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Abstract
After its discovery in the early 1980s, the natriuretic peptide (NP) system has been extensively characterized and
its potential influence in the development and progression of heart failure (HF) has been investigated. HF is a
syndrome characterized by the activation of different neurohormonal systems, predominantly the renin–angiotensin
(Ang)–aldosterone system (RAAS) and the sympathetic nervous system (SNS), but also the NP system.
Pharmacological interventions have been developed to counteract the neuroendocrine dysregulation, through the
down modulation of RAAS with ACE (Ang-converting enzyme) inhibitors, ARBs (Ang receptor blockers) and
mineralcorticoid antagonists and of SNS with β -blockers. In the last years, growing attention has been paid to the
NP system. In the present review, we have summarized the current knowledge on the NP system, focusing on its
role in HF and we provide an overview of the pharmacological attempts to modulate NP in HF: from the negative
results of the study with neprilysin (NEP) inhibitors, alone or associated with an ACE inhibitor and vasopeptidase
inhibitors, to the most recently and extremely encouraging results obtained with the new pharmacological class of
Ang receptor and NEP inhibitor, currently defined ARNI (Ang receptor NEP inhibitor). Indeed, this new class of drugs
to manage HF, supported by the recent results and a vast clinical development programme, may prompt a
conceptual shift in the treatment of HF, moving from the inhibition of RAAS and SNS to a more integrated target to
rebalance neurohormonal dysregulation in HF.
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NEUROHORMONAL ACTIVATION IN CHRONIC
HEART FAILURE

Chronic heart failure (HF) is a syndrome with a complex patho-
physiology in which the neuroendocrine activation plays a sig-
nificant role. The pathophysiology of HF is indeed character-
ized by an early activation of different neurohormonal systems
[i.e., sympathetic nervous system (SNS) and natriuretic peptides
(NPs)] in the presence of asymptomatic left ventricular (LV)
systolic dysfunction [1–4]. In the early stages of HF, the SNS and
renin–angiotensin (Ang)–aldosterone system (RAAS) response
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play a compensatory role, aimed at supporting cardiac output
and increasing peripheral vasoconstriction in an effort to main-
tain circulatory homoeostasis. However, the prolonged activation
of the two systems becomes detrimental and contributes to pro-
gression and worsening of HF, eventually leading to congestion.
In addition to the classical components of neuroendocrine ac-
tivation other regulatory systems are involved, i.e. kinins, NPs,
endothelin, erythropoietin, prostaglandins and adrenomedullin
[5,6]. If the activation of SNS and RAAS results in unfavourable
consequences and a negative prognostic affect, the activation of
kinins and NP systems might play a favourable role.
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Figure 1 Tissue expression of NPs, proteolytic activation processing from pre-prohormones to mature and biologically
active peptides

Therefore, pharmacological interventions aimed at re-
balancing the neuroendocrine dysregulation in HF are effective
and beneficial. So far, the therapeutic approach has been based
on pharmacological interventions to down-modulate RAAS,
through Ang-converting enzyme (ACE) inhibitors [7–12] or
Ang receptor blockers (ARBs) [13–16], aldosterone [17–20] and
also through mineralocorticoid receptor antagonists (MRA) and
SNS by β-blockers [21–26]. Hence, triple-therapy with ACE in-
hibitors (or, if not tolerated, an ARB), β-blockers and MRA,
currently represents the standard, optimal therapeutic approach
(Figure 1). Triple-therapy improves symptoms and quality of
life and provides protection against major fatal and non-fatal
events, thus reducing hospitalization and mortality. If, for some
reason, a patient cannot tolerate an MRA in addition to an

ACE inhibitor and a β-blocker, an ARB can be tried as an
alternative [15]. In addition to the triple-therapy, the treat-
ment of HF include also vasodilators, as nitrates, and diuretics
that are important to relieve signs and symptoms of conges-
tion, inotropes and non-pharmacological tools such as implant-
able cardioverter-defibrillator, cardiac resynchronization therapy,
mechanical ventricular assistance and heart transplantation [26].

UNMET THERAPEUTIC NEEDS IN HEART
FAILURE

In spite of an optimized therapy for the control of neuroendo-
crine activation and a consequent decline of hospital mortality
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[27], the quality of life and prognostic outlook for those HF
patients who survive after an acute hospitalization remain poor
[28]. Data suggest that HF-related survival rates are as poor as
those associated with cancer. For example, in the original and
subsequent Framingham cohort, 62 % and 75 % of men and 38 %
and 42 % of women respectively, died within 5 years of being
diagnosed with HF [29,30]. In comparison, 5-year survival for
all cancers among men and women in the US during the same
period was approximately 50 %.

Therefore, in spite of the current approach to neuroendocrine
modulation in HF, clinical goals remain largely unaccomplished
and more thorough approaches to address neurohormonal dysreg-
ulation may be needed. From this point of view, the modulation
of systems that promote favourable effects in HF, such as kinins
and NP systems, has long been viewed as attractive and rational
to implement benefits of RAAS and SNS blockade [31].

The block of bradykinin breakdown is potentially beneficial,
because bradykinin has useful actions in HF [32]. Augmentation
of bradykinin may promote vasodilation, fibrinolytic effects and
inhibition of cellular growth and division, which may contribute
to the benefits of ACE inhibitors [33–35]. An excess of bra-
dykinin accumulation however may cause adverse effects, such
as cough, rash, hypotension and angioedema [35]. A more prom-
ising strategy is represented by an empowerment of the NP sys-
tem, which so far has not been effectively and safely attained in
clinical practice.

NATRIURETIC PEPTIDES SYSTEM

The cardiac endocrine function was first identified more than
30 years ago [36]. Since then, a growing number of experimental
and clinical studies have been performed to investigate its com-
ponents, regulation and function. Overall, many advances have
been made in the field, consolidating the concept that the en-
docrine function of human heart is a relevant component of a
complex network including endocrine, nervous and immune sys-
tems. In 1981, de Bold et al. [36] found that the intravenous
injection of atrial, but not ventricular, homogenates into rats eli-
cited a rapid decrease in blood pressure that was accompanied
by increased renal sodium and water excretion. After this funda-
mental observation, several groups purified peptides of variable
size from atrial tissue provided with both natriuretic and vascular
smooth muscle-relaxing activity [37–40]. These peptides were
collectively named atrial NP (ANP) or factor. B-type NP (BNP),
which was originally called brain NP [41] and C-type NP (CNP)
were subsequently purified from porcine brain extracts based on
their ability to relax smooth muscle [42].

Atrial natriuretic peptide
All NPs are synthesized as pre-prohormones (Figure 1). Hu-
man pre-proANP is 151-amino acids in length. Cleavage of the
N-terminal signal sequence results in the 126-amino acid
proANP, which is the predominant form stored in atrial gran-
ules. ProANP is rapidly cleaved upon secretion by the trans-
membrane cardiac serine protease to form the biologically-active

C-terminal 28-amino acid peptide and the biologically inactive
fragment (98 amino acid) of the ANP prohormone [N-terminal
proANP (NT-proANP); 43]. Alternative processing of proANP
by an unknown protease in the kidney generates a 32-residue
peptide called urodilatin, which may be important in regulating
renal sodium and water excretion [44].

ANP is primarily expressed and stored in granules in the at-
ria, although it is present at lower concentrations in other tissues,
such as the ventricles and kidney. The primary stimulus for ANP
release is atrial wall stretch resulting from increased intravas-
cular volume [45,46] or cardiac transmural pressure which may
promote ANP expression and biosynthesis in the ventricles in
conditions such as HF. Once secreted, ANP perfuses into the
coronary sinus, which facilitates distribution to its various target
organs in a true endocrine manner. Hormones such as endoth-
elin [47], Ang [48] and arginine–vasopressin [49] stimulate ANP
release [50].

Plasma levels of ANP in normal patients are approximately
10 fmol/ml (20 pg/ml) and are elevated 10–100-fold in patients
with congestive HF [51,52]. Both ANP and NT-proANP have
been used as markers for the diagnosis of asymptomatic LV dys-
function [53] and plasma ANP levels have been shown to cor-
relate with the severity of symptomatic HF. However, in the last
few years, due to higher stability, BNP measures were preferred
to ANP for diagnostic and prognostic use in HF [54].

B-type natriuretic peptide
BNP was initially purified from porcine brain extracts and hence
defined brain NP [41]. However, it was subsequently found in
much higher concentrations in cardiac ventricles from patients
or animals undergoing cardiac stress such as congestive HF or
myocardial infarction [52]. Therefore, it is currently referred to
as BNP or B-type NP. Human BNP is synthesized as a pre-
prohormone of 134 residues, containing a signal sequence that is
cleaved to yield a 108-amino acid prohormone (Figure 1). The
108 amino acid precursor, proBNP, produced in cardiomyocytes,
is cleaved between residues 76 and 77 by the processing en-
zymes corin or furin to produce the biologically-active 32-amino
acid BNP plus the 76-amino acid N-terminal peptide [N-terminal
proBNP (NT-proBNP)]. All three peptides proBNP, BNP and
NT-proBNP are secreted by the heart and circulate in humans.
Fully processed BNP length varies among species; human BNP is
32 amino acids [55].

Actually, the introduction of sensitive MS methods have led
to the identification of many new low molecular mass circu-
lating forms of BNP and the absence or near-absence of the
32-amino acid form in some subjects. In patients with HF,
BNP(1–32) form is a minor constituent in peripheral plasma be-
ing rapidly truncated to BNP(3–32) upon incubation in plasma.
This process is catalysed by the enzyme dipeptidyl peptidase
IV (DPP IV), which rapidly removes the N-terminal serine-
proline dipeptide from BNP. These truncated forms [BNP(3–
32) or BNP(8–32)] elicit reduced natriuretic, diuretic and vas-
odilatory responses and increase urinary cGMP to a lesser ex-
tent than BNP(1–32), probably because of a more rapid de-
gradation compared with BNP(1–32). DPP IV also cleaves
a similar histidine-proline dipeptide off the N-terminal end
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of proBNP, although at a 4-fold slower rate, to produce the
truncated proBNP(3–108) form. This peptide circulates at rel-
atively low concentrations in normal subjects, but proBNP(3–
108) concentrations are raised in patients with asymptomatic
LV dysfunction or HF (fiftieth percentiles 8, 18 and 43 pmol/l
respectively) [56].

Although BNP is stored with ANP in atrial granules, BNP is
not stored in granules in the ventricles. Instead, ventricular BNP
production is transcriptionally regulated by cardiac wall stretch
resulting from volume overload or increased transmural gradient
[57]. Healthy individuals have plasma BNP concentrations of ap-
proximately 1 fmol/ml (3.5 pg/ml). In patients with congestive
HF plasma BNP concentration, as well as those of the inactive
precursor NT-proBNP, increase up to 100-fold [53]. Both these
peptides are commonly used as ‘rule-out’ test in the diagnosis
of HF and as markers of prognosis in chronic HF. NT-proBNP
concentrations in healthy individuals are approximately of
51 pg/ml, cut-off levels are 300 pg/ml for the diagnosis of acute
HF and 125 pg/ml for chronic HF. For BNP, cut-off concentra-
tions for the diagnosis of acute and chronic HF are respectively
100 and 35 pg/ml [26].

C-type natriuretic peptide
CNP is the most widely expressed NP in the brain and is found
in high concentrations in chondrocytes [58,59] and cytokine-
exposed endothelial cells [60]. CNP is the most preserved form
of NP: both 22- and 53-amino acid versions of CNP are identical
in humans, pigs and rats. Human proCNP contains 103 residues
and the intracellular endoprotease furin has been shown to pro-
cess proCNP to the mature 53-amino acid peptide (Figure 1) [61].
In some tissues, CNP-53 is cleaved to CNP-22 by an unknown ex-
tracellular enzyme. Although CNP-22 and CNP-53 elicit similar,
if not, identical functions [62], their tissue expression differs.
CNP-53 is the major form in the brain [63], endothelial cells
[64] and heart [65], whereas CNP-22 predominates in human
plasma and cerebral spinal fluid [66]. Normal plasma CNP con-
centrations (both forms) are in the low fmol/ml range and are
minimally, if at all, elevated in patients with congestive HF [67].
Therefore, CNP does not behave as a cardiac hormone, although
its potential role in HF cannot be ruled out.

Natriuretic peptide receptor
There are three known NP-binding proteins in mammals: NP
receptor (NPR)-A, NPR-B and NPR-C (Figure 2). NPR-A and
NPR-B represent two of the five transmembrane guanylate cyc-
lases found in humans [68] and determine the biological effects of
NP. The third NPR, NPR-C, does not possess any known intrinsic
enzymatic activity. Human NPR-A mRNA is highly expressed in
kidney, adrenal, terminal ileum, adipose, aortic and lung tissues
[69]. NPR-B protein has been found at relatively high concentra-
tions in fibroblasts [70]. NP clearance receptor (NPR-C) mRNA
is found in atrial, mesentery, placenta, lung, kidney, venous tis-
sue [71] and in aortic smooth muscle and aortic endothelial
cells. In situ hybridization studies found detectable NPR-C
mRNA in kidney, adrenal, heart, cerebral cortex and cerebellum
tissue [72].

Table 1 Physiological actions of NP
Abbreviations: AVP, vasopressin; VSMC, vascular smooth muscle cells.

Target organ Biological effects

Kidney Increased GFR by inducing
vasodilatation of afferent
arterioles and vasoconstriction of
efferent arterioles

Induction of natriuresis by
inhibiting Na+, H+ exchanger in
the proximal tubule, Na+, Cl−

co-transporter in the distal tubule
and Na+ channels in the
collecting duct

Induction of diuresis due to
inhibition of AVP-induced
acquaporin-2 incorporation into
collecting ducts’ apical
membrane

Cardiac Reduction in preload leading to
fall in cardiac output

Inhibition of cardiac remodelling

Haemodynamic Vasorelaxation

Elevating capillary hydraulic
conductivity

Decreased cardiac preload and
afterload

Endocrine Suppression of the following:

- Renin–Ang–aldosterone axis

- Sympathetic outflow

- AVP

- Endothelin

Mitogenesis Inhibition of mitogenesis in VSMC

Inhibition of growth
factor-mediated hypertrophy in
fibroblasts

Physiological effects of natriuretic peptides
NPs elicit their physiological responses (Table 1) mostly through
NPR-A binding and the activation of guanylate cyclase and the
production of cGMP, a classic intracellular second messenger
[73]. The best-studied cGMP signalling effects occur through
protein kinases G (PKGs), serine and threonine kinases that are
activated by cGMP binding [74].

The ANP/NPR-A coupling regulates basal blood pressure in
experimental models. Some of the most striking data on this is-
sue come from the demonstration that ANP-dependent guanylate
cyclase activities and blood pressure are directly proportional
to NPR-A gene dosage over a range of 0–4 alleles [75]. ANP
regulates blood pressure by means of its combined effects on
intravascular volume, vasorelaxation, natriuresis and diuresis.

In the kidney, ANP increases glomerular filtration rate (GFR),
inhibits sodium and water re-absorption and reduces renin se-
cretion [76]. ANP-dependent diuresis and natriuresis are medi-
ated exclusively by NPR-A in mice because these effects are
completely lost in NPR-A knockout animals [77]. ANP in-
creases the GFR by elevating the pressure in the glomerular
capillaries through co-ordinated afferent arteriolar dilation and
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Figure 2 Natriuretic peptide-binding receptors, intracellular signalling and degradation processes
Abbreviations: GC-A: guanylate cyclase type A; GC-B: guanylate cyclase type B.

efferent arteriolar constriction [78]. In addition to these effects,
ANP inhibits sodium and water re-absorption throughout the
nephron. In the proximal tubules, ANP inhibits Ang II-stimulated
sodium and water transport [79]. In collecting ducts, it reduces
sodium absorption by inhibiting an amiloride-sensitive cation
channel [80]. The effect of ANP on both transport processes is
cGMP-dependent. ANP/NPR-A coupling appears to be down-
regulated in HF and in conditions of RAAS activation and high
Ang-II concentrations [81–83].

CNP also is a vasodilator and is released in response to vascu-
lar injury [84] NPR-B is present in aortic vascular smooth muscle
and mediates CNP relaxation of pre-contracted rat aorta [85].
Furthermore, CNP inhibits vascular smooth muscle proliferation
[86] and oxidized low-density lipoprotein-induced migration of
cultured human coronary artery smooth muscle cells [87] in a
cGMP-dependent manner. CNP may be an endothelium-derived
hyperpolarizing factor (EDHF), participating in the paracrine ac-
tion of other endothelial vasorelaxant mediators, such as nitric
oxide (NO) and prostacyclin [88]. CNP may act also through a
post receptor intracellular pathway linked to cAMP.

ANP regulates blood pressure, in part, through the inhibi-
tion of the RAAS. In dogs, intra-renal ANP infusion markedly
inhibits the renin secretion rate [89,90]. In addition to inhib-

iting renin secretion, ANP directly inhibits aldosterone pro-
duction in the adrenal glomerulosa (adrenocorticotropic hor-
mone [ACTH]-stimulated, Ang-II-stimulated and basal aldos-
terone levels) [91,92]. Interestingly, ANP has also been shown
to modulate arterial and cardiac baroreflex mechanisms in an-
imal model and in humans. In particular, ANP enhances vagal
afferents and blunts sympathetic response [93–95].

ANP and BNP have direct effects on the heart. Mice lack-
ing ANP or NPR-A have enlarged hearts [96], whereas animals
overexpressing ANP have smaller hearts [97]. Initially, it was un-
clear whether the cardiac hypertrophy observed in the knockout
animals resulted from prolonged exposure to systemic hyper-
tension or from the loss of a local inhibitory effect on heart
growth; it is likely that both processes lead to cardiac hyper-
trophy. The first evidence supporting a local effect involved NPR-
A knockout mice that were treated with anti-hypertensive drugs
from birth. These animals were normotensive but still had car-
diac hypertrophy [98]. The selective transgenic replacement of
NPR-A in the heart of NPR-A knockout animals reduced cardi-
omyocyte size without affecting hypertension [99]. Pre-clinical
data have demonstrated the ability of ANP to inhibit cardiomyo-
cyte hypertrophy induced by either Ang-II or endothelin-1, both
vasoactive peptides with deleterious effects on the cardio-renal

61c© 2016 The Author(s) This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0

http://creativecommons.org/licenses/by/3.0/


M. Volpe, M. Carnovali and V. Mastromarino

system, as a result of cGMP-dependent processes [100].
Moreover, ANP may protect against Ang-II-induced cardiac re-
modelling by minimizing steps that are key to the inflammat-
ory process including macrophage infiltration and expression of
pro-inflammatory factors [101]. In vitro evidence indicates that
ANP can attenuate norepinephrine-induced growth of cardiac
myocytes and fibroblasts due to a cGMP-mediated inhibition of
norepinephrine-induced influx of Ca2+ [102]. These findings may
highlight a key role of the NP system in counteracting the adverse
effects of increased SNS activity on the myocardium [94,95]. Fi-
nally, mutated forms of ANP are associated with cardiac hyper-
trophy [103].

All three NPRs are highly expressed in the lung [104]. ANP
stimulates the dilation of pulmonary airways and blood vessels.
Infusion or inhalation of ANP stimulates bronchodilation in nor-
mal and asthmatic patients [104]. ANP and BNP are elevated in
patients with pulmonary hypertension and are indicative of in-
creased right ventricular strain [105]. Mice overexpressing ANP
are resistant to hypoxia-induced hypertension, whereas ANP-
deficient mice exhibited increased pulmonary hypertension in
response to chronic hypoxia [106]. CNP also reduces pulmon-
ary hypertension [107] and fibrosis [108] and this mechanism is
thought to be relevant in the progression of HF.

ANP stimulated lipolysis both in isolated human fat cells and
in in vivo by peptide infusion [109]. It was determined that ANP-
stimulated lipolysis is specific to primates, presumably because
primates contain a higher NPR-A to NPR-C ratio [110]. PKGI
is the cGMP effector in the ANP-dependent lipolytic response
because pharmacological inhibition of PKGI decreases ANP-
dependent lipolysis in primary human pre-adipocytes [111].

Degradation of natriuretic peptides
All three NPs are degraded through two main processes (Fig-
ure 2): (1) NPR-C-mediated internalization followed by lyso-
somal degradation and (2) enzymatic degradation by neutral en-
dopeptidase 24.11 or neprilysin (NEP), a zinc-dependent enzyme
expressed on the plasma membrane that has broad substrate spe-
cificity and tissue distribution [112].

The reported half-life of ANP ranges from 0.5 to 4 min in
mice, rats, rabbits, dogs and monkeys [113] and is approximately
2 min in normal human subjects [114,115]. Most tissues remove
ANP from the circulation, but some organs are more efficient
at ANP extraction than others. Early human studies indicated
that approximately 30 %–50 % of ANP is removed by the kidney,
liver or lower limbs, whereas no extraction was observed across
the lung [116,117]. However, later reports in humans and dogs
indicated that the lungs have a significant ANP extraction rate of
between 19 % and 24 %. The organ preference for ANP extraction
is lung > liver > kidney [118].

Few studies have addressed the clearance of BNP and CNP.
The removal of BNP from the human circulation recognized short
and long half-life components of 3.9 and 20.7 min respectively
[52]. BNP binds to human NPRC 7 % as tightly as ANP and
the increased half-life of BNP results from decreased removal by
NPRC-mediated internalization and degradation [119].

NPR-C-mediated ANP clearance was first demonstrated by
Maack et al. in 1987 [120]. The cellular mechanics of NPRC-

mediated NP internalization and degradation are similar to those
of the receptors for low-density lipoprotein and hyaluronic acid.
Similar features include lysosomal ligand hydrolysis and recyc-
ling of the ligand-free receptor back to the plasma membrane. In-
ternalization is speculated to occur through a clathrin-dependent
mechanism, but this has not been demonstrated. NPs are also
degraded by extracellular proteases (Figure 2). NEP, the most
important one, was initially discovered in rabbit kidney brush
border membranes as a metalloenzyme that degrades the insulin
β-chain [121] and subsequently as an enkephalinase and β-
amyloid-degrading enzyme [122]. NEP is a zinc-containing,
membrane-bound, ectoenzyme that cleaves substrates on the
amino side of hydrophobic residues [121]. ANP-degrading activ-
ity in solubilized rat membranes co-purifies with NEP and is
blocked by specific NEP inhibitors [123].

Purified NEP binds and degrades NPs similarly to other pep-
tide hormones such as Ang-II [124]. Seven ANP cleavage sites
were identified, but the initial attack occurs between Cys7 and
Phe8, breaking the ring and inactivating the peptide [125]. NEP
also efficiently cleaves CNP at multiple sites and, as with ANP,
the initial cleavage site is between the conserved cysteine and
the phenylalanine residues [126]. The ring structures of both
ANP and CNP are essential for hydrolysis, because reduction
and alkylation of the peptides greatly reduced degradation. In
contrast with ANP or CNP, which have one or zero amino
acid differences between human and rodent forms, BNP var-
ies greatly among species [127]. Studies with purified enzymes
indicated that BNP is a poorer substrate for human or porcine
NEP than ANP or CNP. NEP cleaves human BNP at M5-V6

and R17-I18, but not at the conserved C10-F11 bond [128]. NEP-
dependent degradation of BNP is species-specific. Although NEP
accounts for most of the BNP-degrading activity in rat kidney
membranes, NEP inhibitors failed to block BNP degradation by
human kidney membranes, suggesting that NEP is not a sig-
nificant regulator of BNP concentrations in the human kidney
[129,130].

ANP is also cleaved by insulin-degrading enzyme (IDE), a
zinc metalloprotease that is found in both cytoplasmic and mem-
brane fractions and has diverse substrate specificity [131] (Fig-
ure 2). On the basis of competition with insulin for ANP degrad-
ation and a partial amino acid sequence of the 112-kDa protein,
IDE was suggested to be an ANP-degrading enzyme [132]. Pro-
teolysis of rat ANP, porcine BNP-26 and CNP with purified IDE
revealed that ANP is the preferred substrate [133].

The relative contributions of NPR-C and NEP to ANP de-
gradation have been investigated in a number of animal sys-
tems, with various NPR-C-blocking peptides and NEP inhibitors.
Under normal conditions, infusion of NPR-C-blocking peptides
has an effect on circulating ANP concentrations and associated
physiological functions that is slightly greater than or equal to
that of various NEP inhibitors [134–137]. However, in all cases
examined, maximum ANP concentrations require inhibition of
both degradation pathways. In pathological or pharmacological
scenarios where NP concentrations are elevated and NPR-C may
be saturated, NEP plays a more significant role in ANP de-
gradation [138]. Both NPR-C and NEP pathways contribute to
the degradation of BNP and CNP as well, although the exact
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contribution of each pathway to BNP concentrations is unclear
[129]. NEP inhibition reduced CNP clearance by the kidney but
not the lung, suggesting that NEP significantly contributes to
CNP degradation in some but not all tissues.

THE NATRIURETIC PEPTIDE SYSTEM IN
HEART FAILURE

Congestive HF is a complex syndrome characterized by sodium
and water retention. A decrease in cardiac output and effective
intra-arterial volume leads to renal retention of sodium and water
despite expansion of the extracellular fluid volume. This phe-
nomenon occurs in the presence of a progressive activation of the
NP system [139]. However, this response is apparently insuffi-
cient to counteract the activation of vasoconstriction and sodium
retention of RAAS and SNS [140,141].

Several clinical and experimental studies have implicated both
ANP and BNP in the pathophysiology of the deranged cardi-
orenal axis in HF. Early studies have shown that ANP release
in response to acute volume overload or chronic salt loading
are impaired in asymptomatic patients with cardiomyopathy and
LV dysfunction [4,142]. This impairment of ANP adaptation to
volume challenge in the early stages of HF is associated with
blunted natriuretic, vasodilator and renin–aldosterone suppress-
ing actions. Therefore, this hormonal abnormality may play a
role in the progression of sodium retention and vasoconstriction
in HF. It is interesting that pre-treatment with RAAS-inhibiting
drugs, such as ACE inhibitors, may partially restore the ANP
secretagogue response to volume expansion in HF [126] and that
pre-treatment with an ARB may preserve the natriuretic and renal
vasodilating capacity of ANP in the same condition [5].

Although initially considered to be a state of ANP deficiency,
it soon became evident that in HF plasma levels of ANP are sys-
tematically elevated and positively correlated with the severity of
the disease, as well as with the elevated atrial pressure and other
parameters of LV dysfunction [143]. The highest concentrations
of ANP in the circulation occur in advanced stages of HF and the
high levels of plasma ANP are attributed to increased right-sided
heart production rather than to decreased clearance. Although
volume-induced atrial stretch is the main source for the elevated
circulating ANP levels in HF, enhanced synthesis and release
of the hormone by the ventricular tissue in response to Ang-II
and endothelin contribute to this phenomenon [144,145]. Vagal
stimulation linked to circulatory baroreflex control or to cardiac
mechanoreceptor modulates ANP production and release from
the heart [94,140,141]. As mentioned above, even the highest
levels of circulating NPs due to massive cardiac secretion in ad-
vanced end stage congestive HF may indeed be insufficient to
counteract the over-stimulation of the anti-natriuretic and vaso-
constrictive neurohormonal system (SNS and RAAS) thus char-
acterizing HF as a state of neurohormonal imbalance. Moreover,
this has also been observed in models characterized by overstim-
ulation of RAAS or high levels of Ang-II [146].

Despite the high levels of this potent natriuretic and diuretic
agent, patients and experimental animal models with HF retain

salt and water due to attenuated renal responsiveness to NP. In
patients with HF [147] and in dogs with HF [148], ANP acts as
a counter-regulatory hormone to SNS, RAAS and vasopressin.
Infusion of pharmacological doses of synthetic ANP to experi-
mental animals [149] and also to patients with HF [150] has con-
sistently demonstrated an attenuated renal response compared
with normal control subjects. This could be linked to a down-
regulation of NP receptors in a condition of overstimulation of
RAAS [81–83]. However, other beneficial effects accompany the
infusion of ANP to patients with HF, such as haemodynamic
improvement and inhibition of activated neurohumoral systems
[151]. In fact, despite the blunted renal response to ANP in HF,
elimination of this peptide by surgical means aggravates the ac-
tivation of these vasoconstrictive hormones in this disease state.
For instance, elimination of ANP source in dogs with HF due
to rapid pacing by atrial appendectomy resulted in substantial
increments in plasma renin activity and plasma norepinephrine,
as well as marked sodium and water retention [152]. The activa-
tion of these systems was less profound in dogs with HF that did
not undergo appendectomy, suggesting that ANP plays a critical
role as a suppressor of sodium-retaining systems. Therefore, the
increase in circulating NP, albeit insufficient to preserve sodium
and water balance, is still considered an important adaptive or
compensatory mechanism aimed at reducing peripheral vascular
resistance and effective blood volume. The initial chronic phase
of HF, which is characterized by sodium balance despite cardiac
dysfunction, has been attributed to the elevated levels of ANP
and BNP [153].

This notion is supported by the findings that inhibition of NPR
in experimental HF induces sodium retention [154]. Furthermore,
NPs inhibit the systemic vasoconstrictive effect of Ang-II [155],
Ang-II-stimulated proximal tubule sodium re-absorption [156],
Ang-II-enhanced secretion of aldosterone and the secretion of
endothelin [157]. Therefore, NPs in HF act as an ideal counter-
regulatory mechanism, influencing renal blood flow (RBF) and
sodium excretion either through their direct renal actions or
through inhibition of release or action of other vasoconstrict-
ive agents. Moreover, beside these cardiovascular and endocrine
effects, NPs probably play an important role in promoting salt and
water excretion by the kidney in HF. Indeed, studies in an experi-
mental model of HF have demonstrated that inhibition of the NP
by either specific antibodies to their receptors or the NPR-A ant-
agonist HS-142-1 causes further impairment in renal function, as
expressed by increased renal vascular resistance and decreased
GFR, RBF, urine flow, sodium excretion and activation of the
RAAS [158].

Moreover, the unexpectedly small physiological responses to
the apparently high levels of BNP previously observed in patients
with HF may be because most of the BNP detected using conven-
tional diagnostic assays is less biologically active. Consequently,
HF may in fact represent a deficient state of biologically-active
NP. The raised levels of biologically-inactive BNP detected in
chronic HF may reflect a potential abnormality in the processing
of NP, leading to a deficiency of mature BNP [159]. The increased
expression of myocardial NEP mRNA in patients with HF, lead-
ing to an accelerated degradation of NPs, supports the hypothesis
that a deficiency of NP may be present in HF [160].

63c© 2016 The Author(s) This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0

http://creativecommons.org/licenses/by/3.0/


M. Volpe, M. Carnovali and V. Mastromarino

The fact that the NP system plays a favourable role, coun-
teracting the adverse effects of sodium-retaining and vasocon-
strictive hormonal systems in HF, provides a rationale for the
use of these peptides as therapeutic tool in this disease. Thus,
either increasing the activity of the NP or reducing the influence
of the anti-natriuretic systems by pharmacological means may
achieve a favourable shift in the balance of sodium excretion
and vasodilation in HF. In the interplay between the RAAS and
ANP in HF, the approaches used in experimental and clinical
medicine have included the decrease in the activity of the RAAS
by means of ACE inhibitors, ARBs and MRA or increasing the
activity of ANP or its second messenger, cGMP or a combination
of both approaches.

EXPLORING PHARMACOLOGICAL
APPROACHES TO ENHANCE NATRIURETIC
PEPTIDE EFFECTS IN HEART FAILURE

We discuss now previous pharmacological attempts to modulate
NP in humans and, particularly, to develop new tools to exploit
the theoretical advantages of raising NPs in HF.

Exogenous natriuretic peptides and analogues
The first obvious strategy was based on exogenous NP or ana-
logues administration. In fact, intravenous administration of ANP
to patients with acute HF improved their clinical status [153].
Carperitide, a human recombinant form of ANP, was approved
as an intravenous agent for the treatment of acute decompensated
HF [127]. However, the short half-life restricted its routine use,
prompting the development of novel forms of ANP that are more
resistant to enzymatic degradation compared with both native
and recombinant forms.

M-ANP is a 40-amino acid peptide consisting of the nat-
ive 28-amino acid ANP with a 12-amino acid extension to the
C-terminal. The extended C-terminal of M-ANP provides greater
resistance, compared with native ANP, to NEP and IDE degrada-
tion and does not impair binding to NPR-A and cGMP generation
[161]. In vivo studies in canines demonstrated that M-ANP pos-
sesses a greater blood pressure lowering effect than ANP. It also
augments RBF and GFR (despite reductions in blood pressure),
promotes natriuresis and diuresis and suppresses RAAS [161].
Recently, in a canine model of HF and acute vasoconstrictive
hypertension, M-ANP was shown to possess an acute vasodilator
effect similar to nitroglycerin; unlike nitroglycerin, M-ANP im-
proves renal function through significant increases in RBF and
GFR and inhibits aldosterone activation [162]. Based on these
experimental results, M-ANP has now entered a clinical devel-
opment programme for further testing.

Nesiritide, a recombinant form of human BNP, has been shown
to decrease pulmonary capillary wedge pressure, to provide im-
provements in the global clinical status reducing dyspnoea and
fatigue compared with placebo [163]. Nesiritide was approved
for the treatment of acute decompensated HF in the USA in 2001
[127]. Subsequent reports of an increased risk of worsening renal
function and death compared with control therapy raised doubts
on its safety [164]. The Acute Study of Clinical Effectiveness

of Nesiritide in Decompensated Heart Failure (ASCEND-HF)
trial demonstrated that nesiritide had no impact on the rate of
death, nor was it associated with worsening renal function [165].
However, nesiritide was associated with increased rates of hypo-
tension. Together with its short bioavailability, this may represent
a limitation for the routine use of the drug in clinical practice
[165,166].

Cenderitide–NP (CD–NP), is formed by the fusion of nat-
ive human CNP with a C-terminal sequence of dendroaspis NP
(DNP) found in snake venom [167]. CD–NP is less suscept-
ible to degradation by NEP than native NPs [168]. In a canine
model, CD–NP elicited potent natriuretic and diuretic responses,
increased GFR, inhibited renin and induced less hypotension than
BNP. The anti-fibrotic actions of CD–NP have been demonstrated
in vivo in an experimental rat model of early cardiac fibrosis [169].
In patients with chronic HF, subcutaneous infusion of CD–NP has
previously been shown to provide a dose-dependent reduction in
systolic blood pressure and to be well tolerated [170]. CD–NP is
currently undergoing phase II clinical trials for chronic therapy
in patients with post-acute HF. CU–NP, an alternative version of
CD-NP, is constructed using a core component of native human
CNP and the C- and N-terminal of urodilatin, a NP of renal origin
that predominantly interacts with the NPR-A [171]. Preliminary
in vivo data in a canine model have suggested that CU–NP may
mediate beneficial cardiac and renal effects, reducing pulmon-
ary capillary wedge pressure and right atrial pressure, inducing
natriuresis, increasing GFR and suppressing RAAS [172].

Neprilysin inhibition in treatment of heart failure
A second, more sound strategy is based on the pharmacological
enhancement of endogenous NP level. Although this effect can
be obtained by blocking clearance NPR receptors or by the in-
hibition of IDE, the pharmacological approach more frequently
used in experimental models and in humans is represented by
NEP inhibition.

In evaluating the clinical effects of NEP inhibition it is ne-
cessary to consider that in addition to the NP, NEP has many
other substrates [173,174], with biological conflicting activity on
vascular smooth muscle cell tone and renal excretion of sodium
and water, including Ang-I [175], Ang-II [176], kinin peptides,
substance P, adrenomedullin, endothelin, chemotactic peptide,
enkephalins and the amyloid-β (Aβ) peptide [177]. NEP may
also contribute to the formation of endothelin from its precursor
big endothelin, although endothelin-converting enzyme (ECE)
probably plays a more important role in endothelin formation
[178].

For patients with HF, of particular importance are the effects
of NEP inhibition on RAAS and kinin peptides, systems that are
also modulated by ACE-inhibitors (Figure 3A).

NEP inhibition may increase levels of the vasoconstrictor
Ang-II and reduce levels of the vasodilator Ang-(1–7) [179].
In addition, both animal and clinical studies show that NEP in-
hibition impairs the metabolic clearance of Ang-II and increases
plasma levels of Ang-I, Ang-II, aldosterone and catecholamines
[180,181].

Moreover, NEP plays a major role in the metabolism of kinin
peptides [182] and increased urinary kinin peptide levels may
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Figure 3 Effects of NEP activity on NP, RAAS and bradykinin system (A) and consequences of NEP inhibition (B),
vasopeptidase inhibition (C) and ARNI (D) on the same systems
Abbreviation: BK: bradykinin.

contribute to the natriuretic effects of NEP inhibition [183].
Kinins may also mediate the cardiac effects of NEP inhibition.
NEP inhibition impairs kinin metabolism in the heart [181] and
kinin receptor antagonism prevents the protective effects of NEP
inhibition in animal models of ischaemia-reperfusion injury in the
heart [184,185] and in isoproterenol-induced myocardial hypop-
erfusion [186]. Finally, since NEP is involved in the degradation
of the Aβ peptides, which are implicated in the development of
Alzheimer’s disease, concerns have been raised that NEP inhib-
ition might produce an accumulation of Aβ peptides in plaque-
like deposits in the brain [187], although studies up to 5 years of
follow-up have not supported this concern. Despite the favour-
able expectation related to the enhancement of the NP effects
obtained through inhibition of NEP, clinical results obtained with
multiple pharmacological intervention strategies used in the past
have not prompted favourable clinical results in patient with HF,
probably due to the concomitance of the effects that the inhibition
of NEP induces on other systems [179], particularly RAAS and
the kinin system.

Neprilysin inhibitors
The effects on blood pressure of a NEP inhibitor alone are quite
variable. There may be no change, a decrease or an increase in
blood pressure of normotensive and hypertensive human subjects
in response to NEP inhibition [188–190].

The variable effect of NEP inhibition on blood pressure and
systemic vascular resistance is likely to be related to the multiple
actions of NEP on many different vasoactive peptides. Increased
blood pressure during candoxatril treatment, a pure NEP
inhibitor, in healthy volunteers was associated with an increase
in plasma Ang-II and endothelin levels [191]. In hypertensive
patients candoxatril did not produce clinically favourable effects
[192] probably because the negative haemodynamic effects
linked to activation of RAAS counteracted the positive effects
related to raising NP (Figure 3B). Also, in patients with HF, the
haemodynamic effects of candoxatril were not favourable, with
an increase in peripheral vascular resistance and a stroke volume
decrease [193].

As a result of neutral or negative clinical data obtained in hy-
pertensive patients and, in HF, the clinical use of a NEP inhibitor
alone was discouraged.

Taking together, the overall complex biological effects due
to NEP inhibition and the unfavourable results obtained in the
past, it was reasonable to try different strategies, such as NEP
inhibitors, NEP inhibitors associated with an ACE inhibitor or
vasopeptidase inhibitors.

Neprilysin inhibitors associated with an
angiotensin-converting enzyme inhibitor
Addition of NEP inhibition to ACE inhibition produced in-
deed greater inhibition of bradykinin metabolism and higher
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bradykinin levels than those seen with either ACE or NEP in-
hibition alone [176]. The increased kinin peptide levels may con-
tribute to the natriuretic, hypotensive and cardioprotective effects
of addition of NEP inhibition to ACE inhibition. However, given
the recognized role of kinin peptides in ACE inhibitor-induced
angioedema [194,195] the additional downgrading of kinin meta-
bolism by NEP inhibition would be predicted to increase the oc-
currence of angioedema. In addition, by increasing Ang-II levels
and reducing Ang-(1–7) levels NEP inhibition may counteract
any benefit of ACE inhibition that depends on reduced Ang-II
levels and increased Ang-(1–7) levels.

Despite the potential advantages of the association between
ACE inhibitor and NEP inhibitor, the clinical results obtained
have not confirmed any usefulness of this therapeutic approach.

In particular, for patients with HF, the addition of the NEP
inhibitor ecadotril to standard therapy, including ACE inhibition,
produced no evidence of improvement in signs or symptoms
[196]. Of particular concern was the occurrence of aplastic an-
aemia in several patients, which was attributed to the thioester
group on the ecadotril molecule [197]. As a result of non-positive
clinical data obtained, also this pharmacological option was
abandoned.

Vasopeptidase inhibitors
Several dual ACE/NEP inhibiting molecules have been developed
[198–200]. In assessing the results obtained with the so called
vasopeptidase inhibition it is important to consider that the sep-
arate titration of ACE and NEP inhibition is not possible when
both are mediated by a single molecule because the ratio of ACE
to NEP inhibition is fixed (Figure 3C). It is therefore important to
assess whether dual ACE/NEP inhibitors have therapeutic effects
different from ACE inhibition alone.

The most extensively investigated dual ACE/NEP inhibitor
was omapatrilat (BMS-186716). The initial experience with this
compound was very promising, due to its potent blood pres-
sure lowering effect. Then omapatrilat was tested in HF. In the
Omapatrilat Versus Enalapril Randomized Trial of Utility in
Reducing Events (OVERTURE) study 5770 patients with New
York Heart Association (NYHA class II–IV HF were random-
ized to treatment with either enalapril [10 mg twice daily (BID)]
or omapatrilat (40 mg once daily) for a mean of 14.6 months
[201]. Enalapril or omapatrilat were added to conventional ther-
apy that included β-blockers in 50 % of patients. The primary
end-point of combined risk of death or hospitalization for HF
requiring intravenous treatment was not different for the two
treatment groups. A reasonable explanation for the failure of
omapatrilat to produce obvious advantages compared with ACE
inhibitor was the short duration of NEP inhibition produced by
this compound [202]. Although it may be argued that a higher
dosage or BID dosage may have increased the benefits obtained
with omapatrilat in HF, it could also be claimed that a higher
dosage of enalapril may similarly increase the benefits from ACE
inhibition alone. Angioedema was reported in similar propor-
tions of omapatrilat-treated (0.8 %) and enalapril-treated patients
(0.5 %). The slightly higher incidence of angioedema especially
in the Afro-American population raised concerns and was shown
later to be more relevant in hypertensive patients. In the OCTAVE

study [203], angioedema was reported in 2.2 % of patients receiv-
ing omapatrilat and in 0.7 % of patients receiving enalapril. The
high rate of angioedema in hypertensive patients and the non-
superiority compared with ACE inhibitor in patients with HF led
to the interruption of the clinical development of omapatrilat.

Angiotensin receptor neprilysin inhibition and ARB
combination with LCZ696 (sacubitril/valsartan)
compound
Quite recently, a novel pharmacological approach based on the
combination of Ang receptor NEP inhibitor (ARNI) has been
developed with the rational to generate a novel tool to target
NP enhancement and RAAS blockade without increasing side
effects, thus overcoming the drawbacks and failures encountered
with the strategies described above (Figure 3D).

LCZ696, a first-in-class ARNI, comprises molecular moiet-
ies of valsartan, a well-established ARB [204] and of the NEP
inhibitor prodrug sacubitril (AHU377), which is metabolized to
the active NEP inhibitor LBQ657 by enzymatic cleavage of its
ethyl ester [205]. LCZ696 is a novel single molecule in which
the molecular moieties of valsartan and the molecular moieties
of AHU377 are present in a 1:1 molar ratio. Pre-clinical stud-
ies in rats and dogs, performed by the producer and reported in
the Investigator Brochure, demonstrated that inhibition of NEP
enzyme activity and the AT1 (Ang II receptor type 1) receptor
through LCZ696 increase the levels and effects of ANP while
blocking the actions of Ang-II. This produces dose-related and
long-lasting vasodilatory effects after single and multiple oral
administrations, along with beneficial and protective effects on
renal, vascular and cardiac tissue in rat models of hypertension,
myocardial infarction and organ injury.

The bioavailability studies demonstrated that systemic expos-
ure to valsartan following a single 400 mg of oral dose of LCZ696
was equivalent to that following administration of 320 mg of
valsartan, a dose that has proven anti-hypertensive efficacy in
clinical trials [166]. Analysis of dose-normalized pharmacokin-
etic data from either pre-clinical or clinical studies showed that
the exposure of valsartan following administration of LCZ696
was approximately 40 % higher than the exposure following ad-
ministration of valsartan alone.

Inhibition of NEP activity increases levels of ANP, which in
turn stimulates the synthesis of cGMP via guanylate cyclase-
linked receptors. Pre-clinical pharmacodynamic studies demon-
strated a rapid and dose-dependent increase in plasma ANP
immunoreactivity following oral administration of LCZ696,
whereas multiple-dose administration of LCZ696 in the dose
escalation study in healthy participants significantly increased
plasma cGMP levels [206]. These findings are consistent with
inhibition of NEP activity.

LCZ696 stimulated significant dose-dependent increases in
renin concentration, plasma renin activity and Ang-II concen-
tration compared with placebo, indicative of blockade of the
AT1 receptor by LCZ696. Notably, LCZ696 (200 mg) increased
renin concentration by 3.1-fold, plasma renin activity by 4.9-fold
and Ang-II by 3.7-fold relative to placebo. These increases are
of a similar order of magnitude to those observed previously
with administration of valsartan 320 mg in healthy participants
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Figure 4 Current therapeutic approaches for HF and the novel role of ARNI

not receiving a low-sodium diet [207,208]. Significant increases
in all RAAS biomarkers were sustained 24 h after LCZ696
administration, consistent with the observed long plasma half-
life of valsartan (15–22 h).

Pharmacokinetic data from the clinical dose escalation study
showed that the peak concentrations of valsartan and LBQ657
were reached at about the same time following both single- and
multiple-dose LCZ696 administration (1.5–4.5 h). This is reflec-
ted in the similar time-frame observed for pharmacodynamic
effects, with the peak concentrations for both cGMP and RAAS
biomarkers reached within 4 h after dosing with multiple-dose
administration.

The concurrent effects of LCZ696 on NEP inhibition and
AT1 receptor blockade may have synergistic benefits for clinical
efficacy in hypertensive patients and also in patients with HF
(Figure 4).

The Prospective comparison of ARNI with ARB on Manage-
ment Of heart failUre with preserved ejectioN fracTion (PARA-
MOUNT) trial was a phase II study that evaluated the efficacy
and safety profile of LCZ696 compared with valsartan in patients
with chronic HF and preserved ejection fraction (HFpEF) [209].
NT-proBNP, a marker of LV wall stress associated with adverse
outcomes in patients with HFpEF, was significantly reduced from
baseline by LCZ696 compared with valsartan. The study also as-
sessed the effect of LCZ696 on left atrial structure and function
by measuring left atrial dimension, volume and volume index.

An enlarged left atrium is a characteristic finding in patients with
HFpEF and it reflects sustained increases in LV filling pressures.
These parameters were significantly reduced from baseline to a
greater extent in patients treated with LCZ696 compared with
those treated with valsartan, thus indicating reverse left atrial re-
modelling. The tolerability profile of LCZ696 was satisfactory
and similar to that of valsartan.

The effect of LCZ696 on outcomes compared with enalapril
in patients with HFrEF (heart failure with reduced ejection frac-
tion) was evaluated in the Prospective comparison of ARNI with
ACEI to Determine Impact on Global Mortality and morbidity in
Heart Failure (PARADIGM-HF) trial [210]. Eligibility require-
ments at screening included an age of at least 18 years, NYHA
class II, III or IV and an ejection fraction of 35 % or less. Pa-
tients were required to have a plasma BNP level of at least 150
pg/ml (or an NT-proBNP level � 600 pg/ml) or, if they had been
hospitalized for HF within the previous 12 months, a BNP of
at least 100 pg/ml (or an NT-proBNP � 400 pg/ml). Patients
taking any dose of an ACE inhibitor or ARB were considered
for participation, but for at least 4 weeks before screening, pa-
tients were required to take a stable dose of a β-blocker and an
ACE inhibitor (or ARB) equivalent to at least 10 mg of enalapril
daily.

Patients eligible were randomly assigned in a 1:1 ratio to
double-blind treatment with either enalapril (at a dose of 10 mg
BID) or LCZ696 (at a dose of 200 mg BID)
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The primary outcome was a composite of death from cardi-
ovascular causes or a first hospitalization for HF. The secondary
outcomes were the time to death from any cause, the change from
baseline to 8 months in the clinical summary score on the Kansas
City Cardiomyopathy Questionnaire (KCCQ) [211], the time to a
new onset of atrial fibrillation and the time to the first occurrence
of a decline in renal function.

Patients (4187) were randomly assigned to receive LCZ696
and 4212 to receive enalapril for the intention-to-treat ana-
lysis. Death from cardiovascular causes or hospitalization for
HF (the primary end point) occurred in 914 patients (21.8 %) in
the LCZ696 group and 1117 patients (26.5 %) in the enalapril
group [hazard ratio in the LCZ696 group, 0.80; 95 % confid-
ence interval (CI), 0.73–0.87; P < 0.001 (exact P = 4.0 × 10−7)].
The difference in favour of LCZ696 was seen early in the trial
and at each interim analysis. A total of 558 deaths (13.3 %)
in the LCZ696 group and 693 (16.5 %) in the enalapril group
were due to cardiovascular causes (hazard ratio, 0.80; 95 % CI,
0.71–0.89; P < 0.001). Of the patients receiving LCZ696, 537
(12.8 %) were hospitalized for HF, as compared with 658 pa-
tients (15.6 %) receiving enalapril (hazard ratio, 0.79; 95 % CI,
0.71–0.89; P < 0.001).

A total of 711 patients (17.0 %) in the LCZ696 group and
835 patients (19.8 %) in the enalapril group died (hazard ratio
for death from any cause, 0.84; 95 % CI, 0.76–0.93; P < 0.001).
The effect of LCZ696 was consistent across all pre-specified
representative population sub-groups.

The mean change from baseline to month 8 in the KCCQ
clinical summary score was a reduction of 2.99 points in the
LCZ696 group and a reduction of 4.63 points in the enalapril
group (between-group difference, 1.64 points; 95 % CI, 0.63–
2.65; P = 0.001).

Patients in the LCZ696 group were more likely than those in
the enalapril group to have symptomatic hypotension, but these
events rarely required the discontinuation of treatment. In con-
trast, cough, a serum creatinine level of 2.5 mg/dl (221 μmol/l) or
more and a serum potassium level of more than 6.0 mmol/l were
reported less frequently in the LCZ696 group than in the enalapril
group (P < 0.05 for all comparisons). There were no statistically
significant differences between LCZ696 and enalapril in the in-
cidence of angioedema (global non-hospitalized plus hospital-
ized 0.4 % compared with 0.3 % respectively) and, in particular,
there were no cases in either group which resulted in airway
compromise. Fewer patients in the LCZ696 group than in the
enalapril group stopped their study medication because of an ad-
verse event (10.7 % compared with 12.3 %, P = 0.03) or because
of renal impairment (0.7 % compared with 1.4 %, P = 0.002).

In conclusion, LCZ696 was superior to ACE inhibition at
recommended doses in reducing the risks of death and of
hospitalization for HF. The magnitude of the beneficial effect
of LCZ696, as compared with enalapril on cardiovascular mor-
tality, was at least as large as that of long-term treatment with
enalapril, as compared with placebo (Figure 5). According to a
secondary analysis, LCZ696 prevented the clinical deterioration
or progression of surviving patients in terms of required treatment
intensification of therapy, hospital visits or admissions and use
of advanced management modalities (inotropes, assist devices,

Figure 5 Ang NEP inhibition with LCZ696 doubles beneficial ef-
fect on cardiovascular death of current inhibitors of the renin–
Ang system

transplantation) more effectively than did enalapril. Moreover,
levels of both urinary cGMP and plasma BNP were higher dur-
ing treatment with LCZ696 than with enalapril, reflecting the
fact that the peptides, whose levels are enhanced by NEP in-
hibition, are active and bind receptors leading to enhancement
of cGMP. In contrast, in comparison with enalapril, patients re-
ceiving LCZ696 had consistently lower levels of NT-proBNP
(reflecting reduced cardiac wall stress) throughout the trial. The
divergent effects of LCZ696 on the two types of NPs can be
explained by the fact that BNP (but not NT-proBNP) is a sub-
strate for NEP; thus, levels of BNP will reflect the action of
the drug, whereas levels of NT-proBNP will reflect the effects
of the drug on the heart [212] On the basis of these res-
ults, LCZ969 has been recently approved by the Food and
Drug Administration (FDA) for the treatment of HFrEF; trade
name is Entresto (http://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/ucm453845.htm).

The potential clinical relevance of these data is evident and
these results may represent a new standard of treatment threshold
for patients with HF [213]. However the extent of clinical benefits
obtained with LCZ696, in many ways unexpected, at least for the
observed size, poses questions about the biological plausibility of
the results, which must be answered also in relation to previous
experiences of pharmacological modulation of the NP system in
patients with HF.

In spite of the obvious biological plausibility of the effects
of LCZ969 on the NP system and RAAS in HF to explain the
beneficial clinical findings, further work will be required to in-
vestigate these aspects in deeper detail. Among the various poten-
tial mechanisms that have been discussed after the publication of
PARADIGM-HF, it seems unlikely, based on the previous clinical
comparison between ACE inhibitors and ARBs that the benefits
of LCZ696 are due to the ARB component of the ARNI by it-
self. In fact, in ELITE (Evaluation of Losartan in the Elderly
study), VALIANT (VALsartan In Acute myocardial iNfarcTion),
VAL-HEFT (Valsartan Heart Failure Trial) and CHARM (Can-
desartan in Heart failure - Assessment of moRtality and Morbid-
ity) [14,214–217], ARB were never superior to ACE inhibitors.
For similar reasons, a fundamental role of the NEP inhibitor act-
ing as a diuretic added to the ARB can be excluded. The role
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of increased NP levels in the blood by itself also does not seem
to represent a reasonable mechanism, in view of the negative
results on outcomes of NEP inhibitors and vasopeptidase inhibit-
ors. Nonetheless, it may be important that the presence of higher
levels of NP are able to bind NPR-A receptors and to produce
the biological response. In this regard, a role could also be played
by a greater availability of NPR-A to be coupled by higher act-
ive NP and activate the guanylate cyclase pathway with a higher
production of cGMP, which appears indeed to be the case in a
sub-population of the PARADIGM-HF in which urinary cGMP
was measured and indeed it was selectively increased in the group
treated with LCZ696 [218]. The concomitant blockade of RAAS
by the ARB valsartan may have partially antagonized the NPR-A
down-regulation described in HF, given the interactions between
the Ang-II and NP intracellular signalling pathways [219–222].
Finally, a role of the blood pressure lowering effect of LCZ696
cannot be completely ruled out, which may unload the heart and
produce clinical benefits. In this regard, the blockade of the AT-1
receptor, which counteracts the increase in Ang-II due to NEP
inhibition, by the concomitant ARB may play a relevant role.

Further studies are ongoing to analyse the clinical effects of
LCZ696 in patients with HFrEF and HFpEF. The Efficacy and
Safety of LCZ696 Compared to Valsartan, on Morbidity
and Mortality in Heart Failure Patients With Preserved Ejection
Fraction (PARAGON-HF) is a multicentre, randomized, double-
blind, controlled clinical study with the aim to evaluate the effect
of LCZ696 compared with valsartan in reducing the rate of the
composite end-point of CV death and total (first and recurrent)
HF hospitalizations in patients with HFpEF and NYHA class
II–IV. Secondary outcomes are cumulative number of events of
the extended composite end-point of CV death, total HF hospit-
alizations, total non-fatal strokes and total non-fatal myocardial
infarctions, change from baseline to month 8 in NYHA functional
class, time to new onset of atrial fibrillation and time to all-cause
mortality (https://clinicaltrials.gov/ct2/show/NCT01920711).

In addition, LCZ696 has been investigated in comparison with
olmesartan in patients with resistant hypertension, focusing on
the effects on central blood pressure (PARAMETER study) [223].

CONCLUSION

HF is a syndrome characterized by the activation of different
neurohormonal systems such as SNS, RAAS and NP. So far,
the therapeutic approach has been based on pharmacological in-
terventions to down-modulate RAAS, through ACE inhibitors
[193,196,201], ARBs and MRA and SNS through β-blockers. In
the last years, more attention has been paid to potential advant-
ages linked to the system of NP.

After the negative results of the study with NEP inhibitors,
alone or associated with an ACE inhibitor and vasopeptidase
inhibitors [193,196,201], recently, extremely encouraging res-
ults have been obtained with the new pharmacological class of
Ang receptor and NEP inhibitor, currently defined ARNI. In-
deed, LCZ696 produced a remarkable reduction in morbidity
and mortality compared with optimal treatment of HF includ-
ing enalapril up to a degree similar to that determined by the

ACE inhibitors when compared with placebo. The new pharma-
cological approach to manage HF, supported by the results of
PARADIGM-HF, may prompt a conceptual shift in the treatment
of HF, moving from the inhibition of RAAS and SNS to the tar-
geting of a neuro-hormonal re-balancing in HF. Further studies
are ongoing to analyse the clinical effects of LCZ696 in patients
with HFrEF and in patients with HFpEF (PARAGON-HF).
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Bartunek, J., Hetzer, R. and Regitz-Zagrosek, V. (2002) Neutral
endopeptidase is activated in cardiomyocytes in human aortic
valve stenosis and heart failure. Circulation 105, 286–289
CrossRef PubMed

161 McKie, P.M., Ichiki, T. and Burnett, Jr, J.C. (2012) M-atrial
natriuretic peptide: a novel antihypertensive protein therapy.
Curr. Hypertens. Rep. 14, 62–69 CrossRef PubMed

74 c© 2016 The Author(s) This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution License 3.0

http://dx.doi.org/10.1111/j.1432-1033.1991.tb16374.x
http://www.ncbi.nlm.nih.gov/pubmed/1836994
http://dx.doi.org/10.1021/bi00160a026
http://www.ncbi.nlm.nih.gov/pubmed/1445854
http://www.ncbi.nlm.nih.gov/pubmed/8770137
http://www.ncbi.nlm.nih.gov/pubmed/2565386
http://www.ncbi.nlm.nih.gov/pubmed/1531129
http://www.ncbi.nlm.nih.gov/pubmed/1415584
http://dx.doi.org/10.1023/A:1018941626731
http://www.ncbi.nlm.nih.gov/pubmed/8140057
http://dx.doi.org/10.1172/JCI112154
http://www.ncbi.nlm.nih.gov/pubmed/2932471
http://www.ncbi.nlm.nih.gov/pubmed/2956386
http://dx.doi.org/10.1161/01.CIR.80.4.883
http://www.ncbi.nlm.nih.gov/pubmed/2529058
http://dx.doi.org/10.1161/01.CIR.86.6.1800
http://www.ncbi.nlm.nih.gov/pubmed/1451252
http://dx.doi.org/10.1056/NEJM198608283150901
http://www.ncbi.nlm.nih.gov/pubmed/2942777
http://dx.doi.org/10.1038/ki.1992.197
http://www.ncbi.nlm.nih.gov/pubmed/1535399
http://dx.doi.org/10.1161/01.CIR.87.1.192
http://www.ncbi.nlm.nih.gov/pubmed/8419007
http://dx.doi.org/10.1016/j.regpep.2011.05.005
http://www.ncbi.nlm.nih.gov/pubmed/21616096
http://dx.doi.org/10.1016/0002-9149(89)90287-7
http://www.ncbi.nlm.nih.gov/pubmed/2521270
http://www.ncbi.nlm.nih.gov/pubmed/7611478
http://www.ncbi.nlm.nih.gov/pubmed/2142031
http://dx.doi.org/10.1172/JCI112723
http://www.ncbi.nlm.nih.gov/pubmed/2945832
http://dx.doi.org/10.1016/S0735-1097(87)80271-1
http://www.ncbi.nlm.nih.gov/pubmed/2958531
http://www.ncbi.nlm.nih.gov/pubmed/8945974
http://dx.doi.org/10.1016/S0025-7125(02)00181-5
http://www.ncbi.nlm.nih.gov/pubmed/12693735
http://dx.doi.org/10.1172/JCI117757
http://www.ncbi.nlm.nih.gov/pubmed/7883958
http://dx.doi.org/10.1056/NEJM198511213132106
http://www.ncbi.nlm.nih.gov/pubmed/2932646
http://dx.doi.org/10.1038/326697a0
http://www.ncbi.nlm.nih.gov/pubmed/2951600
http://www.ncbi.nlm.nih.gov/pubmed/8928891
http://dx.doi.org/10.1046/j.1365-2362.2003.01222.x
http://www.ncbi.nlm.nih.gov/pubmed/12925036
http://dx.doi.org/10.1093/eurheartj/ehs262
http://www.ncbi.nlm.nih.gov/pubmed/22942338
http://dx.doi.org/10.1161/hc0302.103593
http://www.ncbi.nlm.nih.gov/pubmed/11804980
http://dx.doi.org/10.1007/s11906-011-0244-5
http://www.ncbi.nlm.nih.gov/pubmed/22135207
http://creativecommons.org/licenses/by/3.0/


Natriuretic peptide system and heart failure

162 McKie, P.M., Cataliotti, A., Ichiki, T., Sangaralingham, S.J.,
Chen, H.H. and Burnett, Jr, J.C. (2013) M-atrial natriuretic
peptide and nytroglycerin in a canine model of experimental
acute hypertensive heart failure: a differential actions of 2
cGMP activating therapeutics. J. Am. Heart Ass. 3, e000206.
doi: 10.1161/JAHA.113.000206

163 Colucci, W.S., Elkayam, U., Horton, D.P., Abraham, W.T., Bourge,
R.C., Johnson, A.D., Wagoner, L.E., Givertz, M.M., Liang, C.S.,
Neibaur, M. et al. (2000) Intravenous nesiritide, a natriuretic
peptide, in the treatment of decompensated congestive heart
failure. Nesiritide Study Group. N. Engl. J. Med. 343, 246–253
CrossRef PubMed

164 Sackner-Bernstein, J.D., Kowalski, M., Fox, M. and Aaronson, K.
(2005) Short-term risk of death after treatment with nesiritide
for decompensated heart failure: a pooled analysis of
randomized controlled trials. JAMA 293, 1900–1905
CrossRef PubMed

165 O’Connor, C.M., Starling, R.C., Hernandez, A.F., Armstrong, P.W.,
Dickstein, K., Hasselblad, V., Heizer, G.M., Komajda, M.,
Massie, B.M., McMurray, J.J. et al. (2011) Effect of nesiritide in
patients with acute decompensated heart failure. N. Engl. J.
Med. 365, 32–43 CrossRef PubMed

166 vonLueder, T.G., Sangaralingham, S.J., Wang, B.H., Kompa,
A.R., Atar, D., Burnett, Jr, J.C. and Krum, H. (2013)
Renin-angiotensin blockade combined with natriuretic peptide
system augmentation: novel therapeutic concepts to combat
heart failure. Circ. Heart Fail. 6, 594–605 CrossRef PubMed

167 Schweitz, H., Vigne, P., Moinier, D., Frelin, C. and Lazdunski, M.
(1992) A new member of the natriuretic peptide family is
present in the venom of the green mamba
(Dendroaspisangusticeps). J. Biol. Chem. 267, 13928–13932
PubMed

168 Dickey, D.M. and Potter, L.R. (2011) Dendroaspis natriuretic
peptide and the designer natriuretic peptide, CD-NP, are
resistant to proteolytic inactivation. J. Mol. Cell. Cardiol. 51,
67–71 CrossRef PubMed

169 Martin, F.L., Sangaralingham, S.J., Huntley, B.K., McKie, P.M.,
Ichiki, T., Chen, H.H., Korinek, J., Harders, G.E. and Burnett, Jr,
J.C. (2012) CD-NP: a novel engineered dual guanylylcyclase
activator with anti-fibrotic actions in the heart. PLoS One 7,
e52422 CrossRef PubMed

170 Neutel, J., Rolston, W., Maddok, S., Goldsmith, S., Koren, M.,
Bill, V.A., Burnett, J. and Lieu, H.D. (2012) Initial experience
with subcutaneous infusion of cenderitide in chronic heart
failure patients. J. Am. Coll. Cardiol. 59, E1037 CrossRef

171 Hirsch, J.R., Meyer, M. and Forssmann, W.G. (2006) ANP and
urodilatin: who is who in the kidney. Eur. J. Med. Res. 11,
447–454 PubMed

172 Lee, C. and Burnett, Jr, J.C. (2007) Discovery of a novel
synthetic natriuretic peptide, CU-PN. J. Card. Fail. 13 6 Suppl.
2, S74 CrossRef

173 Erdos, E.G. and Skidgel, R.A. (1989) Neutral endopeptidase
24.11 (enkephalinase) and related regulators of peptide
hormones. FASEB J. 3, 145–151 PubMed

174 Roques, B.P., Noble, F., Daugé, V., Fournié-Zaluski, M.C. and
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