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PLATELETS AND THROMBOPOIESIS

A talin mutant that impairs talin-integrin binding in platelets decelerates
aIIbb3 activation without pathological bleeding
Lucia Stefanini,1 Feng Ye,2 Adam K. Snider,2 Kasra Sarabakhsh,2 Raymond Piatt,3 David S. Paul,3 Wolfgang Bergmeier,1,3

and Brian G. Petrich2

1Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of Medicine, University of California

San Diego, La Jolla, CA; and 3McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC

Key Points

• Mice expressing a talin(L325R)
mutant that binds to, but does
not activate integrin aIIbb3,
have impaired hemostasis.

• Talin(W359A) reduces
integrin binding, decelerates
integrin activation and protects
mice from thrombosis without
pathological bleeding.

Tight regulation of integrin affinity is critical for hemostasis. A final step of integrin

activation is talin binding to 2 sites within the integrin b cytoplasmic domain. Binding of

talin to amembrane-distal NPxYsequence facilitates a second,weaker interactionof talin

with an integrinmembrane-proximal region (MPR) that is critical for integrinactivation. To

test the functional significance of these distinct interactions on platelet function in vivo,

we generated knock-in mice expressing talin1 mutants with impaired capacity to interact

with the b3 integrin MPR (L325R) or NPLY sequence (W359A). Both talin1(L325R) and

talin1(W359A) mice were protected from experimental thrombosis. Talin1(L325R) mice,

but not talin(W359A) mice, exhibited a severe bleeding phenotype. Activation of aIIbb3

was completely blocked in talin1(L325R) platelets, whereas activation was reduced by

approximately 50% in talin1(W359A) platelets. Quantitative biochemical measurements

detected talin1(W359A) binding to b3 integrin, albeit with a 2.9-fold lower affinity than

wild-type talin1. The rate of aIIbb3 activation was slower in talin1(W359A) platelets,

which consequently delayed aggregation under static conditions and reduced thrombus formation under physiological flow

conditions. Together our data indicate that reduction of talin-b3 integrin binding affinity results in decelerated aIIbb3 integrin

activation and protection from arterial thrombosis without pathological bleeding. (Blood. 2014;123(17):2722-2731)

Introduction

Platelets are critical to stop bleeding and promote vessel repair at sites of
vascular injury (hemostasis), but their pathological activation leads to the
formation of intravascular thrombi and vessel occlusion (thrombosis).
To contribute to hemostasis and thrombosis, platelets have to convert
from an anti- to a proadhesive state, a switch that is dependent on cell
surface integrins. Integrins are transmembrane ab heterodimers
that are normally expressed in a low-affinity binding state and,
upon stimulation, undergo a conformational change that results in
increased affinity for their ligand (inside-out activation). The most
abundant integrin expressed in platelets (;80 000 copies/platelet) is
integrin aIIbb3, a receptor for the multivalent ligands fibrinogen,
vonWillebrand factor, and fibronectin. Genetic defects in eitheraIIb
or b3 integrins (Glanzmann thrombasthenia) or pharmacologic
inhibition of integrinaIIbb3 cause impaired platelet aggregation and
severe bleeding. Because of the excessive bleeding complications,
antithrombotic intervention with aIIbb3 inhibitors (abciximab,
eptifibatide, or tirofiban) is recommended only in acute clinical settings
and not for chronic administration.1

Integrin inside-out activation is tightly regulated by intracellular
signaling pathways. When the endothelium is damaged, platelets are
exposed to highly thrombogenic molecules (eg, collagen and

thrombin). Platelet stimulation via either immunoglobulinlike or
G protein–coupled receptors leads to the activation of the small-
GTPase Ras-related protein 1 (Rap1), a critical molecular switch
that directly regulates integrin activation.2-6 Mice deficient in
Rap1b,7 the most abundant Rap isoform in platelets, or the main
Rap-activator calcium and diacylglycerol-regulated guanine nucleo-
tide exchange factor (CalDAG-GEFI)8 are characterized by impaired
integrin activation in platelets, both in vitro and in vivo.

Theb-integrin binding proteins talin and kindlin play critical roles
in regulating integrin activation.9 Currently, the molecular mecha-
nisms underlying kindlin-mediated integrin activation are unclear. In
contrast, the signaling pathways that lead to talin-dependent integrin
activation have been defined by structural, biochemical, and cell
culturemodel systems.DownstreamofRap1, thebindingof talin to the
b-integrin cytoplasmic domain (tail) is both a sufficient and necessary
final step for integrin activation.10,11 Talin is a;270 kDa cytoskeleton
adaptor protein formed by a globular head region, consisting of a
FERM (band 4.1, ezrin, radixin, moesin) domain and a flexible rod
domain, that directly links integrins to the actin cytoskeleton.12,13

Recent structural and biochemical studies have established that
integrin activation requires the talin head domain (THD) to engage
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2 distinct binding sites within the integrin b tail.14,15 The talin
FERM domain consists of F0, F1, F2, and F3 subdomains. The F3
subdomain has a phosphotyrosine-binding fold that binds with high
affinity to an NPxY motif of the integrin b tail.16 This interaction
facilitates talin binding to a second, weaker site in the membrane-
proximal region (MPR) of the integrin. Talin binding to the integrin
MPR is essential for talin-dependent integrin conformational change
and activation.14,17

Global genetic deletion of talin1 in mice results in lethality at
embryonic days 8.5 to 9.5 because of gastrulation defects.18 Selective
deletion of talin1 in platelets and megakaryocytes (Tln1fl/flPf4-Cre1)
blocks agonist-induced integrin activation, impairs thrombus forma-
tion, and results in profound defects in hemostasis.19,20 In this study,
we sought to test the effects of talin mutants that selectively disrupt
talin binding to the integrin MPR (L325R) or to the NPxY sequence
(W359A) on thrombosis and hemostasis. Both (L325R) and (W359A)
mutants have been reported to abolish talin-dependent integrin ac-
tivation in Chinese hamster ovary cells.10,14,21 However, Nakazawa
et al have recently shown in a human megarkaryoblastic cell line
that talin(W359A) inhibits aIIbb3 activation to a lesser degree
than talin(L325R).22 Indeed, our results indicate that in platelets these
talin mutants impart interesting functional differences. Platelet
talin1(L325R) largely phenocopied the aIIbb3 integrin activation
and hemostatic defects observed in mice with talin-deficient
platelets. In contrast, platelet talin1(W359A)mice showed decelerated
aIIbb3 activation and only modestly impaired hemostasis.
Nonetheless, platelet talin1(W359A) mice were protected from
arterial thrombosis. Together, our results demonstrate that partial
inhibition of talin binding to the b3 integrin NPxY sequence imparts
antithrombotic effects while preserving primary hemostasis.

Materials and methods

Reagents and antibodies

Low-molecular-weight Lovenox (enoxaparin sodium; Sanofi-Aventis,
Bridgewater, NJ), heparin-coated capillaries (VWR, West Chester, PA),
bovine serum albumin (BSA, fraction V), prostacyclin (PGI2), and human
fibrinogen (type I) (all fromSigmaAldrich, St. Louis, MO); calcium sensing
dye Fluo-4 (Invitrogen, Carlsbad, CA), protease-activated receptor
4–activating peptide (PAR4-AP) (Advanced Chemtech, Louisville, KY),
2-methylthio-AMP triethylammonium salt hydrate (2-MesAMP, P2Y12 in-
hibitor, BioLog, Bremen, Germany), U46619 (Cayman Chemical), fibrillar
collagen type I (Chronolog, Havertown, PA), and RalGDS-RBD coupled to
agarose beads and polyvinylidene difluoride (PVDF) membranes (Millipore,
Billerica,MA).Convulxinwas purchased fromKennethClemetson (Theodor
Kocher Institute, University of Berne, Switzerland). Monoclonal antibodies
directed against GPIX or the activated form of murine aIIbb3, JON/A-
phycoerythrin (PE), were purchased from Emfret Analytics (Wuerzburg,
Germany).Antibody against P-selectin conjugated tofluorescein iso-thiocyanate
(FITC)waspurchased fromBDBiosciences (Rockville,MD).Antibodya-Rap1
was obtained from Santa Cruz Biotechnology (Santa Cruz, CA).

Mice

Conditional talin1-deficient mice (Tln1fl/flPf4-Cre1) and conditional talin1
(L325R) mutant mice (Tln1L325R/flPf4-Cre1) and CalDAG-GEFI2/2 mice
have been described previously.8,17,19 A TGG to GCG mutation that results
in an alanine substitution at amino acid W359 was introduced in Tln1, and
conditional talin1(W359A) mutant mice (Tln1W359A/flPf4-Cre1) were gener-
ated as described previously.17 Mice were housed in the animal facilities of the
University of California, San Diego, and of the University of North Carolina,

Chapel Hill. Experimental procedures were approved by the Universities’
Institutional Animal Care and Use Committees.

Surface plasmon resonance (SPR)

Recombinant talin1 head domain (amino acids 1-433, THD) was prepared as
described and has been previously shown to be homogeneously folded.11

THD was further purified on a Superdex200 size exclusion column, from
which it eluted at a volume consistent with its monomeric molecular weight.
SPR measurements were conducted using a revised protocol.23 Briefly,
neutravidin was immobilized to a CM5 sensory chip via amine coupling.
After blocking with 1M ethanolamine, biotinylated b3 tail24 was captured
onto the sensor chip. A reference chamber was processed likewise but with-
out b3 tail. Various concentrations of purified recombinant THD WT, THD
(L325R), or THD(W359A) were injected into the chip, and the response
curves, calculated as the difference between responses in the sample chamber
and the reference chamber, were recorded to assess binding. The sensor chip
was regenerated with 2M NaCl between measurements. The sensorgrams
were fitted using a one-site binding model.

Hemostasis assays

The presence of fecal blood was detected with a guaiac-based hemoccult
detection assay (Helena Laboratories) on freshly obtained stool samples.19

Tail bleeding assays were performed by resecting 1 mm of the tail, followed
by immersion in 37°C isotonic saline as described previously.25 All ex-
periments were terminated at 10 minutes by cauterizing the tail.

Ferric chloride–induced thrombosis

Ferric chloride(FeCl3)-induced thrombosis was performed as described
previously26 by applying a 1.23 1.2-mm piece of filter paper soaked in 10%
FeCl3 to each side of the common carotid artery of an anesthetized mouse.
Time to vessel occlusion was determined using a Doppler flow probe after
3 minutes of application of FeCl3.

Flow cytometry

aIIbb3 activation and a-granule secretion—dose-response assay.
Washed platelets were diluted (108 platelets/mL) in Tyrode’s solution
containing 1 mM CaCl2 and activated with increasing concentrations of
convulxin or PAR4-AP in the presence of JON/A-PE (2 mg/mL)27 and a-P-
selectin-FITC (2 mg/mL). After 10 minutes of incubation, each sample was
further diluted to 1 mL and analyzed immediately with a BDAccuri C6 Flow
Cytometer.

aIIbb3 activation—Real-time assay. Washed platelets were diluted
(1.253 107 platelets/mL) in Tyrode’s solution containing 1mMCaCl2. After
establishing a baseline with unlabeled platelets, JON/A-PE (5 mg/mL) and
Par4-AP (600 mM) were added simultaneously in an equal volume of
Tyrode’s solution to allow for efficient mixing. Jon/A-PE binding was re-
corded continuously for 10 minutes with a BD Accuri C6 Flow Cytometer.
The datawere adjusted by subtracting at each time point the Jon/A-PEbinding
of an unstimulated sample. The maximum velocity of integrin aIIbb3
activation was quantified with R studio by fitting the data to a loess function
and calculating the maximal rate of change of the mean fluorescence inten-
sity (MFI) over time (DMFI/minute).

Calcium flux measurement. Washed platelets were incubated with
5 mmol/L Fluo-4 (Invitrogen) for 30 minutes, diluted in Tyrode’s solution
(5 3 107 platelets/mL) containing 1 mM CaCl2, activated with Par4-AP
(600 mM), and analyzed for fluorescence (FL)1 intensity over a period of
5 minutes.

Flow chamber studies

In vitro flow studies were performed in a poly dimethylsiloxane microfluidic
device. Fabrication of microfluidic devices and microfluidic collagen
patterning were performed as previously described.28 Briefly, a 500-mm strip
of fibrillar collagen type I (200 mg/mL) was deposited along the length
of a glass slide. A poly dimethylsiloxane device with 7 flow channels (width
250 mm, height 60 mm, length 6 mm) was oriented perpendicular to the
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patterned collagen. Murine whole blood was drawn from the retro-orbital
plexus into heparinized tubes (30 U/mL Lovenox), incubated with 4 mg/mL
of anti–GPIX-Alexa488, and infused using a continuous flow syringe pump
at arterial (1200–S) or venous (100–S) wall shear rates for 10 minutes.
Adhesion of platelets was monitored continuously with a Nikon TE300
microscope (Nikon Instruments Inc., Melville, NY) equipped with a QImag-
ing Retiga Exi CCD camera (QImaging, Surrey, Canada). Images were
acquired and analyzed using Slidebook software version 5.0.0.34x64.

Statistics

Results are reported as mean 6 standard error of the mean (SEM), and
statistical significance was assessed by two-way analysis of variance unless
otherwise indicated. Statistical significance of tail bleeding times and
volumes were analyzed with a Kruskal-Wallis test followed by the Dunn
multiple comparisons post-hoc test. Hemoccult assay results were analyzed
with the Fisher exact test. A P value, .05 was considered significant.

Results

Disruption of specific talin-integrin interactions in vivo

To study the effects of selectively blocking either talin-integrin binding
or talin-dependent integrin activation on platelet adhesion,we generated
mice with single amino acid substitutions W359A or L325R, respec-
tively, inTALIN1bygene targeting17 (Figure 1). Similar to the systemic
knockout of talin,18 we found that homozygous expression of either

one of the talin mutants was embryonic lethal in mice, whereas
heterozygotes obtained at expected ratios were fertile and showed no
obvious defects. To circumvent the embryonic lethality, Tln1(W359A/wt)

or Tln1(L325R/wt) mice were crossed with Tln1fl/flPf4-Cre1 mice to
generate compound heterozygous (Tln1W359A/fl PF4-Cre1 and
Tln1L325R/fl PF4-Cre1) and control mice (Tln1wt/fl PF4-Cre1).
Platelets from mutant and control mice expressed similar amounts
of talin1 protein albeit at approximately 50% the levels of wild-type
mouse platelets (Figure 1C). Reduced levels of talin protein in
Tln1wt/fl Cre1 platelets had minimal effects on aIIbb3 integrin
function relative to Tln1fl/fl Cre– platelets (Figure 1D-E).

Thrombosis and hemostasis in talin mutant mice

Mice with talin-deficient platelets or mutations in aIIbb3 integrin
that preclude talin binding are protected from thrombosis.19,26 To
test the effect of talin mutants on thrombosis, Tln1W359A/flCre1 and
Tln1L325R/flCre1micewere subjected to a FeCl3-induced thrombosis
model in the carotid artery (Figure 2A). In controlmice (Tln1wt/flCre1),
complete occlusion of the vessel occurred 10.7 6 3.6 minutes after
application of 10% FeCl3. In contrast, both Tln1L325R/flCre1 and
Tln1W359A/flCre1mice failed to form occlusive thrombi at any point
in the experiment. A 50% reduction of talin expression in platelets
had no effect on occlusion times in this model (supplemental Figure 2
available on the BloodWeb site). Mice with talin-deficient platelets
exhibit chronic spontaneous gastrointestinal (GI) bleeding, with

Figure 1. Generation of mice expressing talin1 mutants in platelets. (A) Sequencing chromatograms of mutated regions of Tln1(L325R) and Tln1(W359A) ES cells.

Genomic DNA isolated from targeted ES cells was used as a template for polymerase chain reaction (PCR) using primers that amplified the mutated sequences, and PCR

amplicons were sequenced. (B) Mouse breeding strategy to obtain mice with Tln1(L325R) and Tln1(W359A) expressing platelets. (C) Western blot analysis showing similar

levels of talin expression in control (Tln1wt/flCre1) and mutant (Tln1L325R/flCre1 and Tln1W359A/flCre1) platelets. Par4-AP (D) or convulxin-induced (E) aIIbb3-integrin activation

(JON/A-PE binding). Reduced levels of talin1 protein in Tln1WT/fl Cre1 platelets had minimal effect relative to Tln1fl/fl Cre– platelets. Bar graphs represent MFI6 SEM (n5 6, 3

independent experiments). *P , .05.
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95% of Tln1fl/flCre1 mice testing positive for fecal blood.19 Im-
portantly, GI bleeding was also observed in Tln1L325R/flCre1 but not
Tln1W359A/flCre1mice (Figure 2B). We further examined the ability of
these mice to achieve hemostasis after injury. In a tail-bleeding assay,
talin-deficient and Tln1L325R/flCre1 mice bled continuously during the
10minutes after tail resection. In contrast, bleeding timesweremodestly
prolonged in Tln1W359A/flCre1 compared with control mice (4.46 4.0
and 2.5 6 3.4 minutes, respectively; P 5 .042) (Figure 2C). To more
quantitatively evaluate the bleeding risk in the various groups, we
measured the volume of blood lost after injury (Figure 2D). Animals
in all study groups lost more blood than control mice. However,
Tln1W359A/flCre1 mice lost significantly less blood than talin-deficient
or Tln1L325R/flCre1 mice, suggesting that platelets expressing
Tln1(W359A) support the formation of hemostatically functional
thrombi. Differences in hemostatic and thrombotic function
observed in talin mutant mice were not ascribable to differences
in platelet counts because these were similar among all experimental
groups (data not shown). Collectively, our results show that although
platelet talin mutant mice were equally protected from thrombosis,
Tln1W359A/flCre1 mice exhibit markedly better hemostatic
function relative to Tln1L325R/flCre1 mice.

aIIbb3 integrin activation is partially impaired in platelets

expressing Tln1(W359A)

To understand why hemostasis is different in the 2 talin mutant
strains, we next tested whether Tln1(W359A) and Tln1(L325R)
could support the activation of aIIbb3 integrin. Platelets from mutant
or control mice were stimulated with increasing concentrations of
agonist to the thrombin receptor, Par4 (Figure 3A), or to the collagen
receptor, GPVI (convulxin; Figure 3B), and aIIbb3 activation was
quantified by measuring binding of the activation-specific aIIbb3

antibody, Jon/A-PE.27 Integrin activation of Tln1W359A/flCre1

platelets was significantly reduced, but not abolished, compared
with controls. Conversely, integrin activation of Tln1L325R/flCre1 or
Tln1fl/flCre1 platelets was completely inhibited, even in response to
high doses of agonist (Figure 3).Mouse plateletsmust be exogenously
stimulated to efficiently spread on immobilized fibrinogen.26,29 Thus
as an independent measure of aIIbb3 activation in talin mutant
platelets, we quantified platelet spreading on fibrinogen-coated
coverslips in response to stimulation with 100 mM adenosine
diphosphate (ADP). Tln1L325R/flCre1 and Tln1fl/flCre1 platelets
failed to spread, whereas ADP-treated Tln1W359A/flCre1 platelets
extended lamellipodia and significantly increased their surface
area compared with unstimulated platelets, albeit to a lesser extent
than Tln1wt/flCre1 controls (Figure 3C-D). Compared with integrin
activation, granule release as measured by surface P-selectin was only
minimally affected in platelets from talin mutant mice (supplemental
Figure 1). Together these data indicate thataIIbb3 integrin activation
is critically dependent on the capacity of talin to interact with the b3
integrin MPR regions. Furthermore, aIIbb3 integrin activation is
reduced, but not abolished, in Tln1W359A/flCre1 platelets, provid-
ing a cellular basis for the modest impairment in hemostatic function
of Tln1W359A/flCre1 mice.

Reduced binding affinity of Tln1(W359A), but not Tln1(L325R),

for b3 tail

To quantitatively measure the effects of talin1(L325R) and
talin1(W359A) mutations on talin-integrin interaction, we mea-
sured the affinities between wild-type or mutant THD and the
integrin b tail by surface plasmon resonance. Wild-type THD
bound to immobilizedb3 tail with aKD5 1706 25 nmol/L, a value
that is consistent with that obtained by nuclear magnetic resonance.15

Figure 2. Analysis of thrombosis and hemostasis in talin1 mutant mice. (A) Tln1W359A/fl Pf4-Cre1 (Tln1WA/flCre1) and Tln1L325R/fl Pf4-Cre1 (Tln1LR/flCre1) mice are protected

from FeCl3-induced thrombosis of the carotid artery. Time to vessel occlusion was determined using a Doppler flow probe after 3 minutes of application of 10% FeCl3. (B) The

incidence of gastrointestinal bleeding in talin mutant and control mice was determined using a guaiac-based hemoccult test. Numbers of hemoccult-positive/total mice are shown for

each group. (C) Bleeding times and (D) blood loss volume in the indicated mice after tail resection (n 5 17-56 mice/group). *P , .05, **P , .01, ***P , .001.
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THD(L325R), which does not affect the strong NPxY interaction
that contributes most of the binding free energy,14 had a similar
affinity for b3 integrin as wild-type THD (Figure 4). THD(W359A)
bound to b3, albeit with 2.9-fold lower affinity than THD(WT)
(Figure 4). These results support the concept that the talin1(L325R)
mutant binds normally to b integrins and is selectively defective in
activating integrins. In addition, our results indicate that the in-
hibition of b3 integrin binding by talin1(W359A) is only partial and
explains themodest reduction inaIIbb3 integrin activation observed
in talin1(W359A) platelets.

Decelerated aIIbb3 activation in platelets expressing

Tln1(W359A)

To test whether the 2.9-fold lower affinity of Tln1(W359A) for b3
integrin affected the efficiency of talin recruitment and thereby the
speed ofaIIbb3 activation, we used a real-time flow cytometry assay
for the quantitative assessment of the kinetics ofaIIbb3 activation in
mouse platelets.27 JON/A-PE and the agonist Par4-AP were added
simultaneously to washed platelets, and binding of JON/A-PE was
monitoredcontinuously for 10minutes byflowcytometry (Figure 5A).
Consistent with the results shown in Figure 3, Tln1L325R/flCre1 and
Tln1fl/flCre1 platelets failed to activate aIIbb3, whereas integrin
activation in Tln1W359A/flCre1 platelets was reduced by ;50% com-
pared with control (Tln1wt/flCre1) 10 minutes after addition of the
agonist (Figure 5A). To differentiate the rate of Jon/A-PE binding
from an overall reduction in the amount of Jon/A-PE bound by
Tln1W359A/flCre1 platelets, real-time Jon/A-binding was normalized
to the maximum amount of Jon/A-PE bound within each group.

Tln1W359A/flCre1 platelets showed a slower rate of aIIbb3 integrin
activation and a 65% reduction in the maximum velocity of activation
(Figure 5B-C). We recently reported a significant delay in aIIbb3
activation for platelets lacking the Rap-GEF, CalDAG-GEFI.30-32

To better understand how Tln1(W359A) affected integrin activation
kinetics, we compared Tln1W359A/flCre1 platelets to platelets lack-
ing CalDAG-GEFI. CalDAG-GEFI2/28 platelets did not bind JON/
A-PE within the first 3 minutes of cellular activation (Figure 5A),
confirming that CalDAG-GEFI is critical for the very rapid activation
of Rap1 and aIIbb3 integrin.28 JON/A-PE binding to stimulated
Tln1W359A/flCre1 platelets occurred without a lag phase, indicating
that (1) signaling upstream of talin is normal in these cells and
(2) the slower kinetics of aIIbb3 activation are likely explained by
the significantly lower Ka measured for the interaction between
Tln(W359A) head domain and the b3 tail (Figure 4C).

Impaired aggregate formation of Tln1(W359A) platelets

To examine the ability of talin mutant platelets to form aggregates,
we stimulated washed platelets in a standard optical aggregometer
with various agonists in the presence of 50 mg/mL fibrinogen and
1 mM CaCl2 (Figure 6A). Both Tln1L325R/flCre1 and Tln1fl/flCre1

platelets failed to aggregate in response to collagen, convulxin,
the thromboxane A2 analog U46619, or Par4-AP. In contrast,
Tln1W359A/flCre1 platelets aggregated in response to all agonists
tested. However, a delay in the aggregation of Tln1W359A/flCre1

platelets was consistently observed, particularly at low doses of
agonist. To confirm that this delay in aggregation was not caused
by a defect in signaling events upstream of talin, we examined

Figure 3. Platelets expressing talin1(W359A) exhibit partially impaired aIIbb3 activation. (A-B) aIIbb3-integrin activation (JON/A-PE binding) was measured in washed

platelets isolated from mice with the indicated genotypes. Platelets were stimulated for 10 minutes with increasing concentrations of Par4-AP (A) or convulxin (B), stained with

JON/A-PE, and immediately analyzed by flow cytometry. Bar graphs represent MFI 6 SEM (n 5 6, 3 independent experiments). (C) Representative images of rhodamine-

phalloidin–stained talin1 mutant platelets spread on fibrinogen-coated glass in the presence of 100 mM ADP for 45 minutes. (D) Quantitation of platelet area (mm2); n 5 5

independent experiments; mean 6 SEM. *P , .05, **P , .01, ***P , .001.
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intracellular calcium mobilization and Rap1 activation in resting
and activated platelets. Par4-AP–induced release of calcium from
intracellular stores was comparable for all genotypes (Figure 6B).
Similarly, the levels of Rap1-GTP were comparable in lysates of
activated control and talin mutant platelets, both 20 seconds and
5 minutes after addition of the agonist (Figure 6C). Thus, the delay
in integrin-dependent aggregation observed in Tln1W359A/flCre1

platelets is likely attributable to slower aIIbb3 integrin activation
kinetics. ReducedaIIbb3 activation, however, did not affect the size
of Tln1W359A/flCre1 platelet aggregates formed in static conditions
as measured by light transmission.

Rapid integrin activation is critical for platelet adhesion under
fluid shear stress conditions, especially those observed in arterioles
and arteries.28 Therefore, we examined the ability of talin mutant
platelets to adhere to collagen and form aggregates ex vivo under con-
trolled conditions of flow (Figure 7). Interestingly, Tln1W359A/flCre1

platelets exhibited a profound adhesion defect at both low and
high shear rates. At arterial (1200–s) shear rates, accumulation of
Tln1W359A/flCre1 platelets on collagen was not significantly different

from that of talin-deficient cells (Figure 7A,C). At low venous
shear rates (100–s) however, Tln1W359A/flCre1, but not Tln1L325R/flCre1

or Tln1fl/flCre1 platelets, could support the generation of small
3-dimensional thrombi (Figure 7B,D).

Discussion

Talin binding to the b integrin tail is a key final step in integrin
activation.10 Results from in vitro structure-function studies have
provided the basis for a model of talin-induced integrin activation in
which 2 siteswithin the THD interact with amembrane distal NPxY site
and an MPR of b integrins.14 Here we have tested the requirement of
these distinct talin-integrin interactions for platelet function. Disruption
of the interaction between talin and the MPR region (Tln1L325R/flCre1

mice) virtually abolished talin-dependent aIIbb3 activation in platelets,
both in vitro and in vivo. In contrast, mice expressing talin1(W359A)
exhibited only a modest reduction in hemostatic function, yet were
completely protected from FeCl3-induced thrombosis. In-depth

Figure 4. Talin1(W359A), but not talin1(L325R), impairs binding of talin to the b3 integrin tail. (A) Representation of the b3 integrin-talin complex structure (PDB 2H7E).

Shown in red is the ribbon view of the b3 tail; light gray is the surface view of the talin F3 subdomain. Talin residues leucine 325 (L325) and tryptophan 359 (W359) are shown

in green and blue, respectively. (B) Representative BiaCORE sensorgrams of THD binding to immobilized b3-integrin cytoplasmic domain (tail). Biotinylated b3 tail was

immobilized to a neutravidin sensor chip. Indicated concentrations of wild-type or mutant talin head were injected, and response curves were measured as the difference

between the experimental chamber and a reference chamber lacking immobilized b3 integrin. (C) Association rate constants (ka), dissociation rate constants (kd), and

equilibrium dissociation constants (KD) between b3-integrin tail and THD mean 6 SEM (n 5 3).
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mechanistic studies further demonstrated that (1) integrin activation
is significantly delayed in Tln1W359A/flCre1 platelets, (2) this defect
is not the result of impaired upstream signaling but likely reflects the
lower binding affinity of talin1(W359A) for b3, and (3) the delay in
aIIbb3 integrin activation results in strongly impaired thrombus
formation ex vivo, especially under conditions of high shear stress.
Together, our results show thatmanipulating the talin-aIIbb3 integrin
interaction can produce desirable antithrombotic effects while largely
preserving hemostasis in mice.

Megakaryocyte/platelet-specific deletion of talin in mice nearly
abolishes integrin activation in platelets and causes chronic path-
ological bleeding associatedwith anemia and reduced survival.19Here
we report a similar phenotype for mice expressing talin1(L325R).
However, spontaneous bleeding was less severe in Tln1L325R/flCre1

mice when compared with Tln1fl/flCre1 mice, suggesting that talin
may serve other functions in hemostasis. For example, platelets require
talin to mechanically link integrins to the actin cytoskeleton during
fibrin clot retractions.17 Second, talin is a known binding partner
of phosphatidylinositol-4-phosphate 5-kinase g (PIP5KIg)33 and this
complex is speculated to participate in maintaining plasma membrane
integrity.19,34 Importantly, whereas the talin1(L325R) lacks the capacity
to activate integrins, it retains the capacity to bind the b3-integrin tail
(Figure 4), to bind PIP5KIg,17 and to mechanically link aIIbb3 to the

actin cytoskeleton during clot retraction.17 Finally, it is possible that talin
may participate in integrin outside-in signaling by either promoting
integrin clustering and/or acting as an adapter for signaling pathways
downstream of integrins such as focal adhesion kinase.35

Partial inhibition of talin-integrin binding led to slower aIIbb3-
integrin activation in Tln1W359A/flCre1 platelets. Previous in vitro
studies, however, reported that the W359A talin mutation abolishes
talin-induced integrin activation by strongly inhibiting talin binding
to the b-integrin tail.10,21 There are several possible reasons for the
differences in results. First, previous analyses of talin(W359A) binding
to b integrin were done using affinity chromatography.21 Here, using
the more sensitive and quantitative technique of surface plasmon
resonance, we show that talin head(W359A) binds to b3 with a
2.9-fold lower affinity than wild-type talin head. The weakened talin-
integrin binding is likely sufficient to facilitate delayed aIIbb3-
integrin activation and hemostasis in Tln1W359A/flCre1mice. Second,
many in vitro studies use only THD or fragments thereof that lack the
rod domain that contains multiple actin binding sites as well as
a second integrin binding site.36,37 Thus it is possible that the (W359A)
mutationmay have relatively less effect on talin function in the context
of the full-length protein. Indeed, full length talin1(W359A) partially
rescued cell spreading of talin-deficient endothelial cells.38 Third, talin
is highlyexpressed inplatelets (comprising3%-5%of the total cellular

Figure 5. Expression of talin1(W359A) causes decelerated aIIbb3 activation in platelets. The kinetics of aIIbb3 activation were assessed in real time by flow cytometry.

Jon/A-PE and Par4-AP were added simultaneously (arrow) to platelets of the indicated genotype. Jon/A-PE binding (integrin activation) was monitored continuously for 10

minutes. Tln1W359A/flCre1 (Tln1WA/flCre1) platelets were compared with (A) Tln1wt/wtCre1(WT), Tln1wt/flCre1, Tln1fl/flCre1, and Tln1L325R/flCre1 (Tln1LR/flCre1) platelets, and

CalDAG-GEFI2/2 (CDGI2/2) platelets. Traces are representative of 3 independent experiments. (B) Real-time Jon/A-PE binding data are shown normalized for maximum

binding within each group. Maximum values for the indicated groups were calculated as the average MFI over the final 10 seconds of the 10-minute assay. (C) Maximum

velocity of aIIbb3 activation, determined as the maximal rate of change of MFI over time (DMFI/minute). *P , .05, **P , .01, ***P , .001.
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protein39) and it is recruited to the plasma membrane of activated
platelets.40 Thus, a strong defect in talin function may be partially
compensated for in platelets by the high local concentration of talin at

themembrane. The latter hypothesis may also help explain whymice
homozygous for the talin1(W359A) mutation die during embryonic
development, even though this mutant shows significant activity in

Figure 6. Delayed aggregation in platelets expressing talin1(W359A). (A) Aggregation response of washed Tln1wt/flCre1 (black line), Tln1W359A/flCre1 (gray line), Tln1L325R/flCre1

(gray dashed line), and Tln1fl/flCre1 platelets (black dashed line) stimulated with 5 mg/mL (LD) collagen, 25 mg/mL (HD) collagen, 1 mMU46619, 200 ng/mL convulxin, 200 mM (LD), or

600 mM (HD) Par4-AP. (B) Calciummobilization in platelets labeled with the calcium-sensitive dye Fluo-4 and stimulated with Par4-AP in the presence of 1 mMCa21. (C) Time course

of Rap1 activation in platelets stimulated with Par4-AP. The bottom panel shows total Rap1 as a loading control. Results are representative of 3 independent experiments.

Figure 7. The effects of fluid shear stress on talin1

mutant platelet thrombus formation ex vivo. Plate-

lets in heparinized whole blood were labeled with

anti–GPIX-Alexa488 and perfused over fibrillar collagen

type I at low (100–s) or high (1200–s) shear rates.

Adhesion of platelets was monitored continuously with

a Nikon Eclipse TE300 inverted microscope (Nikon

Instruments Inc., Melville, NY). (A-B) Representative

images of platelet adhesion after 10 minutes of

perfusion. (C-D) Image analysis. Platelet adhesion over

collagen was quantified by measuring surface area

coverage (percentage of total area) with Slidebook 5.0

software. Graphs show mean 6 SEM (6 independent

experiments). *P , .05, **P , .01, ***P , .001.
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platelets. Further studies will be required to substantiate whether this
mutant hasmore profound functional defects in certain cellular contexts.

Tln1W359A/flCre1micewere protected from FeCl3-induced throm-
bosis, yet they showed only mild defects in hemostasis (Figure 2).
In vitro, Tln1W359A/flCre1 platelets formed aggregates under static
conditions, albeit at a delayed rate (Figure 6). Furthermore, platelet
adhesion to collagenwasmore profoundly impaired at high shear rates
(1200–s) comparedwith low shear rates (100–s) (Figure 7). Thefinding
that Tln1W359A/flCre1 platelets form aggregates in low-flow, but not in
high-flow, conditions supports the concept that blocking talin-integrin
binding at the level of the NPXY motif impairs the ability of the
integrin to activate rapidly, which is critical to ensure platelet ad-
hesion in the conditions offluid shear stress, especially those observed
in arterioles and arteries. Confirmation for this conclusion comes
from our studies on the platelet Rap activator, CalDAG-GEFI. Mice
lacking CalDAG-GEFI, a Rap activator, also exhibit delayed platelet
aIIbb3 activation, markedly impaired thrombus formation at arterial
shear rates, and partially retained hemostatic function.28,30,31

Together these studies suggest that deceleration ofaIIbb3 activation
could be a safe strategy to prevent arterial thrombosis.

In summary, our results show that disruption of talin interactions
with either theMPRorNPxY sequence ofb3 integrin impairsaIIb3-
integrin activation in vivo and has potent antithrombotic effects.
First, mice with talin1(L325R) platelets phenocopy the near com-
plete inhibition of agonist-induced aIIbb3 integrin activation and
strongly impaired hemostasis observed in mice with talin-deficient
platelets, despite normal binding affinity of talin1(L325R) for b3
integrin. Second,we report the unexpected result that a talin1(W359A)
mutant partially impairs binding of talin tob3 integrin and reduces the
rate andmagnitude ofaIIbb3 activation in platelets. Importantly,mice
expressing talin1(W359A) in platelets are protected from arterial
thrombosis, yet they have only minimally impaired hemostasis. Our
findings suggest that slowing the kinetics of aIIbb3 integrin through
manipulating talin-b3 integrin interactions could provide a useful
therapeutic approach in treating thrombotic disease.
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