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Abstract

Significance: Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifi-
cations that have been linked to several crucial biological processes, among which are transcriptional silencing
and cell differentiation. Recent Advances: Deposition of these marks is catalyzed by H3K9 lysine methyl-
transferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in
favor of a functional crosstalk between these two major KMT families. Critical Issues: Here, we review the
current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on
their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles
played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting
how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders.
Future Directions: Histone methyltransferases are starting to be tested as drug targets. A new generation of
highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of
targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Antioxid. Redox Signal. 22, 1365–1381.

Introduction

Although all the cells within a multicellular organism
contain the same genetic material, each tissue and cell

type express only specific subsets of genes. How the same
genetic information is translated into different cellular iden-
tities is a process mainly regulated at the epigenetic level.
Epigenetic regulators and transcription factors (TFs) act to
organize the genome into accessible or closed regions fine-
tuning the proper transcriptional program in any given cell
type. As such, epigenetic regulation is fundamental to
maintain cell identity and the unique physical characteristics
and biological functions of specific tissues and organs. Im-
portantly, the epigenetic state of a cell is highly malleable,
evolving in an ordered manner, during cellular differentiation

and development of an organism, in response to environ-
mental changes.

Epigenetic processes are classically defined as those events or
phenotypes that are not associated to changes in the deoxy-
ribonucleic acid (DNA) sequence, but rather as heritable dif-
ferences in the packaging of DNA and chromatin. The DNA of
eukaryotic cells is finely organized within the nucleus, folded
into nucleosomes, the fundamental units of chromatin. Nu-
cleosomes comprise *147 bp of DNA wrapped around a his-
tone octamer of four highly evolutionary conserved core histone
proteins—H2A, H2B, H3, and H4. The N-terminal histone tails
protrude outside the nucleosome core and are subjected to
several post-translational modifications (PTMs), such as phos-
phorylation, acetylation, methylation, ubiquitination, or su-
moylation (150). These histone PTMs alter chromatin
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compaction and function, thus influencing a large number of
nuclear processes. Indeed, histone PTMs can, for example,
generate docking sites for, or influence the affinity of, chro-
matin-binding proteins with nucleosomes, therefore regulating
the binding of chromatin-modifying complexes and influencing
transcriptional status of the underlying DNA sequences (63).
Histone PTMs (i.e., lysine acetylation) can also directly alter
histone–DNA interactions by neutralizing the positive charges
of histone tails, thereby altering chromatin compaction. There-
fore, an appropriate balance of different histone PTMs is nec-
essary to finely regulate crucial nuclear and cellular functions.

One of the most studied histones’ PTMs is lysine meth-
ylation. Lysines can be mono-, di-, or tri-methylated. De-
pending on the degree of methylation, the specific lysine
residue that is methylated, and their localization within the
gene and the genome, different methylation states have been
associated with distinct nuclear functions and transcriptional
outcomes (14).

Depending on the biological context, some methylation
states may need to be stably maintained (i.e., methylation
involved in the stable repression of heterochromatin states),
while others need to be more dynamic and amenable to
change (i.e., during cellular differentiation or when cells re-
spond to environmental cues) (47).

Over the past decade, a number of major discoveries and
technological advances have emphasized the biological im-
portance of lysine-modifying enzymes and a plethora of
histone lysine methyltransferases (KMTs) and demethylases
have now been identified that mediate the addition or removal
of methyl groups from different lysine residues on histones
and non-histone substrates.

Histone lysine methylation can be found in both active and
inactive regions of chromatin. In particular, methylation of
histone H3 on lysine 4 or 36 (H3K4 and H3K36) is generally
associated with transcriptionally active genes, while meth-
ylation of lysine 27 of the histone H3 (H3K27) and lysine 9 of
the histone H3 (H3K9) are hallmarks of condensed chromatin
at silent loci.

Deposition of H3K27 and H3K9 methylation is achieved by
two major families of KMTs, Polycomb repressive complex 2
(PRC2) and H3K9 KMTs, respectively. These two histone
lysine methylation machineries play key roles in several cel-
lular and nuclear functions, such as cellular differentiation,
stem cell pluripotency, reprogramming, and genome stability.
Here we will review the current knowledge on the physio-
logical functions and mechanisms of action of these two main
epigenetic silencing pathways. We will discuss their role in
biological processes such as stem cell pluripotency and dif-
ferentiation, highlighting how their aberrant regulation might
often lead to several malignancies and diseases.

‘‘Histone’’ KMTs in Gene Silencing

H3K9 methyltransferases structure and enzymatic
activity

Methylation of H3K9 is mainly involved in gene repression
and heterochromatin formation and is achieved by different
KMTs (63). The most studied thus far, has been Suv39h1.
Suv39h1 not only plays major roles in the establishment of
pericentromeric heterochromatin and genome stability (116,
117, 121), but it has also been involved in de novo gene si-
lencing during differentiation (1, 75, 156). Accordingly,

Suv39h1 has been found to interact with de novo DNA me-
thyltransferases (70), strongly suggesting that it participates in
the establishment of facultative heterochromatin (116).

At the enzymatic level, Suv39h1 prefers mono- or di-
methylated H3K9 as a primary substrate to deposit dimethy-
lation (me2)- and trimethylation (me3) (116, 121), which
suggests cooperation with a mono- or dimethyltransferase.
Interestingly, a subset of Suv39h1 coexists in the same com-
plex with the other H3K9 KMTs, G9a/KMT1C/EHMT2, GLP/
KMT1D/EHMT1, and SETDB1/KMT1E, to functionally co-
operate in the regulation of gene silencing (46, 158).

Similar to Suv39h1, SETDB1 has been implicated in
H3K9me2/3 at euchromatic regions (33) and linked to both
gene silencing (13, 73, 75, 122, 162) and pericentric het-
erochromatin (18, 79, 173).

Other important H3K9 KMTs, which are becoming in-
creasingly studied given their emerging role in regulation of
gene silencing in several progenitor cells, are G9a and GLP
(137). G9a and GLP are mainly responsible for mono-
methylation (me1) and me2 of H3K9 in euchromatic regions
(146, 148). They exist predominantly as a G9a–GLP het-
erodimeric complex, which appears to be the functional
H3K9 mono- and di-methyltransferase in vivo (148). G9a and
GLP contain nearly identical Su(var)3–9 family Su(var)3–9
Enhancer-of-zeste Trithorax (SET) methyltransferase do-
mains, with which they bind and methylate H3K9me0/1, and
ankyrin repeat domains that create a methyl-lysine-binding
module that allows binding of H3K9 me1/me2 marks sepa-
rately from their catalytic domains (30) (Fig. 1). Thus, G9a
and GLP have distinct ‘‘reading’’ and ‘‘writing’’ functions
and can ‘‘read’’ their own marks and this may account for a
mechanism of nucleation and spreading of H3K9me2 marks
along chromatin (29). G9a/GLP loss abolishes methylated
H3K9 in euchromatic regions (123, 146), while H3K9 tri-
methylation (H3K9me3) seems unaffected and probably
maintained by Suv39h1 and/or SETDB1 (116, 123). How-
ever, some reports suggest that G9a/GLP might also be in-
volved in H3K9me3 deposition (37, 42, 46, 102, 160).

Despite G9a and GLP have been primarily described to
methylate H3K9; other histone targets also have been reported.
G9a/GLP can methylate both in vitro and in vivo the histone
linker H1, thereby mediating chromatin compaction by pro-
viding a recognition surface for the chromatin-binding proteins
heterochromatin protein 1 (HP1) and L3MBTL1 (154, 165).
Moreover, G9a is required for the me1 of H3K56, which acts as
a chromatin docking site for proliferating cell nuclear antigen,
thus regulating DNA replication (174). Intriguingly, G9a and
GLP have been reported to methylate both in vitro and in vivo
H3K27 (111, 145, 169). It is noteworthy that H3K9 and H3K27
lysines are embedded within a similar peptide motif, namely
Alanine-Arginine-Lysine-Serine (ARKS), making possible
their modification(s) by common enzymes. Indeed, in G9a or
GLP knock-out (KO) embryonic stem cells (ESCs), H3K27me1
levels decrease drastically (169). Interestingly, G9a-mediated
H3K27 methylation has been suggested to increase PRC2
enzymatic activity at least in vitro (92).

Beyond histones, G9a/GLP have been shown to methylate
a plethora of non-histone targets, including the tumor sup-
pressor p53, SIRT1, Reptin, MyoD, Wiz, CDYL and several
chromatin regulators (50, 67, 77, 88, 120). Moreover, G9a
methylates itself and this modification mediates its interac-
tion with HP1 and CDYL (127). Although the biological role
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of these non-histone methylations are still not well under-
stood, it is clear that G9a/GLP can regulate chromatin
functions at different layers, by either direct modification of
histones of chromatin-binding proteins, thus mediating re-
cruitment and activity of chromatin complexes.

H3K27 methyltransferases, PRC2 complex,
and enzymatic activity

Polycomb group (PcG) proteins form multimeric repres-
sive complexes in most metazoan species. Classically, PcG
complexes are divided into PRC1 and PRC2 (131).

In mammals, the core PRC2 complex is composed of four
proteins: Suppressor-of-Zeste 12 (Suz12), embryonic ectoderm
development (Eed), Retinoblastoma-Associated Protein 46/48,

the SET domain-containing proteins Enhancer-of-Zeste 2
(Ezh2/KMT6B), and 2 (Ezh2/KMT6A), which are the catalytic
subunits of the complex methylating H3K27 (140) (Fig. 2). All
the PRC2 core members are required for the formation of a
catalytically active PRC2 complex (21, 107). However, several
sub-stoichiometric components, Jarid2, Aebp2, Phf1, MTF2,
and Phf19, have been shown to interact with PRC2, suggesting
the existence of considerable interactions between PcG com-
plexes and chromatin regulators outside the strict definition of
the PcG. Although these ‘‘accessory’’ proteins do not seem to be
essential for PRC2 basal KMT activity, they appear to fine-tune
PRC2 activity and to modulate its recruitment (82, 140). Aebp2
is a Zinc finger protein that interacts with several components of
PRC2, enhances its enzymatic activity (21), and co-localizes
with PRC2 at some target genes (57). Pcl proteins, Pcl1/2/3

FIG. 2. PRC2 characterized domains. PRC2 core components: Ezh2 contains a catalytic SET domain; a CXC domain
(cystein-rich domain) is a CpG-rich binding domain; ncRBD, non-coding RNA-binding domain; SANT domains, which are
DNA/Protein-binding domains. Suz12 (Suz12-protein homolog) contains VEFS and Znf (C2H2-type zinc finger) domains,
which are DNA/Protein-binding domains. EED, RBBP4/7 (Retinoblastoma-binding protein 4/7 or RBAP48/46) contains
WD40, short *40 amino-acid motifs that mediate protein–protein interactions. JARID2 contains JmjN/C (for Jumonji), an
inactive demethylase domain, and two DNA binding domains (ARID and Znf). DNA, deoxyribonucleic acid; Eed, em-
bryonic ectoderm development; Ezh2, Enhancer-of-Zeste 2; PRC2, polycomb repressive complex 2; RbAp46/48, retino-
blastoma-associated protein 46/48; RNA, ribonucleic acid; SANT, switching-defective protein 3 (Swi3), adaptor 2 (Ada2),
nuclear receptor co-repressor (N-CoR), transcription factor (TFIIIB)

FIG. 1. G9a/GLP charac-
terized domains. G9a and
GLP consist of an N-terminal
domain with auto-methylation
site(s), the ankyrin repeats that
recognize H3K9me1–2 estab-
lished by its catalytic SET do-
main. G9a and GLP form
heterodimers through their
SET domains. me1, mono-
methylation; me2, dimethyla-
tion; SET, Su(var)3–9
Enhancer-of-zeste Trithorax.
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(Phf1, MTF2, and Phf19) interact with PRC2 through Ezh2 and
Suz12 (7, 95) and genome-wide studies revealed that Pcl2 (72,
161) and Pcl3 (7, 17) are found at PRC2 target genes. Different
functions have been attributed to Pcl proteins, from the regu-
lation of PRC2 enzymatic activity (95, 128) to its targeting (7,
17, 19, 161).

Jarid2 has been also strongly linked to PRC2 activity and
recruitment to chromatin. Jarid2 belongs to the Jumonji family
of proteins that catalyze lysine demethylation; however, Jarid2
itself seems devoid of enzymatic activity. Different groups
identified Jarid2 as a part of PRC2 complex and identified a
large genome-wide overlap (66, 72, 108, 113, 134). Jarid2 has
been shown to regulate PRC2 recruitment, but its function in
regulating PRC2 enzymatic activity is still a matter of debate.
H3K27me3 levels are only modestly affected by Jarid2
knockdown (66, 134), suggesting that Jarid2 might serve to
fine-tune PRC2 activity by inhibiting H3K27me3 deposition
(113, 134). However, further characterization of PRC2 enzy-
matic activity indicated that Jarid2 enhances PRC2 activity
under defined biochemical conditions (72).

PRC2 has been generally recognized to be responsible for
the deposition of me2 and me3 of H3K27 (H3K27me2/3)
(106), while its contribution in mediating H3K27me1 is still a
matter of debate (81, 135). Ezh1, the Ezh2 homolog, has been
suggested to play such a role (135) but its activity toward
H3K27 remains controversial (81). Although the evidence
that H3K27me1 levels remain unaffected after PRC2 disrup-
tion in vivo (23) suggests the existence of a H3K27 mono-
methyltransferase other than a known PRC2 component (92), a
recent report has directly implicated PRC2 in the genomic
distribution of H3K27me1 (43). This work demonstrates that
PRC2 controls all forms of H3K27 methylation, including
H3K27me1, and shows that H3K27me2 is actually the main
activity of PRC2 (43). Intriguingly, genomic localization of
the different H3K27 methylations (mono- di- and tri-) seems to
be mutually exclusive and regulates different genomic func-
tions. While H3K27me3 is mostly associated to CpG-rich
promoters (64, 85) and involved in cell-specific maintenance
of epigenetic silencing (87), H3K27me2 has been rather sug-
gested to exert a protective function by inhibiting the firing of
non-cell type-specific enhancers (43). In contrast, H3K27me1
has been shown to accumulate, in a PRC2-dependent manner,
in the bodies of actively transcribed genes (11, 43), thereby
promoting gene transcription (43). Intriguingly, Ezh1 has been
recently suggested to interact with ribonucleic acid (RNA)
polymerase II and promote RNA elongation, thus inducing
transcriptional activation of muscle-specific genes in differ-
entiating myoblasts (90). Although the role of Ezh1 in de-
positing H3K27me1 has been controversial (81, 135), the fact
that both Ezh1 and H3K27me1 localize on active regions leads
one to speculate that PRC2-Ezh1 might effectively contribute
to H3K27me1 deposition. However, their genome-wide co-
localization has been never explored thus far and further work
is needed to definitely address this question.

Targeting and Modus Operandi: The Case of PRC2
and G9a/GLP Cooperation

Chromatin targeting

How PRC2 and G9a/GLP are recruited to their target sites
in mammalian cells is still poorly understood and a matter of
intense debate in the field.

None of the PRC2 core members, neither G9a nor GLP,
possesses DNA-binding properties, suggesting that these
proteins have to rely on additional partners or mechanisms
to be targeted to chromatin. These mechanisms comprise
interactions with chromatin-binding molecules, sequence-
specific TFs, and non-coding RNAs.

Recognition of specific DNA sequences has been well
elucidated as a mechanism that recruits PcG proteins in
Drosophila. Indeed, in Drosophila, PcG proteins bind to the
so-called polycomb responsive elements (PREs), which
contain consensus sites for several TFs (94, 124, 130, 152).
Nonetheless, such a mechanism does not seem to be con-
served in mammals and the finding of DNA-specific con-
sensus sites targeted by PRC2 or G9a/GLP has been elusive.

Two recent reports have identified two specific DNA se-
quences that seem to function as PREs in mammals (141,
167). Sing et al. identified a murine PRE-like element that
regulates the MafB gene during neural development, defining
it as a critical 1.5 kb sequence element that is able to recruit
PRC1, but not PRC2, in a transgenic cell assay (141). Woo
et al. identified a 1.8 kb region of the human HoxD cluster
that recruits both PRC1 and PRC2 and represses a reporter
construct in mesenchymal tissues (167). Interestingly, in both
works, the PRE regions contain YY1 motifs. YY1 is the
mammalian homolog of Pho, whose role in PcG recruitment
has been well documented in flies (124, 130, 152). However,
YY1 does not seem to have a major role as a general PRC2
recruiting factor in mammals (64, 85, 159).

Despite these locus-specific evidences, PRC2 genome-
wide localization has demonstrated an almost complete
overlap between PRC2 target genes and CpG islands (64,
151) and it has been shown that GC-rich elements are suffi-
cient to induce recruitment of PRC2 (80, 85), clearly im-
plying CpG islands as preferential sites of PRC2 targeting.
Likewise, G9a seems to co-localize with PRC2 preferentially
at promoters and CpG islands (92). However, how are PRC2
and G9a/GLP recruited to these regions? Different, but not
mutually exclusive, mechanisms have been proposed.

Accessory chromatin-binding proteins that co-purify with
PRC2 and G9a/GLP complexes have been reported to regu-
late their chromatin targeting. Among all, Jarid2 has been
claimed by several groups as one of the major PRC2 re-
cruiting factors (72, 108, 113, 134). It has been also reported
to interact with G9a and GLP (92, 138) and to overlap to
some extent with G9a binding sites (92), thus implicating it as
a potential common recruiting factor of PRC2 and G9a/GLP.

Sequence-specific TFs have been also proposed to mediate
PRC2 (Fig. 3) or G9a/GLP (Fig. 4) recruitment to their target
loci. Among others, SNAIL, REST, CDYL, and Msx1 (Fig. 5)
have been shown to mediate both PRC2 (3, 31, 49, 164) and
G9a (34, 35, 126, 163) chromatin targeting, suggesting that
common recruiting mechanisms for PRC2 and G9a/GLP
might be more common than expected. Given the high
affinity of specific TFs for their binding sites and their cell-
specific expression, TF-mediated PRC2 G9a/GLP recruit-
ment might be a way to ensure proper PRC2-mediated gene
silencing in a cell type-specific manner.

Finally, long non-coding RNAs (lncRNAs) are becoming
appreciated as important regulators through which PRC2 and
G9a/GLP are recruited to chromatin target sites. A paradig-
matic example is represented by PRC2 and H3K27me3 re-
cruitment on the inactive X mediated by the Xist lncRNA,
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which coats the X chromosome in cis, during X inactivation
(118, 179). Likewise, the lncRNA Hotair has been reported
to mediate PRC2 recruitment in trans to the HOXD cluster
(125). The imprinted-monoallelically expressed lncRNA
Air regulates G9a targeting, inducing the epigenetic allele-
specific silencing of the cis-linked Slc22a3, Slc22a2, and
Igf2r genes in mouse placenta (93). Interestingly, two dif-
ferent lncRNAs have been shown to bind G9a and PRC2,
Kcnqot1 (105) and AS1DHRS4 (76)

Despite a unifying view on PRC2/G9a/GLP recruitment
being still missing, the evidences described earlier point to-
ward a multi-step process, which might comprise a combi-
nation of the different mechanisms, thereby ensuring a tight
and dynamic regulation of PRC2 and G9a/GLP chromatin
targeting.

Mechanisms of gene regulation

Genome-wide analyses of different histone modifications
suggest that both H3K27me3 and H3K9me2 mark are linked
with transcriptional repression (11). PcG proteins and G9a/
GLP mainly mediate gene silencing relying on several dif-
ferent mechanisms.

Both PRC2 and G9a/GLP have been found in complexes
containing co-repressors (99, 136), which include H3K4 and
H3K36 demethylases (17, 19, 24, 41, 109, 149), suggesting
that they mediate gene silencing through a coordinated
mechanism by which the concomitant removal of activating
histone marks is needed for the deposition of repressive
histone modifications, thereby inducing transcriptional re-
pression. Beyond this, gene repression is thought to depend

FIG. 3. Co-regulators, in-
teraction/recruitment of
PRC2. Here are listed the
factors and non-coding
RNAs that have been sug-
gested to interact with and
regulate PRC2 activity, in-
cluding a recent study using
BioTAP-XL to decipher the
PRC2 complexes (2a).

FIG. 4. Co-regulators, in-
teraction/recruitment of
G9a. Here are listed the fac-
tors and non-coding RNAs
that have been suggested to
interact with and regulate
G9a functions, including a
recent study using BioTAP-
XL to decipher the PRC2
complexes (2a).
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on chromatin compaction and/or spatial segregation into si-
lent nuclear domains.

Regarding Polycomb proteins, the general assumption is
that PRC2-mediated H3K27me3 serves as a docking site
for the subsequent recruitment of PRC1, which mono-
ubiquitinates H2AK119 (H2AK119 monoubiquitination
[ub1]) by the E3-ligase activity of the PRC1 subunit Ring1
(45, 128), thus inducing chromatin compaction and tran-
scriptional repression (38). Indeed, compacted chromatin
has reduced accessibility to TFs and adenosine triphosphate-
dependent chromatin-remodeling machineries, such as SWI/
SNF (9), thus preventing gene activation. In addition, it has
been proposed that H2AK119ub1 at poised promoters re-
presses RNA pol II activity (143) and that it restrains the
eviction of the H2A-H2B dimers from nucleosomes that
is necessary for transcription elongation (180). Moreover,
PRC1-mediated H2AK119ub1 is required for efficient re-
pression of PcG target genes (36).

Similarly, me2 or me3 of H3K9 creates a binding site for
chromodomain-containing proteins of the HP1 family (8, 65),
which is speculated to lead to gene repression via changes in
higher-order chromatin structure. In accordance with this,
G9a/GLP have been shown to also bind and methylate H1,
further mediating chromatin compaction.

Chromatin compaction is often observed within nuclear
foci termed PcG bodies (10), which represent discrete foci of
silenced genes. Despite the fact that there is still no direct
evidence linking these nuclear structures to H3K27me3, it is
tempting to speculate that these structures might comprise
large blocks of H3K27me3. Indeed, analyzing different
H3K27me3 genome-wide datasets, large (around 43 kb)
H3K27me3 domains (broad local enrichments) have been
identified, which overlap with silent genes and intergenic
regions (112).

Similarly, large and diffuse regions of H3K9me2 that
cover approximately 4.9 Mb, and collectively represent
around 40% of the genome, named Large Organized Chro-
matin K modifications, have been described (166). This
evidence suggests that G9a/GLP-mediated H3K9me2 is in-

tegral to the establishment of these facultative heterochro-
matin domains, which are contained within larger regions of
euchromatin.

Strikingly, these domains overlap more than 80% with
nuclear lamina-associated domains (LADs) (48), which are
large chromatin regions (0.1–10 Mb) that are highly meth-
ylated with H3K9me2 and H3K27me3 (48, 166) that estab-
lish contact with nuclear lamina (NL). The majority of genes
located in LADs are transcriptionally inactive, indicating that
the NL constitutes a repressive environment (48, 115) and
suggesting that G9a/GLP-induced transcriptional silencing
might be mediated by relocalization of chromatin targeted
regions in spatially defined nuclear structures, such as NL.
Indeed, in mouse ESCs, most of the G9a-repressed genes that
are marked with H3K9me2 are localized to the nuclear pe-
riphery (172). Moreover, two recent papers causally link
H3K9 methylation and chromatin tethering to NL (58, 153).
These works uncovered evolutionary conserved mechanisms
(in Caenorhabditis Elegans and mammals) through which
H3K9 KMTs and H3K9 methylation promote the peripheral
localization and silencing of chromatin regions (58, 153).
Strikingly, G9a has been found as a regulator of NL contacts
in human cells (58); however, fluorescence in situ hybrid-
ization experiments showed that the H3K9me2 mark seems
not essential for the nuclear peripheral localization of specific
chromatin loci because the G9a-repressed genes remain in
the nuclear periphery in mouse ESCs after G9a inactivation
and reduction in H3K9me2 levels (172). These apparent
discrepancies might be due to species- or cell type-specific
effects, to technological differences or compensatory effects
mediated by another KMT, that is, GLP. Nonetheless, the
evidence described earlier clearly suggests that H3K9
methylation is needed to create a repressive environment at
the nuclear periphery and, thus, induce and maintain gene
silencing. Moreover, the observation that LADs are particu-
larly enriched in both H3K9me2 and H3K27me3 (48, 166)
leads one to speculate that NL might be the preferred nuclear
compartment where the functional interplay between PRC2
and G9a/GLP takes place.

FIG. 5. Co-regulators, in-
teraction/recruitment speci-
ficity of G9a and PRC2. G9a
and PRC2 directly interact but
are neither part of a unique
complex nor share exclusively
the same targets. So, one or
several common factors could
mediate this specificity of in-
teraction and/or recruitment.
This/these factor(s) could be
DNA binding factors, co-fac-
tors, or non-coding RNAs.
Here are listed the factors that
have been suggested to inter-
act with G9a and PRC2, in-
cluding a recent study using
BioTAP-XL to decipher the
PRC2 complexes (2a).
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A clue in favor of this hypothesis derives from studies
performed in muscle cells where both PRC2 and H3K27me3
are recruited to the nuclear periphery by the TF Msx1(164)
and G9a seems to control the Msx1-dependent redistribution
of H3K27me3 genomic bound sites (163), thus suggesting
that G9a/GLP-PRC2 might cooperate with tissue-specific
TFs to modulate gene silencing by regulating the spatial
segregation of the co-targeted regions.

Physiological Roles of PRC2 AND G9A/GLP

Role in ESCs pluripotency and differentiation

We and others have shown that SETDB1 (13, 175) and G9a
(92) are involved in the epigenetic silencing of key develop-
mentally regulated genes in ESCs that are known as PRC2
targets (15, 68, 104). The relative abundance of different
epigenetic marks at precise lysine residues has recently
emerged as a key strategy used by ESCs to fine-tune the ex-
pression of key genes involved in lineage commitment. In fact,
in pluripotent ESCs, promoters of developmentally regulated
genes are repressed but poised for activation by the concom-
itant presence of the silencing (H3K27me3) and activating
(H3K4me3) histone marks (12, 86). In agreement with this, it
has been shown that H3K9me3 marks the so-called bivalent
genes (12, 86) in trophoblast stem cells, unraveling the exis-
tence of trivalent domains (H3K4me3/H3K27me3/H3K9me3)
(2) and suggesting that H3K9 and H3K27 methylations could
act in synergy to stabilize a repressed state in silent genes.

Both PRC2 and G9a/GLP have been shown to play critical
roles in mouse development. KO of either G9a/GLP (146,
148) or PRC2 core members (16) results in severe defects
during early embryonic development, thus suggesting that
these chromatin silencers have critical functions in ESCs
pluripotency and lineage differentiation.

The evidence that in the absence of PRC2 core members
several lineage-specific genes are derepressed in pluripotent
ESCs (15), along with the initial failure to establish Ezh2 KO
cells (98) have led to the conclusion that these proteins might
be crucial to maintain ESCs pluripotency and self-renewal
(15, 98). Nonetheless, ESCs lacking Ezh2, Eed, or Suz12 can
be generated and maintained in culture with self-renewal
capacities similar to those of wild-type ESCs (23, 106, 135).
Moreover, Eed KO cells can contribute to the development of
all tissues in chimeric embryos, clearly indicating that PRC2
KO cells retain pluripotency (23) and that PRC2 activity
seems dispensable for ESCs self-renewal. Interestingly, it has
been recently shown that PRC2 members’ expression levels
are regulated by microRNAs (20), and this has been proposed
as an additional, evolutionary conserved, mechanism through
which ESCs regulate their stemness (178).

Similar to PRC2, G9a and GLP KO ESCs can also be
generated and maintained in vitro. G9a and GLP ablation
shows embryonic lethality at E9.5, when early lineage
specification of pluripotent ESCs has already taken place,
thereby suggesting that G9a/GLP are also dispensable for
ESCs pluripotency and self-renewal (146, 148).

However, both G9a and PRC2 play a role in loss of plur-
ipotency and differentiation of ESCs (Fig. 6), as both are
required for proper silencing of ESCs pluripotency factors on
differentiation (23, 42, 106, 135, 171).

Indeed, in mouse ESCs, inactivation of Suz12, Jarid2, or
Pcl2 was reported to be associated with an inefficient si-

lencing of the pluripotency factors Nanog and Oct3/4 (66, 72,
161). Likewise, G9a and H3K9me2 have been implicated in
silencing of Nanog and Oct3/4 in differentiating ESCs (42,
171). In particular, it has been shown that G9a-mediated
Oct3/4 and Nanog repression is dependent on activation of
protein kinase A, which regulates ESC differentiation in a
timely manner by inducing pluripotency factor silencing
(171). Furthermore, G9a itself is capable of causing de novo
DNA methylation, independently of its methyltransferase
activity, by recruiting DNA methyltransferases Dnmt3a and
Dnmt3b and inducing irreversible silencing of Oct3/4 in
differentiated cell lineages (37).

Taken together, this evidence highlights that G9a/GLP and
PRC2 are not required for ESCs self-renewal and plur-
ipotency, act in a dynamic and regulated manner during post-
implantation to induce direct inhibition of transcription and
heterochromatinization of pluripotency factors, thus medi-
ating proper differentiation programs during development.

Role in adult stem cell differentiation

Several reports in the past years have begun to shed light
on the roles of PRC2 and G9a/GLP in the silencing of specific
transcriptional programs in adult stem cells, unraveling a
crucial role for these chromatin players as mediators of adult
stem cell identity and differentiation.

Pioneering evidence demonstrated that beyond its known
role in the control of ESCs lineage commitment, PRC2 was
also involved in the regulation of tissue-specific stem cells
(22, 40). Indeed, PRC2 acts by preventing the unscheduled
expression of the structural genes required for epidermal
differentiation, thereby regulating skin stem cell differenti-
ation and regenerative capacity (39, 40).

Similarly, it has been recently shown that conditional in-
activation of Eed leads to multiple and profound defects in
hematopoiesis. Eed mutant hematopoietic stem cells (HSCs)
fail to differentiate into mature blood cells, showing that
PRC2 coordinates diverse pathways to ensure proper self-
renewal and differentiation of HSCs in a developmental
stage-specific manner (170). Interestingly, G9a/GLP have
been also recently shown to regulate hematopoiesis (27). In
particular, G9a/GLP-mediated H3K9me2 patterning is in-
volved in critical steps during human hematopoietic stem and
progenitor cells (HSPCs) lineage commitment and their in-
hibition leads to delayed differentiation and retention of the
primitive HSPCs (27).

Skeletal muscle is another system where both PRC2 and
G9a/GLP emerge as critical players in the regulation of
muscle stem cell differentiation and regenerative capacity.
Indeed, PRC2 deposits H3K27me3 in a coordinated fashion
to ensure proper silencing of both muscle-specific genes in
undifferentiated myoblasts (5, 22, 55, 144) and Pax7, a
marker of undifferentiated muscle stem cells, on induction of
muscle differentiation (91, 103). Moreover, it has been
shown that PRC2 plays critical roles to preserve the tran-
scriptional identity of skeletal muscle stem cells by repres-
sing non-muscle cell lineage-specific genes (5, 54).
Interestingly, recent works have also implicated G9a/GLP in
MyoD target gene repression (77, 100). Particularly, GLP has
been recently found in the PRDM16 complex (100), a well-
known potent inhibitor of muscle differentiation (133), to
mediate H3K9me2 deposition and silencing of muscle
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specific genes, thus favoring the adipogenic differentiation of
a population of Myf5 + progenitors, known to be the com-
mon precursors of brown adipocytes and muscle cells (133),
suggesting a previously unappreciated role for GLP in reg-
ulating muscle progenitors lineage choice. In line of this
evidence, G9a has also been shown to mediate muscle gene
repression, although through an alternative mechanism im-
plying MyoD methylation (77). In fact, G9a seems to directly
methylate MyoD, thus driving its recruitment onto myogenin
promoter in proliferating myoblasts (77) and antagonizing
the competing acetylation by p300/CBP-associated factor,
an event required to facilitate recruitment of additional co-
activators and to promote muscle gene transcription (119).

Finally, both PRC2 and G9a/GLP are emerging as im-
portant regulators of the reprogramming of somatic cells into
induced pluripotent stem cells (iPSCs), though with different
roles. Indeed, while PRC2 has been shown to facilitate the
acquisition of induced pluripotency in different somatic cells
(44, 101, 114, 176), G9a/GLP and H3K9 methylation have
been instead suggested as a barrier of cellular reprogramming
(25, 142). Probably, the requirement of PRC2 for an efficient

generation of iPSCs relies on its capacity to maintain the
silencing of somatic cells transcriptional programs while
being involved in repression of pluripotency genes; H3K9
methylation needs instead to be overcome for the reacquisi-
tion of pluripotency and an efficient cellular reprogramming
(25).

H3K9/H3K27 Methylation, Aberrant Regulation
in Disease

As described earlier, PRC2 and G9a/GLP mediate a
number of regulatory mechanisms that are crucial in several
cellular processes and their misregulation and genomic le-
sions may be critical determinants in several cancers and
neurological diseases.

Cancer

Although cancer is fundamentally a genetic disease that is
driven by irreversible genomic mutations that subsequently
activate oncogenes and/or inactivate tumor suppressor genes,
there is increasing evidence that many epigenetic regulatory

FIG. 6. G9a/GLP and
PRC2 mediate regulation of
pluripotency and differenti-
ation. (1) PRC2 and G9a/GLP
act in ESCs to maintain the
silencing of lineage specific
genes, as suggested by evi-
dence that in absence of PRC2
core members or G9a/GLP
induces embryonic develop-
ment defects. (2) PRC2 and
G9a/GLP are necessary to re-
press muscle differentiation
genes in proliferating myo-
blasts, thus regulating the dif-
ferentiation capacity of MSCs.
(3) G9a/GLP and PRC2 are
required for the maintenance
of neuronal gene repression in
NPCs and proper neuronal
development. (4) G9a and
PRC2 regulate HSCs self-
renewal and differentiation
timing. ESC, embryonic stem
cell; HSC, hematopoietic stem
cell; MSC, muscle stem cell;
NPC, neuronal progenitor cell.
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proteins are deregulated in cancer, and that histone marks are
globally and locally altered within cancer epigenomes (53).
Aberrant changes in the methylation pattern of either H3K9
or H3K27 have been linked with increased recurrence and
poor survival of several malignancies (47). Whether these
changes are causative or just a consequence of the disease has
remained an open question for many years. However, the
growing number of reports directly linking genetic mutations
or aberrant expression of histone KMTs in a number of
cancers rather suggest a causal role for aberrant histone
methylation during tumorigenesis.

For instance, elevated expression of PRC2 subunits, in
particular Ezh2, has been linked to various cancers, including
prostate cancer (157), breast cancer (61), and lymphoma
(110, 168). These findings have led to ascribe to Ezh2 a pro-
oncogenic role, with misregulation of H3K27me3 levels
likely leading to aberrant silencing of genes that are impor-
tant to tumor growth and survival. However, inactivating
mutations in Ezh2 have been found in several hematopoietic
malignancies (78, 84, 89, 96, 97, 139, 155, 177), raising the
potential of a tumor suppressor function for the protein and
highlighting that the role of Ezh2 in promoting or inhibiting
tumorigenesis and/or maintenance is likely to be context
dependent.

Interestingly, somatic mutations in H3K27 in the genes
encoding for histone H3 have been observed in some glioma,
and have been linked to reduced activity to PRC2, suggesting
that beyond a causative role for oncogenic mutations in his-
tone methyltransferases, mutations in lysine residues them-
selves might trigger tumorigenicity and might be important
cancer targets (56, 71, 132, 168).

Similar to to PRC2, elevated levels of G9a expression have
been observed in many types of human cancers and associ-
ated with greater mortality in cancer patients, while G9a
knockdown has been shown to inhibit the proliferation of
cancer cell lines (26, 28, 50, 62). The evidence that in mouse
models of acute myeloid leukemia, loss of G9a significantly
delays disease progression and reduces leukemia stem cell
frequency (69) provides further evidence of a tumorigenic
role of elevated levels of G9a. Interestingly, G9a has been
recently shown to sustain cancer cell survival and prolifera-
tion by transcriptional activation, through deposition of
H3K9me1, of the serine-glycine biosynthetic pathway (32).
G9a inactivation depletes serine and its downstream metab-
olites, triggering cell death with autophagy in cancer cell
lines of different tissue origins. These findings identify a
G9a-dependent epigenetic program in the control of cancer
metabolism, providing a rationale for G9a inhibition as a
therapeutic strategy for cancer (32).

Indeed, a growing number of (pre)-clinical trials with
epigenetic drugs, targeting histone methyltransferases, are
starting to investigate the potential clinical relevance of the
use of small-molecule inhibitors as a possible therapeutic
approach to treat malignancies (4).

Neuro-associated disorders

Regulation of lysine methylation is not just important in
cancer, but has also emerged as a critical regulator of neu-
rological function and disease. Various histone modifiers
have been implicated in intellectual disability syndromes
(52), supporting the concept that appropriate regulation of

histone modifications during nervous system development is
essential for brain function.

Neuron-specific post-natal deficiency of G9a and GLP has
been clearly linked to mental retardation and behavioral de-
fects (129). A causal role of G9a/GLP in mental retardation in
mice and humans suggests a key function for G9a/GLP-
mediated H3K9 dimethylation in regulation of brain function
through maintenance of the transcriptional homeostasis in
adult neurons (129).

The behavioral changes triggered by G9a/GLP deficiency
are similar to key symptoms of the human 9q34 mental re-
tardation syndrome that is associated with the deletion or
disruption of one copy of the EHMT1/GLP gene in 9q34.3
subtelomeric region (59, 60). The potential causal role of the
GLP gene alterations in the human 9q34 mental retardation
syndrome has been further underscored by the identification
of various intragenic GLP/EHMT1 mutations in patients with
a mental retardation syndrome clinically indistinguishable
from 9q34 deletion syndrome (60a, 63a). Mice that are het-
erozygous for GLP display features resembling autism (6),
suggesting that GLP has a conserved role in regulating
normal neural function. Interestingly, a critical role of G9a-
mediated H3K9me2 in cocaine-induced structural and be-
havioral plasticity has been further reported (83). In fact,
G9a downregulation increases the dendritic spine plasticity
of nucleus accumbens neurons and enhances the preference
for cocaine, thereby establishing a crucial role for histone
methylation in the long-term actions of cocaine (83).

Recently, Ezh2-mediated H3K27 trimethylation has been
shown to mediate neurodegeneration in Ataxia-Telangiecta-
sia (A-T). A-T symptoms include a progressive neurode-
generation caused by Ataxia Telangiectasia mutated (ATM)
protein deficiency, and Ezh2 has been identified as a new
ATM kinase target. ATM-mediated phosphorylation of Ezh2
on Ser734 reduces protein stability. This study linked ATM
deficiency to Ezh2 hyperactivity, thereby unraveling Ezh2 as
a key factor in A-T neurodegeneration (74).

Conclusion

Given the rather recent links to disease of histone KMTs,
these enzymes become heavily investigated as potential drug
targets for the treatment of both cancers and neurological
disease. Thanks to our increasing understanding on the
mechanisms of action of these enzymes, of their biochemical
features and biological roles, a new generation of highly se-
lective chemical inhibitors is starting to emerge and promises
to greatly improve the selectivity of epigenetic therapy. The
ability to translate the lessons learned from epigenomic
profiling, structural studies, and regulatory mechanisms to
clinical studies holds great promise for a rapid translation of
targeting epigenetic drugs into clinical practice for a number
of aggressive cancers and neurological disorders.
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Abbreviations Used

ARKS¼Alanine-Arginine-Lysine-Serine
A-T¼Ataxia-Telangiectasia

ATM¼Ataxia Telangiectasia mutated
DNA¼ deoxyribonucleic acid

Eed¼ embryonic ectoderm development
ESC¼ embryonic stem cell
Ezh2¼Enhancer-of-Zeste 2

H3K27¼ lysine 27 of the histone H3
H3K9¼ lysine 9 of the histone H3

HP1¼ heterochromatin protein 1
HSC¼ hematopoietic stem cell

HSPC¼ hematopoietic stem and progenitor cell
iPSCs¼ induced pluripotent stem cells
KMT¼ lysine methyltransferase

KO¼ knock-out
LAD¼ lamina-associated domain

lncRNA¼ long non-coding RNA
me1¼monomethylation
me2¼ dimethylation
me3¼ trimethylation

MSC¼muscle stem cell
ncRBD¼ non-coding RNA-binding domain

NL¼ nuclear lamina
NPC¼ neuronal progenitor cell
PcG¼ polycomb group

PCNA¼ proliferating cell nuclear antigen
PCAF¼ p300/CBP-associated factor
PRC1¼ polycomb repressive complex 1
PRC2¼ polycomb repressive complex 2

PRE¼ polycomb responsive element
PTM¼ post-translational modification

RbAp46/48¼ retinoblastoma-associated protein 46/48
RNA¼ ribonucleic acid

SANT¼ switching-defective protein 3 (Swi3),
adaptor 2 (Ada2), nuclear receptor
co-repressor (N-CoR), transcription
factor (TFIIIB)

SET¼ Su(var)3–9 Enhancer-of-zeste Trithorax
Suz12¼ suppressor-of-Zeste 12

TF¼ transcription factor
ub1¼monoubiquitination

VEFS¼VRN2-EMF2-FIS2-SUZ12

CROSSTALK BETWEEN EPIGENETIC SILENCING MACHINERIES 1381

Chiara Mozzetta



