
Mixing Hardware and Software Reversibility for

Speulative Parallel Disrete Event Simulation

Davide Cingolani, Mauro Ianni, Alessandro Pellegrini, and Franeso Quaglia

Sapienza, University of Rome

Abstrat. Speulative parallel disrete event simulation requires a sup-

port for reversing proessed events, also alled state reovery, in ase they

reveal as ausally inonsistent. In this artile we present an approah

where state reovery relies on a mix of hardware- and software-based

tehniques. Partiularly, we exploit the Hardware Transational Memory

(HTM) support, as o�ered by Intel Haswell CPUs, to proess events by

the appliation ode as in-memory transations, whih are possibly om-

mitted only after their ausal onsisteny is veri�ed. At the same time,

we exploit an innovative software-based reversibility tehnique, fully rely-

ing on transparent software instrumentation targeting x86/ELF objets,

whih enables undoing side e�ets by events with no atual bakward re-

omputation. Eah thread within our multi-thread speulative proessing

engine dynamially (namely, on a per-event basis) selets whih reovery

mode to rely on (hardware vs software) depending on varying runtime

dynamis. The latter are aptured by a lightweight model indiating to

what extent the HTM support (not paying any instrumentation ost) is

e�ient, and after what level of events' parallelism it starts degrading

its performane, e.g., due to exessive data on�its while manipulating

ausality meta-data within HTM based transations. We released our

implementation as open soure software and provide some experimental

results for an assessment of its e�etiveness.

1 Introdution

When dealing with Disrete Event Simulation (DES), its move onto parallel

arhitetures has been historially based on the Parallel Disrete Event Simula-

tion (PDES) paradigm [7℄. In this kind of simulation, as well as in the traditional

DES paradigm, the evolution of the system is desribed in terms of timestamped

disrete events, whih are impulsive�they happen at a spei� simulation time

instant, the timestamp of the event, and have no duration. Parallelism is ahieved

in PDES by partitioning the simulation model into several distint entities, alled

simulation objets or logial proesses (LPs). Eah LP is assoiated with a pri-

vate simulation state�the whole simulation state is the union of these private

states�and the exeution of an impulsive simulation event at any LP produes

a state transition on the state of the LP itself. The privateness of the LPs'

simulation states implies that information exhange aross di�erent LP is only

supported via the exhange of events, whih an be generated (in any number)

during the exeution of whihever event.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54534407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PDES speulative exeution [10℄ allows proessing events with no previous

assurane of their ausal onsisteny. This means that an event destined to some

LP an be dispathed for exeution with no guarantee at all regarding the fat

that no other events with a higher priority, say lower timestamp, will be ever re-

eived by that same LP in the future. Suh events, referred to as straggler events,

are the a-posteriori materialization of a timestamp-order violation, also referred

to as ausal violation. Suh violations require some state reovery (reversibility)

support for undoing the side e�ets on the LPs' states whih are assoiated with

inonsistent proessing of events.

In literature, the reversibility support has been traditionally based on pure

software implementations exploiting either hekpointing tehniques (see, e.g.,

[15, 16℄) or reverse omputing ones (see, e.g., [2℄). A few other approahes have

been based on o�-loading the hekpoint task to o�-the-shelf or unonventional

hardware [9, 18℄. More reently, the Hardware Transational Memory (HTM)

support o�ered by modern proessors, suh as the Intel Haswell, has been taken

into onsideration in order to enable the speulative exeution of events as in-

memory transations [19℄, making them automatially reoverable with low over-

head thanks to the reliane on the hardware transational ahe. However, to

the best of our knowledge, there has been no attempt to exploit hardware and

software based reversibility in a synergi ombination for speulative PDES.

In this artile we present a speulative PDES engine, oriented to multi-ore

mahines, whih is based on suh a kind of hardware/software ombination. Par-

tiularly, we enable eah onurrent worker thread operating within the engine

to dynamially selet the best suited reversibility support among two: (1) one

relying on HTM failities inspired to [19℄ and (2) another relying based on soft-

ware reversibility, partiularly in the form of undo ode bloks [3℄. The dynami

seletion is based on the onsideration that not all the speulatively exeuted

events are valuable in the same manner when run as HTM transations due

to several reasons. A �rst one deals with the fat that the �nal ommit of the

transation needs to hek/update ausality meta-data, hene the higher the de-

gree of onurreny while aessing these meta-data, the higher the likelihood of

yielding to data on�its that lead to the abort of the HTM transations. Also,

ausality meta-data are updated aording to the progress of the ommit horizon

of the PDES run, as determined along time by the ommit of the event with the

lowest timestamp. Hene speulatively proessed events with HTM support that

are further ahead of the ommit horizon will need to �nd ausality meta-data

re�eting more updates upon trying to ommit, whih again leads to an abort if

these updates were not yet issued by the ommitment of events with higher pri-

ority, say lower timestamps. Finally, the HTM support is limited to transations

whose read/write set �ts (with no apaity on�it by other ores of the same

CPU) the transational hardware ahe. Hene for models with events that (or

exeution phases where the events) have large data sets the likelihood of su-

essfully ommitting the orresponding HTM transations may be (signi�antly)

redued.

We overome these drawbaks in our speulative PDES engine by dynami-

ally enabling any worker thread to proess an event not as an HTM transation

(just to redue the likelihood of running non-valuable transations), but rather

via a modi�ed version of the original event-handler ode. This version is trans-

parently instrumented in order to be able to generate (at runtime) the minimal

set of mahine instrutions (the so alled undo ode blok) that allows revers-

ing any memory side e�et. In the instrumentation proess we target x86/ELF

objets. The possibility to ommit events run with software reversibility is no

longer bound to the possibility to ommit an HTM transation. This leads to

the senario where the engine is able to improve fruitful usage of omputing

resoures just beause of the possibility to exploit the HTM support in the most

valuable manner, while jointly relying on a bit more ostly software reversibility

when valuable hardware based reversibility would be impaired.

Clearly, the oexistene of HTM and software based reversibility (with on-

urrent threads relying on one or the other at a given time instant) needs solu-

tions in order to avoid that the two tehniques do not interfere with eah other.

Spei�ally, valuable HTM work should not be interfered by software reversibil-

ity based one. For the ase of onurrent speulatively proessed events bound to

the same LP (hene operating within the same loal state) this is ahieved by in-

troduing a prioritization mehanism that leads an HTM proessed event to gain

higher priority with respet to the events proessed with the software reversibil-

ity support. So the latter will never onurrently aess (any portion of) the

overall data set�say LP state as a whole�possibly targeted by the HTM trans-

ation, hene not leading to its abort. On the other hand, we still enable inter-LP

onurreny, thus enabling the so alled weak-ausality model [17℄, by not pre-

venting multiple HTM transations to suessfully operate on disjoint data sets

within the LP state. Also, given that in our software reversibility sheme we

avoid the usage of hekpointing (in fat the undo ode blok is not a log of

data, rather of mahine instrutions), we avoid at all the typially large usage

of memory by hekpointing (only partially resolved by inremental hekpoint-

ing shemes) hene further reduing the (potential) problems related to limited

ahe apaity issues of the HTM support and on�iting ahe aesses by the

threads.

Our engine has been released as open soure software

1

, and we also provide

some experimental data for an assessment of its e�etiveness when running the

lassial Phold PDES benhmark [8℄ on an Intel Haswell proessor, with HTM

support, equipped with 4 physial ores.

The remainder of this artile is strutured as follows. In Setion 2 we dis-

uss related work. In Setion 3 we present the methodology standing behind

hardware- and software-reversibility based exeution of PDES models, and we

desribe the design priniples haraterizing our mixed simulation engine arhi-

teture. Setion 4 presents an experimental assessment of our proposal.

1

https://github.om/HPDCS/htmPDES/tree/reverse

2 Related Work

The state restore operation is of fundamental importane in speulative PDES,

and has therefore been extensively studied in the literature. Two main inarna-

tions of state restore shemes have been proposed, one based on state hekpoint

and reload, and one based on reverse omputing. The former �avour is based on

the possibility for the simulation engine to know what are the memory bu�ers

that keep eah LP's simulation state, whih are opied onto a separate bu�er�

alled the simulation snapshot�at a given point of the exeution. In this way, un-

doing a hain of wrongly-omputed events (namely, state updates) boils down to

seleting a simulation snapshot whih is still onsistent (i.e., it was taken at a sim-

ulation time smaller than the straggler's one). This snapshot is then opied onto

the LP live state image, thus undoing the e�ets of ausal-inonsistent events.

This approah is both memory- and omputationally-intensive, and might lead

to poor simulation performane, sine if no ausal inonsisteny is deteted at all,

resoures are spent for taking unneessary snapshots. To this end, several pro-

posals have addressed the possibility to take state snapshots less frequently (see,

e.g., [16℄) or in an inremental way (see, e.g., [21℄) or ombining the two shemes

(see, e.g., [15, 20℄). Other solutions rely on hardware support to o�oad from the

CPU the memory opy for taking the hekpoint. Spei�ally, the work in [18℄

proposed to exploit programmable DMA engines to perform the opy, while [9℄

presents the design of a so alled rollbak-hip, a hardware faility that auto-

matially saves old versions of state variables upon their updates. Both these

approahes, redue the CPU-time for hekpointing tasks but do not diretly

ope with memory usage.

Reverse omputing is instead based on the notion of reverse events. A reverse

event ē assoiated with a forward event e is an event suh that if the exeution

of e produes the state transition e(S) → S′, the exeution of ē on S′ produes

the inverse transition ē(S′) → S. Suh reverse events ould be implemented

manually [2℄ or via ompiler-assisted approahes [12℄. Although reverse ompu-

tation is muh less memory-greedy than hekpointing, the main issue with this

approah lies in the rollbak length, namely the number of events whih must

be undone upon a state restore operation. In partiular, the total ost of a roll-

bak operation is diretly proportional to the number of undone events and their

granularity, as reverse events re-proess (although in a reversed fashion) all the

steps of a forward event, even if some of them are not diretly related to state

updates.

The more reent proposal in [3℄ has takled the state restore operation via

software reversibility through the adoption of undo ode bloks. The goal of this

approah is to redue the time-omplexity of the rollbak operation, making the

reversibility of events independent of the forward exeution's granularity. This is

done by relying on stati binary instrumentation, targeting x86-64/ELF objets,

where the simulation model's ode is sanned searhing for all mahine-level

instrutions whih entail a memory update. These instrutions are transparently

augmented with an ad-ho routine whih omputes the target address of the

memory write just before it takes plae, so that the original value is diretly

paked into an on-the-�y assembled mahine instrution whose exeution restores

it. All these runtime generated assembly instrutions are stored into an undo

ode blok whih, when exeuted, undoes all the e�ets of the exeution of

a forward event on the simulation state. This solution �nds a good balane

between inremental hekpointing�no atual meta-data are required to restore

a previous state�and reverse omputing�the exeution ost of an event is no

longer dependent on the omplexity of forward events. Nevertheless, if an event

is unlikely to be undone due to a rollbak operation, the ost of traing memory

updates and generating undo ode blok is paid unneessarily.

Another reent proposal [19℄ exploits HTM failities o�ered by modern Intel

Haswell CPUs to allow running simulation events within transations. An ad-ho

routine determines whether the exeution of an event is safe or not, by heking

ompat shared meta-data keeping trak of the simulation time assoiated with

the events that are being run by the onurrent threads. The event assoiated

with the smallest timestamp is onsidered safe, and it is therefore the only event

whih is exeuted outside of a transation. By using this sheme, all the events

whih are transationally exeuted are automatially aborted if a on�it on the

same data strutures is deteted. At the end of a transation, the safety of the

just-exeuted event is evaluated again, and in ase the event has beome safe, it

is then ommitted. In the negative ase, the transation is immediately aborted

and (possibly) restarted, beause the aess to the shared meta-data makes it

doomed if the event is not safe yet�in fat, another thread will eventually update

the ontent of the meta-data, to indiate that the exeution of a safe event has

been ompleted. A dynami throttling strategy is used to inrease the likelihood

of ommitting a transation, by delaying the time instant at whih the shared

meta-data are aessed.

Our work di�ers from previously published work sine none of the afore-

mentioned proposals makes use of a ombination of hardware and software re-

versibility for state restore operations. Partiularly, we use the results in [19℄

and [3℄ as baselines for building a mixed hardware/software reoverability sup-

port that takes the advantages of the two di�erent tehniques As pointed out

in the introdution, we dynamially resort to undo ode bloks (thus paying the

ost of running an instrumented ode version) only in ase valuable speulative

work annot be arried out (by a thread at some point in time) via the reliane

on HTM. Thus we pay the overhead of software reversibility only when HTM

based reversibility does not pay o� (or is inviable due to, e.g., transational ahe

apaity limitations).

3 The Hardware/Software Reversibility Based Engine

3.1 Basis

We target a baseline speulative PDES engine struture that is independent of

the atual reversibility support, whose shematization is provided in Figure 1. In

ompliane with traditional PDES, the engine supports the partitioning of the

simulation model into n distint LPs, eah one assoiated with a unique ID in the

LP0

Simulation state

Event Handlers

LP1

Simulation state

Event Handlers

LPn-2

Simulation state

Event Handlers

LPn-1

Simulation state

Event Handlers

. . .

Priority

Queue

Fig. 1. Basi engine organization.

range [0, n− 1]. Eah LP is assoiated with a private simulation state (although

possibly sattered on dynami memory) and with one or more event handlers

representing the ode bloks in harge of proessing the simulation events and

generating state updates, as well as of (possibly) produing new events to be in-

jeted in the system. The delivery of a simulation event to the orret handler is

demanded from the underlying simulation kernel, whih is also in harge of guar-

anteing onsisteny of a shared event pool that keeps all the already sheduled

events, as well as ausal onsisteny of the updates ourring on the LPs' states.

Conerning the event pool, we rely on a shared lok-proteted global queue, par-

tiularly a alendar queue [1℄. Multiple onurrent worker threads an extrat

events from the event pool and an onurrently dispath the exeution of the

orresponding LPs by ativating some event handler as a allbak funtion.

3.2 Simulation Horizons and Valuability of Speulative Work

In speulative PDES, we an always identify a point on the simulation time axis

whih is the ommit horizon�ommonly referred to as Global Virtual Time

(GVT). This is the simulation time instant that distinguishes between events

whih might be undone (e.g., due to some ausality violation) and events whih

will never be undone. This time instant an be logially identi�ed by onsidering

that any simulation event e exeuted at simulation time T an only generate

some new event e′ assoiated with timestamp T ′ ≥ T . In fat, violating this

assumption would imply that an event in the future might a�et the past, whih

is learly a non-meaningful ondition for any real-world proess/phenomenon.

Therefore, to identify the ommit horizon, it is su�ient to identify, aross all the

events whih are urrently sheduled at (or have just been proessed by) any LP

in the system the one assoiated with the minimum timestamp. Suh timestamp

orresponds to the ommit horizon. In fat, no event still to be exeuted in the

system might produe a ausal inonsisteny involving the LP in harge of the

exeution of the ommit horizon event

2

.

With our target engine organization, the ommit horizon is assoiated with

the oldest event that is urrently being exeuted (or has just been exeuted) at

any worker thread. Therefore, keeping trak of the ommit horizon boils down

to registering, for eah worker thread, the timestamp of the event e urrently

2

Simultaneous events do not violate this assumption. Nevertheless, if not properly

handled by some tie-breaking funtion [11, 13℄, they ould indue liveloks in the

speulative exeution.

commit

horizon

high

likelihood

low

likelihood

ST

abort probability

delay required

Fig. 2. Three logial regions on the simulation time axis, with varying density of pend-

ing events�those still to be proessed, whih will possibly generate new ones along the

simulation time (ST) axis.

being exeuted, by replaing the value only after a new event is fethed for

proessing from the event pool, so that any new event possibly produed by e

has its timestamp already re�eted into the event pool. The ommit horizon an

be omputed as the minimum among the registered values.

At any time, the ommit horizon event an be onsidered as a safe (namely,

ausally onsistent) one, and therefore does not require any reversibility meh-

anism for its exeution. Let us now disuss about the likelihood of safety of

other events to be proessed, whih stand ahead of the ommit horizon. Empir-

ial evidene plus statistial onsiderations based on lassial distributions for

the timestamp inrement driving the generation of events in ommon simulation

models (see, e.g., [5, 6℄) have shown that event patterns are, at any time, hara-

terized by greater density of events, say loality of ativities, in the near future of

the atual GVT. This situation is depited in Figure 2. Also, suh loality tends

to move along the time axis just based on the advanement of the ommit hori-

zon. The impliation is that the risk of materialization of ausal inonsistenies

when speulatively proessing one event that is ahead of the ommit horizon is

somehow linked to its distane from suh horizon. This is also linked to the no-

tion of lookahead of DES models, a quantity expressing the minimal timestamp

inrement we an experiene for a given model when proessing whihever event

that originates new events to be injeted in the system. Larger lookahead leads

to produe new events in the far future, hene those getting loser to (although

not oiniding with) the urrent ommit horizon beome automatially safe.

By this onsideration, the speulative proessing of events that are loser

to the ommit horizon looks more valuable in terms of avoidane of ausality

inonsistenies, hene our approah is to enable the proessing of these events

as HTM-based transations, say via the more e�ient (lower overhead) reover-

ability support. We also note that running events that are lose to the ommit

horizon as HTM-based transations will also lead to faster advanement of suh

horizon, as ompared to what we would expet if running them via software-

based reversibility, sine this would lead to longer proessing times due to the

overhead for produing the undo ode bloks. However, an HTM-based trans-

ation an ommit only after events standing in the past have already been

ommitted and the orresponding worker threads have already updated their

entries in the meta-data array keeping their urrent timestamp. So, in order to

inrease the likelihood of ommitting the HTM-based transational exeution

of some event, this transation typially needs to inlude a busy-loop delay en-

abling a wait phase just before heking whether the meta-data were updated

3

.

Cheking the meta-data at some wrong point in time will in its turn lead to

the impossibility to rehek these data fruitfully in the future, sine the updates

ourring between the two heks will lead to a data on�it and to the abort

of the heking transation. In Figure 2 we show how suh a delay should be

seleted somehow proportionally to the distane (in terms of event ount) of the

event proessed via HTM support from the ommit horizon. Overall, for events

that are further ahead from the ommit horizon, the delay ould not pay o�,

hene a more pro�table approah to speulatively proessing them is the one to

run them outside the HTM-based transation, still with reversibility guarantee

ahieved via software.

The problem of determining what is the threshold distane from the om-

mit horizon beyond whih HTM support does not pay o� is learly also related

to the interferene between onurrent HTM-based transations when using the

underlying hardware resoures. In fat, if we experiene a senario where two

onurrent transations both require large transational ahe storage for exe-

uting the orresponding dispathed events, and the ahe is shared aross the

ores, then even if an event would ideally reveal as ausally onsistent upon

attempting to �nalize the transations, it would anyhow be doomed to abort

due to ahe apaity on�its. A similar ahe apaity-due abort may even be

experiened in ase of single HTM-based transation instane, just depending

on the transation data set, whih might exeed the ahe apaity.

To ope with the runtime adaptive seletion of the threshold value, we rely

on a hill limbing sheme based on the following parameters, easily measurable

at runtime aross suessive wall-lok-time windows:

� THTM , the total proessing time spent aross all the worker threads while

proessing events (either ommitted or aborted) via HTM support

� COMMITHTM , the total number of ommitted events whose speulative

exeution has been based on HTM support;

� Tsoft, the total proessing time spent aross all the worker threads while

proessing events (either ommitted or aborted) that are made reoverable

via software-based support (here we inlude the time spent for instrumenta-

tion ode used to generate undo ode bloks, plus the time for running the

undo ode bloks in ase the events are eventually undone);

� COMMITsoft, the total number of ommitted events whose exeution has

been based on the software support for reoverability.

By the above quantities, we ompute the so alled work-value ratio (WVR)

for both HTM-based and software-based reoverability just like:

WVRHTM =

THTM

COMMITHTM

WVRsoft =
Tsoft

COMMITsoft

(1)

3

Other kind of delays, suh as operating system sleeps, are unfeasible sine any

user/kernel transition will lead an HTM-based transation to abort deterministi-

ally on urrent HTM-equipped proessors.

whih express the average amount of CPU time required for performing useful

work (namely, for proessing an event that is not undone) with the two di�erent

reoverability supports. Then, the threshold value THR determining the ommit

horizon distane (evaluated as event ount) beyond whih we onsider it more

onvenient to proess the event via software reversibility, rather than HTM-based

one, is inreased or dereased depending on whether the relation WVRHTM ≤

WVRsoft is veri�ed (as omputed on the basis of statistis, on the baseline

parameters listed above, olleted in the last observation window). In order to

avoid stalling in loal minima (e.g. due to the avoidane of runtime samples for

any of the above listed parameters), we intentionally perturb THR by ±1 within
the hill limbing sheme if its value reahes either zero or the number of threads

urrently running in the PDES platform.

3.3 Engine Arhiteture

As mentioned, our engine allows the o-existene of hardware-based and software-

based reversibility failities. While introduing hardware-based reversibility fail-

ities is somehow easy�it an be done using the primitives TRANSACTION_START,

TRANSACTION_END, and TRANSACTION_ABORT to drive event proessing�software-

based reversibility requires a bit more are, espeially when targeting full trans-

pareny to the appliation-level developer. To ope with this issue, we rely on

stati binary instrumentation. In partiular, we exploit the Hijaker [14℄ open-

soure ustomizable stati binary instrumentation tool. Using this tool, we are

able (before the �nal linking stage of the appliation-level simulation model) to

identify any memory writing instrution (either a simple mov or a more omplex

ones, like move or movs instrutions) and to plae just before eah memory-

update instrution a all to a reverse_generatormodule whih reads the ur-

rent value of the target memory loation so as to diretly generate the reverse

instrution able to undo the orresponding side e�et aording to the proposal

in [3℄. The sequene of reversing instrutions for a same event forms the undo

ode blok of the event. Clearly, the instrumented and the non-instrumented ver-

sions of the appliation modules also need to oexist (sine the non-instrumented

version is the one to be run in ase of HTM-based reversibility). Suh oexistene

has been ahieved by using a multi-oding sheme when rewriting the ELF of

the program at instrumentation time, and by identifying the entry points to the

two versions of ode (instrumented and not) within the same exeutable using

funtion pointers exposed to the PDES engine.

In our implementation the reversing instrutions assoiated with an event

(those forming the undo ode blok of the event) are organized into a reverse

window, whih is used as a stak of negative instrutions that an be invoked via

a all. Corret exeution of an undo ode blok is ensured by the presene of a

ret instrution at the end of the reverse window. Also, if the forward exeution

of an event updates multiple times the same memory loation, only the �rst

instrution updating that loation should be assoiated with the generation of

an inverse instrution, sine the following updates would be anyhow undone by

Algorithm 1 Shared Lok Aquisition/Release

1: int lok_vetor[n℄

2: double timestamp[n℄ ⊲ To avoid priority inversion

3: int thread_id[n℄ ⊲ To avoid priority inversion

4: proedure Lok_LP(e, LP, mode, loking)

5: if mode = EXCLUSIVE then

6: acquired ← false

7: while ¬acquired∧ loking do

8: while lok_vetor[LP℄ > 0 do

9: nop

10: old_lock← lock_vector[LP]
11: if CAS(-1, old_lock, lock_vector[LP]) then
12: acquired← true

13: else

14: acquired ← false

15: while ¬acquired∧ loking do

16: while lok_vetor[LP℄ < 0 do

17: nop

18: old_lock← lock_vector[LP]
19: if CAS(old_lock + 1, old_lock, lock_vector[LP]) then
20: acquired← true

21: if ¬acquired then

22: atomially {

23: timestamp[LP℄ ← T (e)
24: thread_id[LP℄ ← thread_id

25: }

26: return acquired

27: proedure Unlok_LP(LP, mode)

28: if mode = EXCLUSIVE then

29: lock_vector[LP]← 0

30: else

31: do

32: old_lock ← lock_vector[LP]
33: while ¬ CAS(old_lock − 1, old_lock, lock_vector[LP])

the �rst inverse instrution. We therefore employ a fast hashmap to keep trak of

destination addresses within a forward event. Whenever reverse_generator is

ativated, this hashmap is queried to determine whether the destination address

was already involved in a negative instrution generation.

As mentioned before, to ensure onsisteny and minimize the e�ets of data

ontention on HTM-based exeution of events, we must ensure that at no time

two di�erent worker threads an exeute both software-reversible and hardware-

reversible events at one, whih target the same LP state. In fat, if this would

happen, we might inur the risk of having less valuable work to invalidate more

valuable one (sine the HTM-based transation would be aborted if its data

set would overlap the write set of the event exeuted via software-based re-

versibility). Also, we annot allow two (or more) events run via software-based

reversibility to simultaneously target the same LP state. In fat, these events

would not be regulated by any transational exeution sheme

4

. To this end,

we rely on a synhronization mehanism similar in spirit to an atomi shared

read/write lok [4℄. Whenever a worker thread extrats an event from the shared

4

The undo ode bloks guarantee reversibility of memory updates limited to events

exeuting the updates on the LP state in isolation, whih omplies with lassial

PDES where eah LP is an intrinsially sequential entity.

event pool, it �rst determines whether it should exeute it using hardware-based

or software-based reversibility aording to the poliy introdued in Setion 3.2.

If the seleted exeution mode is HTM-based, the worker thread tries to aquire

the lok on the target LP in a non-exlusive way, whih nevertheless fails (i.e.,

requires spinning) in ase any other worker thread already took it in an exlu-

sive way. On the other hand, if the seleted exeution mode is based on software

reversibility, the worker thread tries to aquire the lok in an exlusive way, yet

this operation requires spinning if at least one worker thread has non-exlusively

taken the lok. Nevertheless, this approah might lead to some priority inversion,

among the threads whih are running more valuable events via HTM support and

threads whih are running less valuable events via software-based reversibility.

To avoid this, we use a locking �ag to instrut the algorithm to avoid spin-

ning if it was not possible, for any reason, to aquire the lok�namely, setting

locking to false transforms the lok into a trylok. Therefore, if the lok is not

taken, two additional values in two arrays are updated atomially: timestamp

and thread_id, whih are exploited on a per-LP basis. In partiular, the worker

thread registers the timestamp it has an event to proess at, and its thread id.

The latter value is only used to reate a total order among threads in ase simul-

taneous events are present, to avoid possible deadlok onditions. These values

are periodially inspeted by other worker threads (upon a safety hek for the

urrent proessed event, whih fails), so as to determine whether some higher

priority event is waiting. In that ase, if the work arried out is not likely to

be ommitted shortly, thanks to the reversibility supports it gets squashed, so

that higher priority is given immediately to events at a smaller timestamp. Algo-

rithm 1 shows the lok management pseudo-ode, whih relies on the Compare

and Swap (CAS) read-modify-write primitive to inrease/derease the value of a

shared per-LP ounter. Value -1 for the ounter means that the lok is exlusively

taken, while value 0 indiates that no thread is running an event bound to the

LP. A positive value is a sort of referene ounter whih tells how many worker

threads are onurrently exeuting events via hardware-based reversibility.

We an now disuss the organization of the main loop of threads within our

speulative PDES engine, whose pseudo-ode is shown in Algorithm 2. Essen-

tially, it is made up by three di�erent exeution paths, eah one assoiated with

one of the di�erent exeution modes. Initially, a all to a Feth() proedure al-

lows to extrat from the shared event pool the event with the smallest timestamp.

Then, a statistial approximation of the number of events whih are expeted

to fall before the urrently fethed event (sine others my still be proessed or

might be produed as a result of the proessing) is omputed as:

T (e)− commit_horizon

average_timestamp_increment
(2)

where average_timestamp_increment is omputed as

commit_horizon

total_committed_events

(

5

). This value, together with the threshold THR (see Setion 3.2), is used to

5

For non stationary models, where the distribution of the timestamp inrement be-

tween suessive events an hange over time in non-negligible way, this same statis-

Algorithm 2 Main loop

1: proedure MainLoop

2: new_events = ∅ ⊲ Set of events generated during the exeution of an event

3: while ¬endSimulation do

4: e ← Feth()

5: if e = NULL then

6: goto 3

7: events_before←
T (e) − commit_horizon

average_timestamp_increment

8: if Safe() then ⊲ Safe exeution: on the ommit horizon

9: Lok_LP((e, LP (e), NON_EXCLUSIVE, true))
10: new_events ← ProessEvent(e)

11: Unlok_LP(LP (e), NON_EXCLUSIVE)
12: else if events_before ≤ THR then ⊲ HTM-based exeution: high likelihood region

13: if ¬ Lok_LP((e, LP (e), NON_EXCLUSIVE, false)) then
14: goto 7

15: BeginTransation()

16: new_events ← ProessEvent(e)

17: Throttle(events_before)

18: if Safe() then

19: CommitTransation()

20: Unlok_LP(LP (e), NON_EXCLUSIVE)
21: else

22: AbortTransation()

23: Unlok_LP(LP (e), NON_EXCLUSIVE)
24: goto 7

25: else ⊲ Software-reversible exeution: low likelihood region

26: if ¬ Lok_LP((e, LP (e), EXCLUSIVE, false)) then
27: goto 7

28: SetupUndoCodeBlok()

29: new_events ← ProessEvent_Reversible(e)

30: while ¬ Safe() do
31: if timestamp[LP℄ < T (e) ∨ (timestamp[LP℄ = T (e)∧ thread_id[LP℄ < tid) then
32: Unlok_LP(LP (e), EXCLUSIVE)
33: UndoEvent(e)

34: new_events = ∅
35: goto 7

36: Flush(e, new_events)

37: atomially {

38: if thread_id[LP℄ = tid

39: timestamp[LP℄ ← T (e)
40: thread_id[LP℄ ← tid

41: }

determine whether a ertain event might be more valuable or not, thus requiring

either HTM-support or software-based reversibility (line 12). Additionally, it an

event is exeuted exploiting HTM, this value drives as well the seletion of a

delay before heking again the safety of the orresponding transation (namely,

whether the timestamp of the event has in the meanwile beome the ommit

horizon), so as to avoid making it doomed with a high likelihood (line 17).

In ase of a safe exeution, i.e. the exeution of the event on the ommit hori-

zon (lines 8�11), we take a non-exlusive lok, whih is used to inform any other

thread that the destination LP is urrently proessing an event. This avoids that

any other worker thread starts proessing an event via software-based reversibil-

ti ould be simply rejuvenated periodially, by disarding non-reent events om-

mitments and subtrating from commit_horizon the upper limit of the disarded

simulation time portion.

ity at the same LP while we are proessing in safe mode. Moreover, we on�gure

the lok to spin beause the worker thread in harge of exeuting this event has

the highest priority and any other ompeting thread will try to give it permission

to ontinue exeution as fast as possible.

For a transational exeution (lines 12-24), we use the trylok version of the

per-LP lok. If we fail to aquire the lok, the exeution resumes from line 7,

meaning that we hek again whether the extrated event has beome safe or

not, in the meanwhile. Otherwise, as already explained before, we start exeuting

the event within an HTM-based transation, introduing an arti�ial delay�via

the Throttle(events_before) all�whih is proportional to the estimated

number of events in between the ommit horizon and the urrently exeuted

event. If the transation beomes doomed (lines 21�24) the exeution restarts

from line 7, so as to hek whether the just-aborted event has beome safe.

The ase of exeution via software reversibility (lines 25�34) is a bit di�erent.

In fat, �rst we have to take an exlusive lok�in a trylok fashion, for the same

onsideration related to the HTM exeution�and we have to setup the undo

ode blok, by alloating a reverse window bu�er. At the end of the exeution

of the event, similarly to the HTM-based ase, we have to wait for the event

to beome safe. Nevertheless, sine this exeution entails taking an exlusive

lok, we ontinuously hek whether some other thread is registered at the same

LP with a higher priority (line 31). This situation might arise due to another

event, exeuted at any other worker thread, generating a new event to the same

LP with a timestamp smaller than the one of the event urrently proessed

via software-based reversibility. Failing to make this spei� hek ould either

hamper liveness (a thread waits its event to be the ommit horizon, whih annot

happen) or orretness (events are ommitted out of order). Line 31, paired with

lines 21�25 of Algorithm 1, is able to ensure both orretness and liveness.

Whenever an event is exeuted, and then ommitted thanks to safety assur-

ane, in whihever exeution mode, we �rst plae into the alendar queue any

possible new event generated (line 36), and we then unregister the thread from

the timestamp and thread_id vetors whih are used to avoid priority inversion

(lines 37�40). For the implementations of Feth(), Flush(), and Safe(), we

refer the reader to [19℄.

4 Experimental Results

We tested our proposal with the Phold benhmark for PDES systems [8℄. This is

made up by syntheti LPs whose behavior an be tailored depending on test se-

nario one would like to generate. We inluded 1024 LPs in the simulation model,

eah one sheduling events for itself or for the other objets. Spei�ally, upon

proessing an event, the probability to shedule a new event destined to another

simulation objet has been set to 0.2, whih is representative of senarios with

non-minimal interations aross the simulated parts. Also, the initial population

of events has been set to 1 event per simulation objet, while the timestamp

inrement determining the atual timestamp of newly sheduled events has been

set to follow the exponential distribution with mean value equal to one simula-

tion time unit. The model lookahead has been set to a minimal value omputed

as the 0.5% of the average timestamp inrement. Further, the overall simula-

tion is partitioned in to 4 phases where the LPs exhibit alternate behaviors in

terms of updates into their states. Spei�ally, phases 1 and 3 are write-mild

sine eah event only updates the lassial ounter of proessed events and a

few other statistial values within the LP state. Contrariwise, phases 2 and 4

are write-intensive, sine event proessing also updates an array of ounters' val-

ues, still embedded with the LP state (partiularly, by performing 500 updates

on the array entries). Overall, the di�erent phases mimi varying loality and

memory aess pro�les one might expet from real appliations' workloads. A

lassial busy-loop haraterizing PHOLD event proessing steps is also added

whih is set to generate an average event granularity of about 25 miroseonds.

In this experiment, we ompare the performane of our mixed hardware- and

software-based approah to both pure hardware-based reversibility (as proposed

in [19℄) and pure software-based one exlusively relying on undo ode bloks (this

is ahieved by preventing any thread to exploit HTM in our engine). We did not

ompare with the performane ahievable by some last generation traditional

speulative PDES platform just beause the data reported in [19℄ have shown

that event granularity values of a few (tens of) miroseonds do not allow this

type of platforms to provide signi�ative speedup values (due to the fat that

they are based on expliit partitioning of the workload aross the threads, and

on expliit message passing for event ross-sheduling, thus resulting muh more

adequate for larger grain simulation models). Overall, we assessed our proposal

with a workload on�guration just requiring alternative forms of speulative

parallelization (like the one we propose), as ompared to the lassial ones.

We have run this benhmark by varying the number of employed threads

from 1 to the maximum number of physial CPU-ores in the underlying HTM-

equipped mahine, whih is equipped with two Intel Haswell 3.5 GHz proessors,

24 GB of RAM and runs Linux�kernel 3.2

6

. For the ase of single-thread runs,

the exeution time values are those ahieved by simply running the appliation

ode on top of a alendar queue sheduler.

In Figure 3 we report the observed exeution time values while varying the

number of threads (eah reported value resulting as the average over 5 di�erent

samples). The data learly show how our mixed HW/SW approah to reversibil-

ity outperforms both the others, with a maximum gain of up to 10% vs the pure

HW approah and of 30% vs the pure SW approah (ahieved when running with

4 threads). Suh a gain by the mixed approah is learly related to the fat that

write-intensive phases lead the pure software reoverability support to beome

more intrusive, beause of ostly generation of bigger undo ode bloks, whih

does not pay-o� ompared to the reliane on pure HTM-based reversibility. On

the other hand, the pure HTM-based approah does not allow the maximization

6

The hyper-threading support o�ered by the proessors has been exluded just to

avoid ross-thread interferenes�due to on�iting hyper-threads' aesses to hard-

ware resoures�whih might alter the reliability of our analysis

 100

 200

 300

 400

 500

 1 2 3 4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of threads

Mixed HW/SW
Pure HW
Pure SW

Fig. 3. Exeution time - log sale on

the y-axis.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 2 3 4

U
nd

o
pr

ob
ab

ili
ty

Number of threads

SW undo (mixed)
HW undo (mixed)

HW undo (pure)
SW undo (pure)

Fig. 4. Undo probability for HW and

SW speulatively proessed events.

of the usefulness of the arried out speulative work for larger thread ounts. In

fat, the slope of the exeution time urve for the pure HW approah beomes

slightly worse than the one of the pure SW approah when moving from 3 to 4

threads. Our mixed approah is able to get the best of the two by just avoiding

exessive aborts of HTM transations when relying on larger thread ounts, also

reduing the ost of undo ode bloks generation thanks to a fration of events

exeuted with HTM support. The data reported in Figure 4 show how the pure

HW approah su�ers from a kind of thrashing when inreasing the thread ount,

while the pure SW approah has minimal inidene of events undo, and that the

mixed approah avoids the thrashing phenomenon just like the pure SW ap-

proah does (but has less overhead sine exeutes a portion of the events via

HTM support).

5 Conlusions

We have presented a speulative PDES engine where reversibility of ausal inon-

sistent events is based on a mix of hardware and software failities. The hardware

part relies on HTM support o�ered by modern proessors, partiularly the Intel

Haswell, while software reversibility is based on transparent instrumentation and

on the dynami generation of bloks of ode able to undo memory side e�ets.

We have shown via an experimental study with a lassial benhmark how the

proposed mixed approah an overome the drawbaks of both the two baseline

ones, in terms of delivered performane of by the simulation engine.

Referenes

1. Brown, R.: Calendar queues: a fast O(1) priority queue implementation for the

simulation event set problem. Communiations of the ACM 31(10), 1220�1227

(1988)

2. Carothers, C.D., Perumalla, K.S., Fujimoto, R.M.: E�ient optimisti parallel sim-

ulations using reverse omputation. ACM Transations on Modeling and Computer

Simulation 9(3), 224�253 (1999)

3. Cingolani, D., Pellegrini, A., Quaglia, F.: Transparently Mixing Undo Logs and

Software Reversibility for State Reovery in Optimisti PDES. In: Proeedings of

the 2015 ACM SIGSIM Conferene on Priniples of Advaned Disrete Simulation.

PADS, ACM Press (2015)

4. Die, D., Shavit, N.: TLRW: Return of the Read-write Lok. Proeedings of the

22nd Annual ACM Symposium on Parallel Algorithms and Arhitetures pp. 284�

293 (2010)

5. Fersha, A.: Probabilisti Adaptive Diret Optimism Control in Time Warp. In:

Proeedings of the 9th Workshop on Parallel and Distributed Simulation. pp. 120�

129. IEEE Computer Soiety (1995)

6. Fersha, A., Luthi, J.: Estimating Rollbak Overhead for Optimism Control in

Time Warp. In: Proeedings of the 28th Annual Simulation Symposium. pp. 2�12.

IEEE Computer Soiety (apr 1995)

7. Fujimoto, R.M.: Parallel Disrete Event Simulation. In: Communiations of the

ACM. WSC, vol. 33, pp. 19�28. ACM Press (1989)

8. Fujimoto, R.M.: Performane of Time Warp Under Syntheti Workloads. In: Pro-

eedings of the Multionf. on Distributed Simulation. pp. 23�28. Soiety for Com-

puter Simulation (1990)

9. Fujimoto, R.M., Tsai, J.J., Gopalakrishnan, G.: Design and Evaluation of the Roll-

bak Chip: Speial Purpose Hardware for {Time Warp}. IEEE Transations on

Computers 41(1), 68�82 (1992)

10. Je�erson, D.R.: Virtual Time. ACM Transations on Programming Languages and

System 7(3), 404�425 (1985)

11. Jha, V., Bagrodia, R.: Simultaneous Events and Lookahead in Simulation Proto-

ols. ACM Transations on Modeling and Computer Simulation 10(3), 241�267

(2000), http://doi.am.org/10.1145/361026.361032

12. LaPre, J.M., Gonsiorowski, E.J., Carothers, C.D.: LORAIN: a step loser to the

PDES 'holy grail'. In: Proeedings of the 2nd ACM SIGSIM/PADS onferene on

Priniples of Advaned Disrete Simulation. pp. 3�14. PADS, ACM Press, New

York, New York, USA (2014)

13. Mehl, H.: A deterministi tie-breaking sheme for sequential and distributed sim-

ulation. In: Proeedings of the Workshop on Parallel and Distributed Simulation.

ACM (1992)

14. Pellegrini, A.: Hijaker: E�ient stati software instrumentation with appliations

in high performane omputing: Poster paper. In: Proeedings of the 2013 Interna-

tional Conferene on High Performane Computing and Simulation, HPCS 2013.

pp. 650�655. Helsinki, Finland (2013)

15. Pellegrini, A., Vitali, R., Quaglia, F., Pellegrini, A., Quaglia, F.: Autonomi State

Management for Optimisti Simulation Platforms. IEEE Transations on Parallel

and Distributed Systems 26(6), 1560�1569 (2015)

16. Preiss, B.R., Louks, W.M., MaIntyre, D.: E�ets of the Chekpoint Interval on

Time and Spae in Time Warp. ACM Transations on Modeling and Computer

Simulation 4(3), 223�253 (1994)

17. Quaglia, F., Baldoni, R.: Exploiting Intra-Objet Dependenies in Parallel Simu-

lation. Inf. Proess. Lett. 70(3), 119�125 (1999)

18. Quaglia, F., Santoro, A.: Non-Bloking Chekpointing for Optimisti Parallel Sim-

ulation: Desription and an Implementation. IEEE Transations on Parallel and

Distributed Systems 14(6), 593�610 (2003)

19. Santini, E., Ianni, M., Pellegrini, A., Quaglia, F.: HTM Based Speulative Parallel

Disrete Event Simulation of Very Fine Grain Models. In: Proeedings of the 22nd

International Conferene on High Performane Computing (HiPC). HiPC (2015)

20. Soliman, H.M., Elmaghraby, A.S.: An Analytial Model for Hybrid Chekpointing

in Time Warp Distributed Simulation. IEEE Transations on Parallel and Dis-

tributed Systems 9(10), 947�951 (1998)

21. West, D., Panesar, K.: Automati Inremental State Saving. In: Proeedings of the

10th Workshop on Parallel and Distributed Simulation. pp. 78�85. PADS, IEEE

Computer Soiety (1996)

