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immune function. Our results show that immunomod-
ulation caused by rapamycin treatment is beneficial to 
the survival from acute infection. For DR, our results 
are based on a smaller number of studies, but do war-
rant caution as they indicate possible immune costs of 
DR. Our quantitative synthesis suggests that the gero-
protective effects of rapamycin extend to the immune 
system and warrants further clinical trials of rapamy-
cin to boost immunity in humans.

Keywords Diet · Rapamycin · Restriction · Aging · 
Immunosenescence · Infection

Introduction 

Ageing is the progressive decline of function and 
increased risk of death. Many phenotypes are asso-
ciated with ageing [1], including declining immune 
function [2, 3]. Immunosenescence leads to the dys-
function of immune cells affecting both innate and 
adaptive immunity [4–7] and to higher levels of 
inflammation [8]. Ageing therefore reduces our abil-
ity to mount an effective immune response, leaving 
us more susceptible to infection [3, 9]. More broadly 
immunosenescence is thought to underlie several 
pathologies that appear during ageing, including 
cancer [10], autoimmune disease [5] and ineffective 
clearance and accumulation of senescent cells [7, 11]. 
Immunosenescence thus provides an attractive expla-
nation and potential therapeutic avenue for ageing.

Abstract   Dietary restriction (DR) and rapamy-
cin both increase lifespan across a number of taxa. 
Despite this positive effect on lifespan and other 
aspects of health, reductions in some physiological 
functions have been reported for DR, and rapamycin 
has been used as an immunosuppressant. Perhaps sur-
prisingly, both interventions have been suggested to 
improve immune function and delay immunosenes-
cence. The immune system is complex and consists 
of many components. Therefore, arguably, the most 
holistic measurement of immune function is survival 
from an acute pathogenic infection. We reanalysed 
published post-infection short-term survival data of 
mice (n = 1223 from 23 studies comprising 46 effect 
sizes involving DR (n = 17) and rapamycin treatment 
(n = 29) and analysed these results using meta-analy-
sis. Rapamycin treatment significantly increased post 
infection survival rate (lnHR =  − 0.72; CI =  − 1.17, 
-0.28; p = 0.0015). In contrast, DR reduced post-infec-
tion survival (lnHR = 0.80; CI = 0.08, 1.52; p = 0.03). 
Importantly, the overall effect size of rapamycin treat-
ment was significantly lower (p < 0.001) than the esti-
mate from DR studies, suggesting opposite effects on 
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Established treatments that extend lifespan in 
model organisms, most notably dietary restriction 
(DR) [12, 13] and mTOR suppression [14, 15], might 
do so because they mitigate immunosenescence. The 
pro-longevity mechanisms of DR have been hypoth-
esised to include mTOR suppression [16, 17], but 
direct evidence for this hypothesis is scarce [14, 
18–20]. Whether DR and mTOR suppression pro-
mote a healthier immune system and whether they do 
so through shared mechanisms is currently unclear. 
There are reports of beneficial effects of both of these 
pro-longevity interventions on immune function, yet 
there is also evidence to the contrary [21–23]. In 
addition, rapamycin (inhibiting mTOR) has been used 
as an immunosuppressant [23], and a loss of immune 
defence is a hypothesised cost of DR [24].

When measurements of the composition of the 
immune system are taken as proxies for immune 
health, extrapolation to overall organismal health 
is difficult. An additional complication is that such 
proxies are often studied under controlled, patho-
gen-free conditions [25, 26]. In comparison, acute 
survival to pathogens has received less attention but 
provides a strong experimental and potentially trans-
lational paradigm to study the effects of DR and rapa-
mycin. Pathogen infection is a pervasive problem that 
intensifies with age [3, 27]. Treatments that enhance 
the effectiveness of the immune system to overcome 

infection are thus highly relevant. Conversely, should 
pro-longevity treatments simultaneously reduce the 
capacity to fight-off infection, the beneficial impact 
of DR and rapamycin on healthspan could be negated 
by reduced survival following naturally occurring 
infections [15]. We conducted a meta-analysis on 
studies in mice and found that survival after patho-
gen exposure was reduced by DR but improved with 
rapamycin.

Results

DR had a significant negative effect on survival fol-
lowing pathogen exposure (Fig.  1, lnHR = 0.80; 
CI = 0.08, 1.52; p = 0.03). There was a large propor-
tion of relative heterogeneity (I2 = 0.68; Q-test df = 16, 
p < 0.01). The small sample size of (seven) studies 
and variation in the recorded moderators were too 
small to perform any meaningful moderator analysis. 
This together with heterogeneity between studies and 
interdependency of effect sizes from the same study 
and using the same controls reduces the overall con-
fidence in this result. It is unlikely however that vari-
ation between studies was due to mouse genotype or 
degree of DR, as all studies used the common inbred 
mouse strain, C57BL/6, and DR of 40% (Table S1). 
However, the only study to find a significant positive 

Fig. 1  Forest plot of log 
hazard ratio estimates (cir-
cles) for DR and rapamycin 
post-infection survival 
curve pairings (n = 46) from 
Cox proportional hazard 
models. Squares indicate 
overall effect sizes as deter-
mined using meta-analysis 
controlling for interdepend-
ence of study and shared 
controls. Whiskers indicate 
95% CIs
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effect of DR [28] used a parasitic model of infection 
and was the only study to use females. No publication 
bias was detected using a rank correlation (Kendall’s 
τb =  − 0.25; p = 0.18, Figure S3).

Rapamycin treatment improved survival of 
mice exposed to pathogens (lnHR =  − 0.72; 
CI =  − 1.17, − 0.28; p = 0.0015). Strikingly, when both 
interventions were analysed together, with treatment 
type as moderator, rapamycin-treated mice had signifi-
cantly better survival than those treated with DR (esti-
mate =  − 1.50; CI  = − 2.33, − 0.68; p < 0.001). There 
was large relative heterogeneity (I2 = 0.67; Q = 84, 
df = 28, p < 0.01). To perhaps explain some of this het-
erogeneity, we tested a number of possible moderators. 
We found no significant contribution from mouse gen-
otype (QM = 2.78, df = 4, p = 0.60; or when testing BL6 
against other: QM = 0.63, df = 1; p = 0.43), inoculation 
method (QM = 0.76, df = 2; p = 0.69) or pathogen type 
(QM = 1.25, df = 3, p = 0.74). The effect of sex could 
not be evaluated as information was not provided or 
was female (see Table S2). There was a trend that sec-
ondary infection (QM = 3.49, df = 1, p = 0.06) showed 
a stronger effect of rapamycin (− 0.81; CI =  − 1.65, 
0.04). A rank test of funnel plot asymmetry revealed 
no evidence for publication bias (Kendall’s τb = 0.23; 
p = 0.09; Figure S4).

Discussion

Through meta-analysis, we found that rapamycin 
treatment but not DR significantly increased survival 
of mice exposed to pathogens. The pooled results of 
the limited number of studies suggest that DR does 
not improve immunity to infection and could even 
worsen the response. Studies on the impacts of rapa-
mycin on infected mice have been inconclusive when 
comparing individual studies [29, 30]. Contrary to 
DR, however, our meta-analysis revealed that rapa-
mycin protected against pathogenic infection. This 
disparity between DR and rapamycin supports previ-
ous suggestions, that these two anti-ageing treatments 
operate though largely distinct mechanisms [14, 19, 
20, 31].

A common interpretation is that DR benefits 
immune function by keeping it ‘younger for longer’ 
[32, 33]. For instance, by protecting T-lymphocytes 
from oxidative damage [34], altering specific lympho-
cyte populations [35] and delaying thymic maturation 

[36]. However, our meta-analysis suggests that this 
‘youthful’ immune system does not translate into a 
more potent response to pathogens. Perhaps aspects 
of innate immunity are compromised under DR. A 
reduced level of IL-6 [37] and reduced number, and 
cytotoxicity, of NK cells [38] under DR were asso-
ciated with reduced survival of mice upon infection. 
While DR decreases effectiveness of NK cell-based 
immunity, arguably regulated by leptin [38–40], this 
could also prevent a hyperimmune response-enhanc-
ing survival. Similarly, a reduction in leptin pro-
duction under DR was shown to be responsible for 
enhanced survival from cerebral malaria, and these 
effects were mediated through reduced mTORC1 
activity in T cells [28].

Several mechanisms could explain why rapamycin 
increases resilience against pathogen infection. Immu-
nosuppressive properties of rapamycin could prevent 
the activation of an overzealous immune response [29, 
41]. A more effective immune response could stem from 
elevated numbers of T regulatory (Treg) cells seen after 
rapamycin treatment [29, 42]. Treg cells cause immune 
suppression to maintain homeostasis, for example reduc-
ing cytokine production which in turn ameliorates tissue 
damage [43]. Rapamycin may also improve immune 
memory [44–46], possibly fitting with the trend that sec-
ondary infections showed a stronger response to treat-
ment. Rapamycin’s ability to reduce the debilitating 
effects of ageing on a systemic level could directly or 
indirectly benefit the immune system [47]. It remains to 
be determined to what degree the life-extending effects 
of rapamycin are due to its modulation of the immune 
system. Although, lifespan extension by rapamycin in 
mice lacking T and B lymphocytes  (RAG2−/−) without 
a rescue from an immune challenge [48] suggests immu-
nomodulation is not exclusively responsible for rapa-
mycin’s anti-ageing effects. Outside the protected lab 
environment, however, infection and repeated exposure 
to pathogens could be strongly determinative of healthy 
ageing and lifespan. In this context, rapamycin has a 
strong immediate potential to benefit humans [47].

For the studies included in our meta-analysis, the 
duration and timing of treatment and age at patho-
gen exposure was so heterogeneous that we were 
unable to assess it (Table S2). Notably, in one study, 
short-term rapamycin treatment was more success-
ful in improving post-infection survival than long-
term treatment [49]. When comparing rapamycin to 
DR treatment, we note that the majority of the DR 
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studies initiated treatment well in advance of infec-
tion, whereas treatment with rapamycin was more 
brief. In fact, the one study that started DR on the 
day of infection was also the only study to find a 
significant benefit to survival [28]. Timing and 
scheduling of rapamycin treatment can have unpre-
dictable effects and could depend on age. Transient 
rapamycin treatment [50] and mTor knockdown [51] 
in early adult life extend lifespan in flies. Similarly, 
rapamycin during development [52] and a short 
bout of treatment at middle age [53] extend lifespan 
in mice. Determining which rapamycin schedule is 
most beneficial to the ageing human will be key. It 
is encouraging however that short-term rapamycin 
treatment in model organisms has benefits on both 
lifespan and on immune responses to pathogens, as 
we determined here through meta-analysis, paving 
the way for future human studies.

Methods

Literature research

Scopus and Google scholar were the two primary 
databases used to collect results for search terms 
relating to both DR and rapamycin. Additional 
sources were also found by searching the refer-
ence sections of salient papers (denoted as ‘Other 
Sources’ in the PRISMA report — Figure  S1). As 
part of standard meta-analytic protocol [54], the 
PICO (Population, Intervention, Comparison, Out-
come) framework was used to establish the specific 
research questions of the meta-analysis for both 
rapamycin (how rapamycin impacts the immune 
response of non-mutant mice compared to mice 
treated with placebo vehicle injection) and DR 
treatment (how DR impacts the immune response 
of non-mutant mice compared to mice fed ad  libi-
tum). From our initial literature research, we estab-
lished that post infection survival is a common and 
relevant metric used. Although DR and rapamycin 
experiments have been conducted on species from 
a range of taxa, the most extensively studied and 
well-controlled subject group were laboratory mice. 
Given this, we focussed the meta-analysis on studies 
on mice that measured short-term survival following 
pathogen exposure.

Inclusion criteria

General inclusion criteria are as follows: 

1. The experiment contained a control group and a 
group under DR or treated with rapamycin

2. The study included survival data in the form of a 
Kaplan–Meier plot, or provided original/raw sur-
vival data

3. Studies that used mouse strains that were selected 
or genetically modified in a way that would 
prompt an abnormal response were excluded. For 
instance, p53-deficient mice were excluded as 
they exhibit accelerated immune ageing [55].

4. There were no restrictions on the age or sex, but 
this information was collected for potential use in 
moderator analysis.

5. Survival data from the experiment could be in 
response to primary pathogen exposure or second-
ary exposure to the same or similar pathogen, for 
instance, in a study by Keating and colleagues [45].

6. The studies chosen were restricted to those which 
used microparasites as the pathogen for their 
immune challenge.

7. There were no restrictions on the date papers 
were published.

8. Studies with insufficient or unclear data were 
excluded, e.g. studies that did not include sample 
size or only survival data as an overall percentage 
rather than a Kaplan–Meier plot [56]. One study 
such, by Huang and colleagues [30], was due to a 
culmination of insufficient detail (rapamycin dose 
and mouse sex were not stated), a lack of inde-
pendent controls and small sample size.

Treatment-specific inclusion criteria are as follows:
For DR experiments:

1. Restrict overall food intake as opposed to restrict-
ing a specific macro or micro-nutrients.

2. There was no limit on duration of DR prior to 
infection.

3. Studies with DR conditions of 40–60% ad  libi-
tum to represent moderate restriction.

For rapamycin experiments:

1. The experiment could use rapamycin at any dos-
age but not in conjunction with another drug.
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2. There was also no restriction on duration of 
rapamycin treatment, but this information was 
recorded.

Search methodology

The following key terms were entered into the cho-
sen databases; the searches were modified to fit the 
format of an advanced search in each database. Sco-
pus: (1) (“Dietary Restriction” OR “Undernutrition”) 
AND ((infection OR influenza)) AND (mice) AND 
NOT (review) returned 64 hits. (2) “Rapamycin” 
AND (infection OR influenza) AND (mice) AND 
NOT (review) returned 853 hits. Google Scholar: 
(1) (Dietary Restriction OR DR) AND (immune 
challenge OR infection) AND (mice OR Mouse) 
returned ~ 68,100 hits. (2) [Dietary Restriction] 
AND (infection OR immune response) AND [mice] 
AND “research paper” returned ~ 162,000 hits. (3) 
“Dietary Restriction” AND (infection OR influenza) 
AND [mice] AND review returned ~ 603 hits. Note, 
alternative names for/forms of rapamycin were also 
queried but these did not return any additional stud-
ies. Papers were assessed and selected manually fol-
lowing our inclusion and exclusion criteria and sub-
sequently using the PRISMA guide (Figure S1). All 
literature searches were conducted by EP. A second-
ary non-structured search was conducted by MJPS 
as this can yield additional suitable literature. Later 
cross-referencing with the structured search yielded 
five additional suitable studies for the meta-analysis 
(Figure S1).

Data extraction and re-analysis

Raw survival times were extracted using image analy-
sis of published Kaplan–Meier survival curves. These 
analyses were performed using the WebPlotDigitizer 
analysis software. This software uses labelled axes 
from the published survival curve to then measure 
the location of points on each survival curve [14, 57]. 
The extracted data was re-analysed using Cox propor-
tional hazards to assess the relationship between post 
infection survival probability and DR or rapamycin 
treatment (R package: survival; function: coxph) [58]. 
Individuals still alive at follow up were right-hand 
censored. No individuals were censored in these stud-
ies during the experiment. The effect size estimates 

and Kaplan–Meier survival curves generated from 
this analysis were compared to those in the original 
publications to confirm that data had been extracted 
accurately, and the direction of the effect corre-
sponded to those reported in the original published 
work. We extracted pathogen type, infection method, 
sex and mouse genotype to be used in possible mod-
erator analysis (Table  S2). To include as many per-
tinent studies as possible, a range of pathogens were 
included, and pathogen type was extracted as a mod-
erator. Longevity induced by rapamycin treatment 
has been shown to be differentially affected by sex, 
with greater lifespan increase in female mice than 
male mice at a variety of doses [19]. Genotype has 
also been shown to impact lifespan of mice treated 
with both DR [59] and rapamycin [57]. Additionally, 
there is evidence that the most common mouse mod-
els used in relevant studies, BALB/c and C57BL/6, 
exhibit distinctive immune responses when exposed 
to bacterial infection [60].

Meta-analysis

Effect sizes, expressed as log hazard ratios from each 
study, were then analysed using a random-effects 
multilevel meta-analysis model (R package: metafor; 
function: rma.mv) [61]. Standard errors from the Cox 
proportional hazard models provided the weighting 
of each effect size in the analysis (the inverse of s.e. 
squared). As several effect sizes used the same con-
trol group, we accounted for this shared variance by 
including a covariance matrix [14] calculated using 
‘vcalc’ in metafor, using a correlation of 0.5 between 
effect sizes of shared controls. Multilevel meta-anal-
ysis allows the inclusion of random effects and we 
included study as a random intercept for the multiple 
experiments from the same study. Where possible, 
post hoc subgroup analysis was performed to assess 
potential variables that may have contributed to het-
erogeneity. We only performed moderator analysis if 
the moderator could be objectively coded as a con-
tinuous variable or a factor with enough replication 
within levels to be tested. We indicate in the text 
where this was not possible due to heterogeneity in 
reporting or low number of replications. Relative het-
erogeneity was assessed using a multilevel version of 
I2 [62], and we also report Q tests. Publication bias 
within the meta-analysis was assessed visually using 
funnel plots (Figures  S3 and S4) and statistically 



 GeroScience

1 3
Vol:. (1234567890)

using a rank correlation test for funnel asymmetry 
using Kendall rank correlations.
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