to

represent it. In the next section, we detail ReactiveSkills as

an example of how a pattern can be formalised. Section 5

describes a RoboArch pattern for CorteX designs. Current

work is considering the formalisation of Subsumption

and Htn.

Not all models that can be created obeying themetamodel are

valid. For instance, considering just the restrictions defined by

the metamodel, we can create an architecture that connects

events of different types. No typing rules are captured in the

metamodel. As another example, the metamodel allows the

specification of an architecture without connections with the

robotic platform. Such design is for a software that does not carry

out any visible task, and we regard it as invalid. Although we

could translate such designs to RoboChart, there is little point in

FIGURE 2
System metamodel.
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delaying the identification of problems by working with invalid

designs.

Instead, we define well-formedness conditions, presented

here in Table 2, which characterise the valid designs. These

conditions provide modellers with additional guidance and

support for validation when defining an architecture.The

conditions can be checked by the RoboArch tool.

S1 ensures that it is possible to interact with the platform.

Because a Layer must provide a service, S2 ensures that it

provides a means for external interaction. S3 ensures that, if

used, the ExecutiveLayer is the middle intermediate layer

between the planning and control layers with no direct

communication between them. S4, S5, and S6 are

concerned with the proper use of layers, without bypassing

communications, and creating inappropriate dependencies.

S7 prevents type errors, and S8 ensures correct data flow.

In the next section we describe how a RoboArch design can

be formalised in RoboChart, and how transformation rules can

be used to generate RoboChart models.

3.3 RoboArch in RoboChart

Table 3 presents an informal account of how RoboArch

elements can be mapped to a RoboChart model.

Transformation rules formalise this mapping, defining the

(formal) semantics of RoboArch; their implementation allows

the automatic generation of RoboChart models. RoboChart’s

formal semantics underpins RoboArch and allows properties of a

RoboArch design to be verified (see Figure 1). Figure 4 presents

parts of the RoboChart model for the design in Listing 1.

The top-level transformation rule, shown in Figure 5, maps a

RoboArch System to the RoboChart type definitions,

functions, interfaces, and robotic platform that it declares.

Importantly, the top rule defines a valid RoboChart module for

the system. The mapping provides a graphical representation

as well as a semantics for these elements, since RoboChart is a

diagrammatic language. Due to space restrictions, we cannot

present all the transformation rules, but they are available4.

A module is the RoboChart element representing a (parallel)

robotic control software. In Figure 4, the module

OfficeDelivery defines the RoboArch system of the

same name.

A RoboChart module has its platform-independent

behaviour characterised by a RoboticPlatform and one or

more parallel Controllers whose behaviours are defined by

one or more state machines running in parallel. The module

FIGURE 3
Layers metamodel.

TABLE 2 The well-formedness conditions of RoboArch.

Condition Description

S1 A System must have one or more connections that relate a
single Layer to a RoboticPlatform or there must be a Layer that
has at least one or more required interfaces (elements in
rinterfaces)

S2 For Systems with more than one Layer, each Layermust have at
least one input or output

S3 For Systems with more than two Layers, their ordering given by
Connections must be: ControlLayers < ExecutiveLayers <
PlanningLayers

S4 Connections must associate a Layer with at most two other
Layers

S5 Connections involving theControlLayermust associate it with
at most one other Layer

S6 The connections of a System must associate events defined by
interfaces ofGenericLayers and ControlLayers with events of
the RoboticPlatform

S7 Connections efrom and eto event types must match

S8 Connections must connect Layer inputs to outputs or vice
versa

4 https://robostar.cs.york.ac.uk/publications/reports/roboarch_
rules.pdf
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defined by a RoboArch system includes a reference to its

RoboticPlatform, and one Controller for each Layer. In

Figure 4, the module has references to the platform

DeliveryRobot, and to three controllers Pln, Exe, and Ctl

named after the layers of the RoboArch system.

The inputs and outputs of a Layer become events of the

corresponding RoboChart controller. Connections between

layers and the robot become connections between controllers

and the robotic platform.

Figure 4 shows the RoboChart controller for the planning layer

Pln. The events appear along the border of the controller. Inside,

there is a reference to a singleminimalmachine stm0 because in this

example no pattern is specified by the RoboArch design. The

minimal machine, also shown in Figure 4, is a placeholder to be

changed by the designer to specify their required behaviour. The

minimal machine consists of a single initial junction, a state s0, and a

transition that leads from the initial junction to s0.

For illustration, we show the top rule SystemToRCModule in

Figure 5; it uses further rules (omitted here) to specify the

RoboChart resulting elements rcdefs, rcfuns, rcifs, and rcmod

that give the semantics of the system amsys given as input. The

other rules are specified in the same style.

The resulting RoboChart type definitions rcdefs are the union

of RoboArch system type definitions amsys. definitions and the

generalised union (⋃) of the definitions resulting from applying a

rule LayerToTypes to each RoboArch layer (amsys.layers). The

types used in the rule definitions (TypeDecl, Interface, RCModule,

and all others) are part of the RoboArch and RoboChart

metamodels. They define the valid attributes (amsys.definitions,

amssys layers, and so on). The definitions of the results rcfuns and

rcifcs are similar to that of rcdefs, but use the rules

LayerToFunctions and LayersToInterfaces.

The resulting RoboChart module rcmod is given by an

object (specified by the construct 9 _ 8RCModule) whose

attributes define the name, nodes (controllers and robotic

platform), and connections. The name of the module is the

system name amsys. name. The nodes are the controllers

defined by applying the rule LayersToControllers to the

system’s layers and a roboticPlatform as defined in the

where clause. The connections of the module are those

defined directly by amsys. connections.

FIGURE 4
Delivery robot in RoboChart.

TABLE 3 Mapping RoboArch to RoboChart.

RoboArch RoboChart

System Module, TypeDecl, Function, Interface,
RoboticPlatform

Layer Controller

inputs and
outputs

Events

Connection Connection
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The where clause defines the roboticPlatform to be the union

of the RoboArch platform amsys. robot with the result of

applying a rule ControlLayerToRoboticPlatform to the control

layer cLayer. The platform amsys. robot is directly mapped to the

RoboChart model. The layer cLayer is defined (via a set

comprehension) as the layer lyr of amssys layers whose type is

ControlLayer. The well-formedness conditions ensure that there

is at most one such layer. With the use of

ControlLayerToRoboticPlatform, we cater for the possibility

that a pattern in the control layer extends the definition of the

platform.

Although the translation of a layered design from RoboArch

to RoboChart is reasonably direct, use of RoboArch, instead of

constructing a RoboChart model from the start, has several

advantages. RoboArch provides clear guidance on how to

define and connect a robotic platform and the controllers;

validation ensures definition of proper layers. On the other

hand, translation to RoboChart provides support for

verification. For example, we can prove that the RoboArch

design is deadlock free.

In the next section, we show how we can enrich the definition

of a layer.

4 Results: Reactive skills in RoboArch

With the RoboArch framework defined in the previous

section, we can now formalise and use specific architectural

patterns. In this section, we explain how to achieve that using

the reactive-skill pattern for illustration. We first provide an

overview of the pattern (Section 4.1), and then formalise it via a

metamodel and well-formedness conditions (Section 4.2), and

via transformation to RoboChart (Section 4.3).

4.1 Overview

The reactive-skills pattern can be used in the control

layer, typically of a three-layer architecture (Bonasso et al.,

1997). It combines deliberation and reactivity to improve

robustness. The pattern has been used in a variety of

applications: a robot to identify people and approach them

(Wong et al., 1995), a trash collecting robot (Firby et al.,

1995b), a robot that navigates a building (Firby et al., 1995a),

and in the automation of remote-manipulation system

procedures for the space shuttle (Bonasso et al., 1998). A

framework that allows skills to be implemented using C, C++,

Pascal, LISP and REX is available (Yu et al., 1994).

We characterise the reactive skills pattern by two concepts:

skills and a skills manager. A skill performs an operation using

input values, which can be from sensors or outputs of other skills.

The skill’s output values can establish associations to and from

the robotic platform, or be the result of applying a computational

transform to the skill’s inputs. A set of skills is used together to

accomplish a task identified in the dependant (typically

executive) layer. A skills manager is a cyclic mechanism that

coordinates communication between skills and provides an

interface for the dependant layer to: run the skills required for

FIGURE 5
Example transformation rule.
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a task, receive notifications from monitored events, and set and

get parameter values of skills.

Skills can be of one of two types: D-Skill or C-Skill (Yu et al.,

1994). D-Skills interface physical devices such as sensors and

actuators with the other skills of the control layer; their input

values are actuation commands and their output values are

sensor data. C-Skills execute a computational transform using

the skill’s inputs to determine its outputs. By the monitoring of

skills, the manager triggers events on desired conditions

becoming true. Table 4 describes elements used by skills and

skills managers.

In Listing 2, we sketch the design of the control layer of

MailDelivery using reactive skills to specify the behaviours

regarding moving the delivery robot to a given target location.

The type of pattern specified by the pattern clause determines

the subsequent clauses that can be used. For reactive skills, the

subsequent clauses are skills, connections, and

monitors.

Every skill has a unique name, and optionally parameters,

a priority, inputs, and outputs. The skills clause declares the

skills. There are separate clauses for defining each type of skill:

dskill for D-Skills and cskill for C-Skills. In Listing 2, we

show three D-Skills named Move, ColourVision, and

Proximity, and one C-Skill DetermineLocation.

RoboArch dskills and cskills declare inputs and

outputs using the inputs and outputs clauses. A skill

communicating a value to a dskill’s input results in the

physical state of the device that the dskill represents being

potentially affected. In our example, a value communicated to the

Move D-Skill velocity input results in the velocities of the

motors in the robot’s base being set.

A value from a dskill’s output represents the state of

the environment, as sensed by the device the dskill represents.

In our example, a value received from the Proximity skill’s

envPoints output determines a range of distances to surfaces

in the delivery robot’s field of view.

A C-Skill uses its inputs to compute its outputs resulting in

behavior that can be used to accomplish parts of a task. In our

example, the DetermineLocation skill takes a colour image

of the environment and using an image-based localisation

technique calculates the coordinates of the delivery robot. To

perform this function, DetermineLocation has one input

image of type PointImage, and one output location of

type Coordinate. The computational transform that specifies

the behaviour of C-Skills can be defined by customising the

generated RoboChart model.

Listing 2. Reactive skills movement.

Skills can communicate with each other via the skills manager.

The source and destination of the communication (skills’ inputs

and outputs) are determined in a connections clause. Each

connection is unidirectional and relates an input of one skill to the

output of another. Our example declares a connection from the

ColourVision output envColourPoints to the

DetermineLocation’s image input.

Layers that depend on a reactive-skills control layer

may need to monitor for particular conditions becoming

true. To minimise the frequency at which the

dependant layer needs to check the conditions, the

reactive-skills pattern provides events that are

independently triggered to notify the dependant layer of

the occurrence of any monitored conditions. The

monitors clause declares the monitors for the layer.

They have a name and specify the logical condition to be

monitored in terms of skill outputs and parameters. For our

example, a condition that is monitored is the arrival of the

delivery robot at the target location. A monitor

DestinationReached has a condition that evaluates

to true when the location output of the

DetermineLocation skill is equal to the target

parameter of a MoveToLocation skill.

TABLE 4 The elements of reactive skills.

Element Description

Initialisation routine When the system starts, the skill initialises itself

Startup A skill performs required startup procedures each time it
is activated

Reply Response from the control layer to the dependant
(executive) layer

Cleanup When a skill is disabled, cleanup actions are performed

Parameter A variable that allows a skill’s behaviour to be adjusted by
the dependant layer

Input Receives the value of a data type

Output A resulting value that contributes to the robot’s behaviour

Computational
transform

Once activated the skill continually computes its outputs
from its inputs

Activate function Allows a skill to be activated

Deactivate function Allows a skill to be deactivated when it is no longer
required
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Next we describe the RoboArch metamodel and well-

formedness conditions for reactive-skills designs.

4.2 Metamodel and well-formedness
conditions

The classReactiveSkills representing a reactive-skills design

is a subclass of Pattern (see Figure 3). Figure 6 details its

definition, giving a precise characterisation of the pattern.

In a ReactiveSkills design there must be at least two skills

and exactly one skillsManager. Skills can have parameters,

inputs, and outputs all represented by Variables. Skills can be

asynchronous and have a priority.

Skill is an abstract class (it has no objects). Its subclasses

CSkill and DSkill are the concrete classes, whose objects are

subject to different well-formedness conditions presented below.

The SkillsManager establishes one or more

interskillconnections and may have stateMonitors.

Monitors have a name and a condition defined by a

RoboChart expression. SkillConnections associate Skills

defining the start and end of the connections, the output

startOutput of start, and the input endInput of end.

The well-formedness conditions that apply to reactive-skills

designs are presented in Table 5. RS1 and RS2 ensure the use of

reactive skills as intended to provide the essential behaviours that

use the sensors and actuators (via the services of robotic

platform), which other layers depend on to carry out the

robot’s tasks. RS3 records that the inputs of the D-Skills

correspond to events of the robotic platform. RS4 is needed

because a C-Skill or D-Skill in isolation can perform no

meaningful function that alters the state of the robot or its

environment. A C-Skill requires a D-Skill in order to interact

with a sensor or actuator via the services of the robotic platform.

With RS5 and RS6, we ensure that every skill contributes to the

behaviour of the system. RS7 to RS10 ensure that connections are

between inputs and outputs of different skills of the right type.

Finally, RS11 ensures that monitors are concerned with skill data.

Valid reactive-skill designs, that is, those that satisfy the

above well-formedness conditions, can be transformed to (and

so formally described as) a RoboChart model, as described in the

next section.

4.3 Reactive skills in RoboChart

Rules that can be used to transform a reactive-skill design to

RoboChart are available5. Here we give an overview of our

approach formalised by the rules in modelling reactive-skill

designs in RoboChart.

A RoboChart controller representing a layer that uses the

reactive-skills pattern has one state machine for the skills

manager, and one machine for each skill. The skills-manager

machine has events to manage the activation and deactivation of

skills, receive parameter values, and communicate monitor-event

and information replies. A skill machine has events for each of its

inputs, outputs, and parameters.

As an example, Figure 7 shows the machine for Proximity in

Listing 2. That machine reflects the description of the design

pattern summarised in Table 4, and is representative of the state

machines that are automatically generated for D-Skills. The

declaration at the top in Figure 7 introduces variables

priorityParam, to record an input priority value, envPoints,

to record the output of the skill, and booleans

priorityParaminitialised and envPointsSenseReceived,

recording information about inputs. An interface IProximity

declares the events used to exchange information with the skills-

manager machine.

A D-Skill state machine starts at the state Initialise, where

it accepts a priority for the skill via an event: in our example,

proximityPriorityParam. When that input is taken, the

variable priorityParaminitialised is updated to record

that. Once that variable has value true, a transition to the

state Deactivated becomes enabled, and is taken. In

Deactivated, the priority can still be updated, until the

skills manager raises an activate event (activateProximity

in the example), when the machine moves to the state

Startup.

Typically, the designer needs to enrich the state Startup to

add the actions that the skill carries out at start up, perhaps via an

entry action, or via a state machine making Startup a composite

state. When those actions complete their execution, a D-Skill

state machine moves to the state Ready.

In Ready, a new priority and inputs from the platform may

be received. In the example, the value envPoints may be

received from the platform via an event platformEnvPoints.

When that happens, the value of a corresponding Boolean

variable, here envPointsSenseReceived, is updated. This

can go on until the skills manager raises an execute event

(executeProximity, in the example) when the machine

moves to the state HandleActuationCommands. Actions

there, defined by the designer, might deal with buffering, for

example. If, however, no input has been received (just not

envPointsSenseReceived in Proximity), the machine flags

that the skill has completed its task (completeProximity) and

goes back to Ready.

If an input has been received, the machine moves to

HandleSensorData. In general, HandleSensorData may

deal with several pieces of data coming from the platform. All

those that have been received may be communicated to another

skill, together with its priority. In our example, we have just
5 https://robostar.cs.york.ac.uk/publications/reports/roboarch_

rules.pdf
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envPoints, which is output via proximityEnvPoints. When

that happens, the value of envPointsSenseReceived is

updated back to false. When all data has been communicated,

a D-Skill machine moves back to Ready.

Variations of the D-Skill state-machine definition take into

account D-Skills that can output to the platform, and also

D-Skills that have several inputs or several outputs.

A machine for a C-skill is shown in Figure 8. It is very similar to

that of a D-Skill; the difference is that, instead of states

HandleActuationCommands and HandleSensorData to deal

with inputs and outputs of the platform, we have a single state

ComputeOutputs. When the skills manager raises the execute

event (executeDetermineLocation in the example), the machine

moves to ComputeOutputs.

The designer must complete the definition of this state to

reflect the calculations to be carried out by the skill. Once they

finish executing, the machine returns to the state Ready, having

signalled completion to the skills manager via a complete event:

completeDetermineLocation in the example.

Finally, Figure 9 sketches the machine for the skills manager.

The complete machine for our example that can be automatically

generated is too large to include here. In the sketch, we show that

a skills-manager machine starts in the state Initialise, in which it

sets local variables, such as cycleSkills, recording the skills to

execute in the next cycle. Afterwards, the skills-manager machine

moves to HandleRequests.

In the state HandleRequests, for each request, there is a

transition triggered by an event that represents a request from the

dependant layer, whose transition action provides the required

information, or updates variables to record the request: activate

or deactivate skills, initiate event monitor, stop event monitor, or

set skill parameters. Once the amount of time defined by the cycle

of the skill manager is past, the machine moves to DoNextSkill.

The cycle time is defined by a constant, whose value can be

defined by the designer or left unspecified (until simulation or

code generation).

DoNextSkill is a composite state that uses the cycleSkills

variable to start all skills that are to execute in the current cycle. In

theDoNextSkillmachine, there is a state for each skill that sends

its input values, raises the event that starts its execution (such as

executeDetermineLocation) and updates a variable

executingSkills. When all skills are set, cycleSkills gets

empty, and the transition to ExecutingSkills is taken.

The state ExecutingSkills accepts the outputs of skills while

they are executing. When an output is received, the machine

moves to the state UpdateRecord, where the inputs to which

the received output is connected are updated. This is done using

FIGURE 6
Reactive skills metamodel.

TABLE 5 The well-formedness conditions of reactive-skills designs.

Condition Description

RS1 A Layer that has a pattern of type ReactiveSkills must be a
GenericLayer or ControlLayer

RS2 For a Layer with pattern type ReactiveSkills, at least one of the
System’s connections is from that layer to a RoboticPlatform
or that layer has at least one rinterface

RS3 For each event of ReactiveSkills Layer’s interfaces, there must be
a DSkill input with a matching name

RS4 ReactiveSkills must contain a CSkill and a DSkill

RS5 A CSkill must have at least one output

RS6 A DSkill must have at least one output or input

RS7 The start and end Skill of a SkillConnection must be distinct

RS8 The startOutput of a SkillConnection must be an output of its
start Skill

RS9 The endInput of a SkillConnectionmust be an input of its end
Skill

RS10 The types of the startOutput and endInput of a
SkillConnection must match

RS11 A Monitor’s condition must only refer to parameters, inputs,
and outputs of the Skills
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an UpdateValue function (omitted here) that only updates the

input if it is the first update of the cycle or if the new value comes

from a skill with higher priority. After each update, the machine

moves back to ExecutingSkills.

The state ExecutingSkills also accepts completion events

from the skills (such as completeDetermineLocation),

updating the executingSkills variable after each such event.

When all skills have completed execution, executingSkills is

empty and the transition to CheckMonitors is taken.

InCheckMonitors, there is a transition for each monitor. If

a monitor condition occurs, a corresponding event notifies the

depending layer. When all monitors are checked, the machine

moves back to the state HandleRequests, after reinitialising

variables such as cycleSkills.

Using the semantics of RoboChart that is automatically

generated, we can prove properties of the design. We have,

for example, proved deadlock and livelock freedom, and some

other trace-based properties of some of the machines that are

FIGURE 7
RoboChart state machine for Proximity D-Skill.

FIGURE 8
RoboChart state machine for DetermineLocation C-Skill.
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automatically generated. In these proofs, we can cater for general

properties of any design, and for application-specific properties.

In the next section, we discuss how we can define and

formalise a CorteX-based design pattern in RoboArch, opening

the same possibilities for CorteX andCorteX designs (see Figure 1).

5 Discussion: CorteX and RoboArch

As already said, CorteX is a framework tailored to the

development of complex nuclear robotic systems. It primarily

focuses on data representation and communication to solve

issues of maintainability and extensibility. In this section, we

discuss the integration of CorteX and RoboArch.

We envisage two main approaches for integrating RoboArch

and CorteX. The first supports the generation of CorteX

implementations of RoboArch models (Section 5.1). The

second approach extends RoboArch to support modelling

CorteX architectures (Section 5.2).

5.1 From RoboArch to CorteX

As discussed in Sections 3, 4, the semantics of RoboArch is

specified in terms of RoboChart, which opens the possibility for the

generation of several artefacts (see Figure 1). We can obtain

automatically mathematical models for verification, such as CSP

(Miyazawa et al., 2019) scripts, for verification of reactive and timed

properties, and PRISM (Ye et al., 2021) reactive modules, for

verification of probabilistic properties. We can also obtain code

(Li et al., 2018) and RoboSim models describing simulations

(Cavalcanti et al., 2019). RoboSim is a sister notation of

RoboChart tailored to the design and verification of simulations

with a similar component model and artefact-generation facilities.

A code generator that produces CorteX-compatible

implementations of a RoboArch model can take advantage of

some of the abovementioned functionalities. The first step

requires the generation of the semantics of the RoboArch

model in RoboChart as described in this paper. Since CorteX

is a cyclic architecture, it is useful to transform (automatically)

the resulting RoboChart model into a simulation model, written

in RoboSim, via the RoboStar correctness-preserving model-to-

model transformation. Next, we can use one of the RoboSim

model-to-model transformations to generate an intermediate

representation of imperative code and a model-to-text

transformation tailored for CorteX. Currently, two

transformations targeting the programming languages C and

Rust are under development.

With the use of the intermediate representation, we

guarantee that the semantics of RoboChart and RoboSim is

preserved by the code. This follows from the fact that the

generation of the intermediate representation is a

mechanisation of the RoboSim semantics, and the model-to-

text transformation is direct. For CorteX, each state machine can

be implemented as a simplex, the basic unit of data and behaviour

in CorteX code. This approach matches well the parallel

paradigms of RoboChart and CorteX.

On the other hand, the translations fromRoboChart to RoboSim

and from RoboSim to the intermediary representation give rise to

additional parallel components for orchestration of operation calls

and during actions inside statemachines. This can create an overhead

in the target code. If this overhead becomes an issue, we can

alternatively, directly convert the RoboSim model into code via a

generator specifically tailored for CorteX. While this alternative

involves significantly more work (as it does not reuse the existing

intermediate representation generator), it allows for more control

over the structure of the CorteX implementation, and a one-to-one

match between state machines and simplexes.

FIGURE 9
RoboChart skills-manager machine for the example.
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In the approaches above, CorteX is used as a target

middleware. An alternative explored in the next section is the

use of CorteX concepts already at the design level, giving rise to

an architectural pattern for CorteX. This enables design and

verification for CorteX.

5.2 CorteX in RoboArch

ACorteX implementation does not explicitly have the notion of

layers. In fact, one might even argue that a layered architecture is

incompatible with CorteX due to its distributed nature. This,

however, is not the case, since layers are not necessarily

centralised or co-located, and a layer or set of layers can be

deployed as a distributed system. Moreover, well-designed code

separates planning and control functionality. It is, therefore,

beneficial to use separate sets of CorteX simplexes to deal with

planning and control.

For this reason, the use of layers does not prevent the

adoption of CorteX, and, moreover, embedding CorteX

designs in RoboArch as a pattern for any layer provides extra

support to address the interoperability issue with non-CorteX

applications such as ROS (Caliskanelli et al., 2021, p. 320). The

use of a layered RoboArch design can help to ensure not only that

code for planning and control is kept separate, but that a strict

layered discipline is enforced, even if the code, as it is often the

case, does not have a notion of layer.

Figure 10 depicts a metamodel for integrating CorteX into

RoboArch; it is based on the description of CorteX in

(Caliskanelli et al., 2021). As for reactive skills, we model the

CorteX architecture as a RoboArch Pattern. Listing 3 and

Listing 4 present the sketch of a layer CorTeXl that uses the

CorteX pattern in the design of a simple application based on

mobile robots inspired by an example in (Caliskanelli et al.,

2021).

Listing 3. Mobile robots ontology.

Listing 4. Example of layer using the CorteX pattern with

MobileRobots ontology.

As discussed in Caliskanelli et al. (2021, pp. 317–319), a

CorteX application is parameterised by an ontology, represented

here by the attribute ontology. An object of classOntology has a

single attribute root of type CorteXType, which is an abstract

class that can be realised as either a DescriptiveModule or an

ActiveModule. The distinction is similar to that between

passive and active classes.

A CorteXType may contain any number of CortexType

children and sets of rules applicable to commands, data, and

relationships. An ontology is, therefore, structured as a tree, a

hierarchy of concepts akin to an object-oriented model. The rules

establish constraints over CorteXTypes. A CommandRule has

an identifier (for instance, move) and some parameters. Each

ParameterRule defining a parameter has itself an identifier and

a dataType (limited to integer, float, Boolean, or string), possibly

an array, as defined by the attributesminCount andmaxCount.

We omit here the simple enumeration CortexDataType.

A DataRule is similar to a ParameterRule. Finally, a

RelationshipRule describes a relationship with a

CorteXType, defined by relatedType. It specifies a

direction, using a value of an enumeration type

CorteXRelationshipDirection including INPUT and

OUTPUT, and a multiplicity.

Listing 3 shows an excerpt of the ontology for the example. It

includes descriptive modules, such as MobileBase, and active

modules, such as MovementController. MobileBase

represents a two-wheeled robot and contains two concepts of

type RotaryAxisConcept, which represent the data

associated with the left and right wheels. The module

MovementController specifies an input concept of type

ObstacleConcept and two output concepts of type

RotaryAxisConcept (both of these concepts are specified

in the ontology as descriptive modules, but omitted in Listing 3).

A CorteX pattern also contains a set of simplexes. A

Simplex has an identifier, a type from the ontology, and sets
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of data, relationships, and commands. A SimplexData

models a piece of primitive data containing an identifier and

a dataType (limited to integer, float, Boolean, string, and

possibly an array). The attribute satisfiesRule identifies a

DataRule of the ontology that is implemented (satisfied) by

the simplex.

A SimplexCommand has an identifier, availability, and a

set of parameters. Like for SimplexData and DataRule, a

SimplexCommandParameter satisfies a ParameterRule.

A SimplexRelationship describes a connection between

two simplexes, namely, the simplex that contains it and the

simplex identified by relatedType. In addition, a

SimplexRelationship satisfies a RelationshipRule.

Listing 4 depicts the RoboArch control layer CorTeXl that

uses the CorteX pattern and refers to the MobileRobots

ontology in Listing 3. It requires interfaces IMove and

ISensor; the first declares operations

setLeftMotorSpeed and setRightMotorSpeed, and

the second the event obstacle. Next, CorTeXl specifies its

pattern (CorteX) and the pattern’s components. These are the

ontology (MobileRobots) and the set of simplexes.

Each simplex has a name and a type from the ontology, and

information about how the ontology relationship rules are

satisfied. For instance, MovementController has name m

and specifies three relationships; the first specifies that the

relationship rule left (of the module

MovementController in Listing 3) is satisfied by the

simplex lc (declared in the pattern but omitted in Listing 4)

of type RotaryAxisConcept.

A SimplexCS is a Simplex with a notion of task, which

defines behaviours to be executed in particular points of its

lifecycle. This is similar to D-Skills in the reactive-skills

pattern, where the top-level execution protocol of the D-Skill

is fixed and user-defined behaviours are run in particular stages

of this protocol.

In our CorteXmetamodel, we omit the concept of a ClusterCS,

which is related to allocation of simplexes to computational units.

This is an issue not covered in RoboStar technology. Automatic

generation of CorteX code may, for example, define a simple

default allocation of simplexes to a single computational unit for

further elaboration by the CorteX designer later.

Additionally, we omit the notion of Simplex Trees. These are

sets of simplexes, which are represented in our metamodel by the

attribute simplexes of CorteX. So, each layer that uses a CorteX

pattern has a single set of simplexes. With this metamodel, different

sets can, and need to be, allocated in different layers. Further

experience may indicate that we need several sets of simplexes in

a layer, if the layer discipline turns out to be too restrictive in some

cases. This simple extension is left as future work.

There are three well-formedness conditions that apply to a

CorteX design as defined below. They are all related to the data,

commands, and relationships of a Simplex and the rules that

they indicate that are satisfied by them. Together the conditions

ensure that the rules used in a Simplex are well defined.

C1 The DataRule of a SimplexData is in the CorteXType

of its Simplex.

C2TheParameterRule of a SimplexCommandParameter

is in the CorteXType of its Simplex.

C3 The RelationshipRule of a SimplexRelationship is in

the CorteXType of its Simplex. In addition, the Simplex

defined by its relatedType has the type defined by the

relatedType of the RelationshipRule.

For designs that satisfy these restrictions, we can define a

RoboChart sketch via transformation rules. The semantics of the

CorteX pattern would be specified in RoboChart in line with the

semantics of RoboArch. Each descriptive Simplex, that is, a

FIGURE 10
Metamodel of CorteX for integration with RoboArch.
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simplex whose type is a DescriptiveModule, is specified by a

RoboChart data type, and each active Simplex (ActiveModule

type) is defined by a state machine, where the

SimplexCommands are modelled as events, the

SimplexData as variables, and the SimplexRelationships as

connections. The semantics of a SimplexCS is specified by a state

machine that enforces the specific execution protocol in a similar

manner as done for D-Skills, which is illustrated in Figure 7.

As indicated in Figure 3, a layer contains input and output

events for inter-layer communication. CorteX, on the other hand,

does not use the same communication mechanism and requires a

component to transform and route data between the layer and the

CorteX application. This component can also be automatically

generated similarly to how the semantics of RoboArch specifies the

SkillsManager (Figure 9) for the reactive-skills architecture. Such

a component partially solves the interoperability between different

architectures; for instance, it allows the control layer in Figure 4,

which uses the reactive-skills pattern, to communicate with an

executive layer that uses a CorteX pattern.

To conclude, by allying RoboArch and CorteX, we can

support the use of CorteX principles from an early stage of

design. We can also support verification and automatic code

generation. In this way, we further the CorteX agenda by

supporting the development of traceable evidence of core

properties of applications. Future work will consider

significant case studies and automation.
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