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ON THE UNIQUENESS OF BLOW-UP SOLUTIONS
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Abstract. This paper contains new uniqueness results of the boundary blow-
up viscosity solutions of second order elliptic equations, generalizing a well

known result of Marcus-Veron for the Laplace operator.

1. Introduction and main results. This paper is concerned with the uniqueness
of positive solutions of fully nonlinear second order elliptic equations

F (x, u,Du,D2u) = f(x) (1)

in a domain Ω satisfying the boundary blow-up condition

u(x)→∞ as dist(x, ∂Ω)→ 0. (2)

The solutions of this boundary blow-up value problem, or large solutions, are in-
tended in viscosity sense; see Section 2 for definitions.

The fully nonlinear second order operator F will satisfy the uniform ellipticity
structure condition

P−λ,Λ(X−Y )−γ|η−ξ| ≤ F (x, t, η,X)−F (x, t, ξ, Y ) ≤ P+
λ,Λ(X−Y )+γ|η−ξ| (3)

for all x, t, ξ, η,X, Y and the superlinear monotonicity assumption

F (x, u, ξ,X)− F (x, v, ξ,X) ≤ −δ(u− v)s if v < u, where s > 1 and δ > 0 (4)

for all x, ξ,X. Moreover

F (x, 0, 0, 0) = 0 for all x ∈ Ω (5)

including a non-zero additive term of this kind in f(x). In this case, setting
G(x, u, ξ,X) = F (x, u, ξ,X)−F (x, 0, 0, 0), (3) and (4) would be satisfied with G in
the place of F . In the sequel we will say that F satisfies the structure conditions
(SC) if (3) ÷ (5) hold true.

In a previous paper [12] the first and the third author proved, together with
existence and uniqueness of entire solutions, the existence of boundary blow-up
solutions under various assumptions about the dependence of F on x. Our paper was
a generalization of Esteban-Quaas-Felmer [11], based on interior estimates which
provide the local uniform convergence of approximating solutions.

The issue of uniqueness was considered by Dong-Kim-Safonov in [9], to which
we refer for a nice history of the problem. In that paper uniqueness of classical and
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Lp-strong boundary blow-up solutions is proved for semilinear equations Lu = us,
where L is a second order uniformly elliptic operator, in a domain Ω satisfying “the
uniform exterior ball condition”. The authors notice that a similar result can be
obtained when L is replaced by a fully nonlinear operator F of Bellman type.

Here, we consider a different regularity condition on the boundary of domains Ω,
called “local graph property”, see Definition 2.5 below, and introduced by Marcus-
Veron [15] to show the uniqueness of blow-up solutions of equation ∆u = us. More-
over we investigate the problem in the larger class of viscosity solutions, although
our method, which does not use informations about the boundary behavior of so-
lutions, works for F independent of x. In this respect, solutions of Bellman type
equations with constant coefficients are in fact classical solutions and therefore are
covered by [9], under the uniform exterior ball condition. This is not, generally, the
case of Isaacs type equations with constant coefficients, which are instead included
in the present paper, see Remark 1 and the examples just below. Let 1 ≤ ϕ(k)→ 1
as k → 1+. In the sequel we need the following additional assumption on F :

lim inf
k→1+

(
F (x, t, ξ,X)− ϕ(k)F (x, tk ,

ξ
k ,

X
k )
)
≤ 0 (6)

uniformly with respect to (x, t, ξ,X) ∈ Ω× R+ × Rn × Sn.

Theorem 1.1. Let Ω be a domain of class Cgr and f ∈ C(Ω) ∩ Lploc(Rn). If F =
F (u,Du,D2u) is an operator (independent of x) satisfying the structure conditions
(SC) and (6), then problem (1), (2) has at most one non-negative solution.

Remark 1. Condition (6) on F is satisfied with ϕ(k) = kα in the case of operators

F = F1(ξ,X)− |t|s−1t

such that F1 is positively homogeneous of degree α ∈ (0, s], s > 0, i.e. F1(kξ, kX) =
kαF1(ξ,X) for all k > 0 and all (ξ,X) ∈ Rn × Sn. Observe indeed that

F = F1(ξ,X)− ts = kαF1( ξk ,
X
k )− ts ≤ kαF1( ξk ,

X
k )− kα t

s

ks = kαF ( tk ,
ξ
k ,

X
k ).

when t ≥ 0 and k ≥ 1. As one can see in Remark 2 below, f ≤ 0 is a sufficient
condition to have non-negative solutions.

By Theorem 1.1 and Remark 1 we have uniqueness of non-negative blow-up
solutions for the maximal equation

P+
λ,Λ(D2u) + γ|Du| − |u|s−1u = f(x)

and more generally for Bellman and Isaacs type equations like

sup
j

inf
i
{Tr(AijD2u) + 〈bij , Du〉} − |u|s−1u = f(x).

with Aij ∈ Sn such that λI ≤ Aij ≤ ΛI and |bij | ≤ γ ∈ R+.
Following Marcus-Veron [16], we also consider more general operators, acting on

the convex cone of non-negative continuous functions, which are obtained adding a
“positive semilinearity”, namely

F = F1(ξ,X) + ctα − ts (7)

where c is a positive constant, 0 < α < s and F1 is positively homogeneous of degree
β ∈ [α, s], see Remark 1.
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Theorem 1.2. Let Ω be a bounded domain of Rn of class Cgr. Let F be an uni-
formly elliptic operator satisfying (3) and (5) of type (7), with c ∈ R and F1 posi-
tively homogeneous of degree β ∈ [α, s]. Let also f ∈ C(Ω) ∩ Lp(Ω). If f ≤ 0, then
problem

F1(Du,D2u)+c|u|α−1u−|u|s−1u = f(x) in Ω, u(x)→∞ as dist(x, ∂Ω)→ 0. (8)

has at most one positive solution.

Note that the case c ≤ 0 is already provided by Theorem 1.1.

2. Preliminaries. Let Ω be a domain (open connected set) of Rn. By Sn we
denote the set of n × n real symmetric matrices equipped with the usual partial
order: X ≥ Y means 〈Xξ, ξ〉 ≥ 〈Y ξ, ξ〉 for all ξ ∈ Rn, where 〈· , ·〉 is the Euclidean
inner product.

An operator F : Ω×R×Rn×Sn 7→ R is degenerate elliptic if it is nondecreasing in
its matrix argument, namely F (x, u, ξ,X) ≥ F (x, u, ξ, Y ) for X ≥ Y , and uniformly
elliptic if there exist two constants Λ ≥ λ > 0, called ellipticity constants, such that

P−λ,Λ(X − Y ) ≤ F (x, u, ξ,X)− F (x, u, ξ, Y ) ≤ P+
λ,Λ(X − Y ) (9)

for all (x, u, ξ) ∈ Ω× R× Rn and X,Y ∈ Sn.
Here P±λ,Λ are the Pucci’s extremal operators, defined by

P+
λ,Λ(X) = sup

λI≤A≤ΛI
Tr(AX) and P−λ,Λ(X) = inf

λI≤A≤ΛI
Tr(AX), (10)

where Tr(·) is the trace of a matrix. From (10) it follows the subadditivity, resp.
superadditivity, of P+

λ,Λ, resp. P−λ,Λ, and the equality P+
λ,Λ(X) = −P−λ,Λ(−X).

A second order partial differential equation

F (x, u,Du,D2u) = f(x) (11)

is said to be fully nonlinear uniformly elliptic when the condition (9) holds. We
will assume the continuity of the real valued mappings F and f .

Definition 2.1. Given a function u : Ω 7→ R, the second order superjet J2,+u(x),
respectively subjet J2,−u(x), of u at x ∈ Ω is the convex set (possibly empty) of all
pairs (ξ,X) ∈ Rn × Sn such that

u(y) ≤ u(x) + 〈ξ, y − x〉+
1

2
〈X(y − x), y − x〉+ o(|y − x|2) as y → x,

resp. u(y) ≥ u(x) + 〈ξ, y − x〉+
1

2
〈X(y − x), y − x〉+ o(|y − x|2) as y → x.

Note that J2,+u(x) = −J2,−(−u)(x). If u is twice differentiable at x ∈ Ω then

J2,+u(x) =
{

(Du(x), X) : X ≥ D2u(x)
}
,

J2,−u(x) =
{

(Du(x), X) : X ≤ D2u(x)
}
.

Definition 2.2. An upper semicontinuous function u : Ω 7→ R is a viscosity subso-
lution of (11), for short F [u] ≥ f , if

F (x, u(x), ξ,X) ≥ f(x) ∀x ∈ Ω and (ξ,X) ∈ J2,+u(x).

Similarly a lower semicontinuous function u : Ω 7→ R is a viscosity supersolution of
(11), for short F [v] ≤ f , if

F (x, u(x), ξ,X) ≤ f(x) ∀x ∈ Ω and (ξ,X) ∈ J2,−u(x).
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Finally u ∈ C(Ω) is a viscosity solution of (11), for short F [u] = f or also F = f ,
if it is simultaneously a viscosity sub and supersolution.

It is evident that a classical solution of (11), i.e. a C2(Ω) function satisfying
pointwise the equation, is also a viscosity solution. Conversely a twice differentiable
viscosity solution is a classical one. We refer to [2], [5], [13], [14] for major details
on viscosity solutions of nonlinear equations.

Lemma 2.3. Let τ ∈ [0, 1] and F be an operator satisfying (3) and (4). If u is a
supersolution of (11) and w ≥ 0 is a solution of P+

λ,Λ(D2w) + γ|Dw| − τδws = 0,

then the function u+ w is in turn a supersolution of (11).

Proof. By regularity results for convex operators (see [1] and Sections 6.2, 8.1 in
[2]) we have w ∈ C2,a, with 0 < a < 1, so w is a classical solution.

Let (ξ,X) ∈ J2,−(u+ w)(x), then (ξ −Dw,X −D2w) ∈ J2,−u(x) and

F (x, u(x) + w(x), ξ,X) ≤ P+
λ,Λ(D2w(x)) + γ|Dw(x)|

+ F (x, u(x) + w(x), ξ −Dw(x), X −D2w(x))

≤ P+
λ,Λ(D2w(x)) + γ|Dw(x)| − δws

+ F (x, u(x), ξ −Dw(x), X −D2w(x)) ≤ f(x). �

In the sequel p0 ∈ (n2 , n) will be the exponent of Escauriaza [10] (see also Crandall-
Swiech [7]) in order that the Alexandroff-Bakelman-Pucci Maximum Principle holds
true with p > p0 in the form (GMP)

max
Ω

u ≤ max
∂Ω

u+ Cd2−np ‖f−‖Lp(Ω) (12)

for solutions u ∈W 2,p
loc (Ω) ∩ C(Ω) of the maximal equation

P+
λ,Λ(D2u) + γ|Du| ≥ f,

where d = diam(Ω) < +∞ and C a positive constant depending on n, λ,Λ, p, γd.
This result can be generalized to viscosity solutions, see Swiech [20], Lemma 1.4.

We will use the following Generalized Comparison Principle (GCP), which is
deduced by the Maximum Principle of [12], Lemma 3.2.

Lemma 2.4. Let Ω be a domain of Rn and F be an uniformly elliptic operator
satifying (SC) and independent of x. Suppose that u and v are continuous solutions,
resp., of F [u] ≥ f and F [v] ≤ g in viscosity sense, where f, g ∈ C(Ω)∩Lploc(Rn) for
some p > p0. Then for any y ∈ Ω and any ball BR centered at y we have

(u−v)+(y) ≤ lim sup
x→∂Ω∩BR

(u−v)+ +C0

(
1 + γR

R2

) 1
s−1

+C1‖(f−g)−‖Lp(Ω∩BR), (13)

where C0 = C0(n,Λ, s, δ) and C1 = C1(n, p, λ,Λ, γ, R) are positive constants.Here,
if ∂Ω ∩BR = ∅, one reads lim supx→∂Ω∩BR (u− v)+ = 0.

Proof. Since F is independent of x, by means of the Jensen’s approximations, we
may use the structure conditions (SC) just as for smooth functions, see e.g. [4]-[8],
to deduce that w = (u− v)+ is a viscosity subsolution of

P+
λ,Λ(D2w) + γ|Dw| − δws = −(f(x)− g(x))− in Ω.
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From this, reasoning as in Lemma 3.2 of [12] and using GMP (12), for any ball Br
centered at y of radius r < R we get

sup
Ω∩Br

w ≤ lim sup
x→∂Ω∩BR

w + C0

(
R(1 + γR)

1
2

R2 − r2

) 2
s−1

+ C1‖(f − g)−‖Lp(Ω∩BR), (14)

from which (13) follows, letting r → 0+. �

Remark 2. If f ≥ g, letting R→∞, from Lemma 2.4 we obtain the Comparison
Principle (CP):

(u− v)+(y) ≤ lim sup
x→∂Ω

(u− v)+. (15)

Note also that Ω is possibly unbounded in Lemma 2.4. Nonetheless no assumption
is made on the growth of u and v at infinity.

Definition 2.5. (Marcus-Veron) A domain Ω satisfies the local graph property at
P ∈ ∂Ω if there exist a neighborhood QP and a function ψ ∈ C(Rn−1) such that

QP ∩ Ω = {x ∈ QP : yn < ψ(y′)}
in a coordinate system y ≡ (y′, yn) obtained by rotation from x ≡ (x′, xn).

Remark 3. We may assume that QP is a spherical cylinder

QP = {x ∈ Rn , |y′| < ρ, |yn| < σ} (16)

centered at P , of radius ρ > 0 and finite height 2σ > 0, as well as |ψ(y′)| < σ in
QP so that

QP ∩ Ω = {x ∈ Rn , |y′| ≤ ρ, −σ ≤ yn < ψ(y′)}. (17)

Here x = Ry + x(P ) for an orthogonal matrix R (i.e. R−1 = RT ). As in [15],
the class of domains satisfying the local graph property at every P ∈ ∂Ω will be
denoted by Cgr.

3. Uniqueness of blow-up solutions. Let QP be a spherical cylinder centered
at P as in (16). We start recalling that a non-negative viscosity solution wP ≡ w ∈
C(QP ) of the boundary blow-up problem

P+
λ,Λ(D2w) + γ|Dw| − δws = 0 in QP , w(x)→ +∞ as dist(x, ∂QP )→ 0 (18)

is provided by Theorem 1.6 of [12] and by [1], Cor. 1.3, w ∈ C2,a(QP ) for a ∈ (0, 1).
The main tool to show the uniqueness will be the comparison principle (13).

Proposition 1. Let Ω be a domain of Rn satisfying the local graph property at
xP ∈ ∂Ω, and QP the cylinder of Remark 3. Assume that F : Ω×R×Rn×Sn 7→ R
satisfies the structure conditions (SC) and the comparison principle (15) holds true
with QP ∩Ω in place of Ω. If there exists a viscosity subsolution u ∈ C(QP ∩Ω) of
(1) such that

u(x)→ +∞ locally uniformly as x→ Γ1 ≡ QP ∩ ∂Ω, (19)

then the problem

F (x, v,Dv,D2v) = f(x) in QP ∩ Ω, (20)

v(x)→∞ locally uniformly as x→ QP ∩ ∂Ω, (21)

v = 0 on Γ2 ≡ ∂QP ∩ Ω, (22)

has a viscosity solution v ∈ C(QP ∩ Ω) for every f ∈ C(Ω) ∩ Lploc(Rn).
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Remark 4. Following [15], by condition (21) we mean v(x)→ +∞ as dist(x,A)→
0 for every A ⊂⊂ Γ1 in the relative topology.

Proof. Following [15], with the notations of (16) consider an approximation from
below of

Θ ≡ QP ∩ Ω = {x ∈ Rn : |y′| < ρ,−σ < yn < ψ(y′)} ,
where x = Ry+x(P ) and R−1 = RT , assuming ψ > 0, as we may, using a monotone
increasing sequence of smooth positive functions ψj → ψ as j →∞.
Correspondingly, let

Θj = {x ∈ Rn : |y′| < ρ, −σ < yn < ψj(y
′)}

Γ1j = {x ∈ Rn : |y′| < ρ, yn = ψj(y
′)}

Γ2j = {x ∈ Rn : |y′| = ρ, −σ ≤ yn < ψj(y
′)}

∪ {x ∈ Rn : |y′| < ρ, yn = −σ}

Let also Γ2j = Γ′2j ∪ Γ′′2j where

Γ′2j = {x ∈ Γ2j : |y′| = ρ, ψj(y
′)− 1

j ≤ yn < ψj(y
′)}

Γ′′2j = {x ∈ Γ2j : |y′| = ρ, −σ ≤ yn ≤ ψj(y′)− 1
j }

∪ {x ∈ Γ2j : |y′| < ρ, yn = −σ}

By Theorem 4.1 of [5] we can find a continuous viscosity solution of the problem

F (x, vj,k(x), Dvj,k(x), D2vj,k(x)) = f(x) in Θj

vj,k(x) = k on Γ1j

vj,k(x) = j
(
yn − ψj(y′) + 1

j

)
k on Γ′2j

vj,k(x) = 0 on Γ′′2j .

Here we are using the same boundary conditions of [15], Theorem 2.2. Then by
construction for any fixed j ∈ N the sequence (vj,k)k∈N is increasing, with respect
to k ∈ N, on ∂Θj and so, by the comparison principle, is also increasing in Θj .
On the other side, from Proposition 3.3 in [12] we have uniform boundedness in
compact sets K of Θj , say

sup
K
|vj,k| ≤ C

for a positive constant C = C(n, λ,Λ, p, δ,K). Moreover by (SC)

F (x, vj,k, ξ,X) ≤ P+
λ,Λ(X) + γ|ξ|+ F (x, vj,k, 0, 0)

≤ P+
λ,Λ(X) + γ|ξ|+ max

x∈K
|t|≤C

|F (x, t, 0, 0)|,

F (x, vj,k, ξ,X) ≥ P−λ,Λ(X)− γ|ξ|+ F (x, vj,k, 0, 0)

≥ P−λ,Λ(X)− γ|ξ| − max
x∈K
|t|≤C

|F (x, t, 0, 0)|.

By using Hölder estimates (see Caffarelli-Cabré [2] and Sirakov [19]), Ascoli-Arzelá
theorem and stability results for viscosity solutions (see Proposition 4.11 in [2],
Theorem 3.8 in [3]), we deduce that

vj,∞ = lim
k→∞

vj,k

is a solution of (20) in Θj .
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Next consider the sequence (vj,∞)j∈N. Since vj+1,k ≤ vj,k on ∂Θj , we have
vj+1,∞ ≤ vj,+∞ on ∂Θj so that, again by the comparison principle, the sequence
(vj,∞)j∈N is monotone decreasing in Θj and, by reasoning as before to show that
vj,∞ are solutions, in turn converges locally uniformly to a solution v of (20) in Θ.

It is easy to check that v = 0 on Γ2, which is regular enough in order that the
boundary condition is satisfied with continuity, see [6]. In order to prove (21), let
us observe that for all k ∈ N

vj,∞ ≥ vj,k = k on Γ1j .

Since u is bounded on ∂Θj , then u ≤ vj,∞ on Γ1j , as well as u ≤ w on Γ2j , by (18).
Moreover from Lemma (2.3) the function vj,∞ + w is a supersolution of (20) in Θj

and hence by the comparison principle

u ≤ vj,∞ + w in Θj .

Passing to the limit as j →∞ we obtain

u ≤ v + w (23)

in Θ, from which condition (21) follows. �

Corollary 1. Suppose that the assumptions of Proposition 1 are satisfied for posi-
tive functions u = ui ∈ C(QP ∩Ω), i = 1, 2. Let Q∗P ⊂⊂ QP be a spherical cylinder
centered at P . If F is independent of x, then there exists a positive constant C such
that

|u2 − u1| ≤ C in Q∗P ∩ Ω. (24)

Proof. Since F is independent of x, the comparison principle holds true by Remark
2. Therefore, from (23) we have u2 ≤ v + w in QP ∩ Ω, where, up to a rotation,
we may suppose the axis of the cylinder QP parallel to xn, see (17). Since w is
bounded in Q∗P , we get then

u2 ≤ v + C in Q∗P ∩ Ω (25)

with C = supQ∗P w. On the other side, consider vh(x′, xn) = v(x′, xn − h) for

sufficiently small h > 0: vh is continuous in QhP ∩ Ω and vh = 0 on Γh2 . Here QhP
and Γhi , i = 1, 2, result from the corresponding sets QP and Γi moved up by h along
the axis of QP . Then

vh ≤ ui on ∂(QhP ∩ Ω) (26)

Since F is independent of x, the function vh satisfies the equation

F [vh] = fh in QhP ∩ Ω. (27)

where fh(x′, xn) = f(x′, xn − h).
Therefore, fixing y ∈ QP ∩ Ω, choosing h > 0 small enough in order that y ∈

QhP ∩ Ω and applying Lemma 2.4 in QhP ∩ Ω, for any R > 0 we get

(vh − ui)+(y) ≤ lim sup
x→∂(QhP∩Ω)∩BR

(vh − ui)+

+C0

(
1 + γR

R2

) 1
s−1

+ C1‖(f − fh)−‖Lp(QhP∩Ω∩BR)

≤ C0

(
1 + γR

R2

) 1
s−1

+ C1‖(fh − f)−‖Lp(Ω∩BR).
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Letting h→ 0+, we have

(v − ui)+(y) ≤ C0

(
1 + γR

R2

) 1
s−1

and as R→∞, since y ∈ QP ∩ Ω is arbitrary,

v ≤ ui in QP ∩ Ω. (28)

From (25) and (28) the result follows. �

Proof of Theorem 1.1 Let u1, u2 be non-negative blow-up solutions of F [u] = f(x)
in Ω. Let ε > 0 small enough. Setting kε = 1 + ε, u1ε = (1 + ε)u1 and using (6),
we have

F [u1ε] ≤ ϕ(kε)F [u1] + o(ε)=ϕ(kε)f(x) + o(ε), (29)

where o(ε)→ 0 as ε→ 0+.
Take, for every P ∈ ∂Ω, a spherical cylinder Q∗P centered at P of radius ρ∗

and height 2σ∗, as in Corollary 1. By (24) we have constructed an open covering
{Q∗P }P∈∂Ω of ∂Ω such that

1− CP
u1
≤ u2

u1
≤ 1 +

CP
u1

in Q∗P ∩ Ω. (30)

Since u1 → +∞ as dist(x, ∂Ω)→ 0, then

u2(x) ≤ (1 + ε)u1(x) = u1ε(x), (31)

in N∗P , an open neighborhood of Q∗P ∩ ∂Ω.
Collecting all N∗P we obtain a neighborhood Nε of ∂Ω where (31) holds true.
Let Ωε = {u2 > (1 + ε)u1 = u1ε}. We claim that there is a sequence ε → 0+

such that Ωε = ∅.
By contradiction, suppose Ωε 6= ∅ for infinitely many ε→ 0+. Since Ωε ⊂ Ω and

therefore u2 = u1ε on ∂Ωε, using (29) and recalling that F [u2] ≥ f , we have by (13)

(u2−u1ε)
+(y) ≤ C0

(
1 + γR

R2

) 1
s−1

+C1

(
(ϕ(kε)− 1)‖f+‖Lp(Ω∩BR(y)) + o(ε)

)
(32)

for all y ∈ Ωε and R > 0. Thus, letting ε → 0+ and then R → ∞, we get u2 ≤ u1

in Ω, which contradicts Ωε 6= ∅ and proves the claim.
Hence u2 ≤ (1 + ε)u1 in Ω for a sequence ε→ 0+ and taking this limit we have

u2 ≤ u1 in Ω. Interchanging u1 and u2 we finish the proof. �

4. A generalization. In this Section, we consider an uniformly elliptic operator
F satisfying (3) and (5) of form

F = F̃ (x, t, ξ,X) + c|t|α−1t− |t|s−1t (33)

where c ≥ 0, α ∈ (0, s) and F̃ is positively homogeneous of degree β ∈ [α, s]:

F1(x, kt, kξ, kX) = kβF1(x, t, ξ,X) ∀ k > 0, ∀ (x, t, ξ,X) ∈ Ω× R+ × Rn × Sn.
In the spite of Marcus-Veron [16] we have in mind for instance fully non linear
second order operators like

F̃ = sup
i

inf
j
{Tr(AijX) + 〈bij , ξ〉+ cijt}

which is positively homogeneous of degree β = 1 = α < s.
Note that, if F̃ is non-increasing in t and c ≤ 0, then (4) is also satisfied, but this

fails to hold, in general. However, we can state a comparison principle in all cases.
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For references about maximum principles and related methods see [17] and [18].

Lemma 4.1. Let Ω be a bounded domain of Rn and F be an uniformly elliptic
operator satisfying (3) and (5) of form (33) with F̃ positively homogeneous of degree
β ∈ [α, s] for t > 0 and c ≥ 0. Suppose that u and v are continuous subsolutions
and supersolutions, respectively, of F = f in viscosity sense, where f ∈ C(Ω) and
f ≤ 0. In addition we assume u, v ∈ C1(Ω) and F independent of x. Suppose v > 0
in Ω, then

lim sup
x→∂Ω

(u− v) ≤ 0 ⇒ u ≤ v in Ω. (34)

Remark 5. If we assume at least one of u and v to be C2(Ω), then we do not need
to assume F independent of x.

Proof of Lemma 4.1. By contradiction, suppose Ω+ ≡ {x ∈ Ω |u(x) > v(x)} 6= ∅.
Setting u = eU and v = eV , by straightforward computation, we obtain, in

viscosity sense,

F̃ (x, 1, DU,D2U +DU ⊗DU) + ce(α−β)U − e(s−β)U ≥ e−βUf(x), (35)

F̃ (x, 1, DV,D2V +DV ⊗DV ) + ce(α−β)V − e(s−β)V ≤ e−βV f(x), (36)

where we have used the positive homogeneity of F̃ .
Let w = U −V . Subtracting (36) from (35), as we may in viscosity setting when

F̃ is independent of x, using (3) we have

P+
λ,Λ(D2w + (DU ⊗Dw +Dw ⊗DV )) + γ|Dw|

≥ − c(e(α−β)U − e(α−β)V ) + (e(s−β)U − e(s−β)V ) + (e−βU − e−βV )f(x),

from which, since c ≥ 0, α ≤ β, f ≤ 0, letting b(x) = Λ(|DU(x)|+ |DV (x)|) + γ,

P+
λ,Λ(D2w) + b(x)|Dw| ≥ 0 in Ω+.

But w is positive in Ω+ and lim supx→∂Ω+ w ≤ 0, and this contradicts the maximum
principle. Therefore U ≤ V and consequently u ≤ v in Ω. �

We are ready to develop the program of the previous Section to establish an
uniqueness result for the blow-up problem (1) & (2) with fully nonlinear uniformly

elliptic operators of type (7), i.e. F̃ = F1(ξ,X) in (33).

Proof of Theorem 1.2. Consider two positive solutions u1, u2 of problem (8). By
standard viscosity results, see [2] and [20], u1, u2 have Hölder first derivatives.

Let ε ∈ (0, 1). By the local graph property and the boundary blow-up condition,
for every P ∈ ∂Ω we can find a spherical cylinder QP as (16) such that (17) holds

true and ui ≥ ( cε )
1

s−α in QP ∩ Ω, i = 1, 2, so that by Lemma 4.1 the comparison
principle (15) holds true with QP ∩ Ω in place of Ω. Then

F1(Dui, D
2ui)− (1− ε)usi ≥ f(x).

Taking δ = 1
2 , say, in the definition (18) of w, we conclude as in Corollary 1 that

for Q∗P ⊂⊂ QP there exists C such that (24) holds true.
As in the proof of Theorem 1.1 we find a neighborhood Nε′ of ∂Ω where (31)

holds true and set Ωε′ = {x ∈ Ω , u2 > (1 + ε′)u1 = u1ε′}. We infer that Ωε′ = ∅.
By contradiction, suppose Ωε′ 6= ∅. Setting kε′ = 1 + ε′, using the positive

homogeneity of F̃ and the fact that f ≤ 0, from F1[u1] + cuα1 − us1 ≤ f we have

F1[u1ε′ ] + cuα1ε′ − us1ε′ ≤ k
β
ε′f(x) ≤ f(x)
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so that, being F1[u2] + cuα2 − us2 ≥ f , Lemma 4.1 yields u2 ≤ u1ε′ in Ωε′ , against
Ωε′ 6= ∅. From this u2 ≤ (1 + ε′)u1 and, letting ε′ → 0+, u2 ≤ u1 in Ω.

Interchanging u1 and u2, we also have u1 ≤ u2, as claimed. �
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