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Abstract In recent years, yeast was confirmed as a useful
eukaryotic model system to decipher the complex mecha-

nisms and networks occurring in higher eukaryotes,

particularly in mammalian cells, in physiological as well in
pathological conditions. This article focuses attention on

the contribution of yeast in the study of a very complex

scenario, because of the number and interconnection of
pathways, represented by cell death. Yeast, although it is a

unicellular organism, possesses the basal machinery of

different kinds of cell death occurring in higher eukaryotes,
i.e., apoptosis, regulated necrosis and autophagy. Here we

report the current knowledge concerning the yeast ortho-

logs of main mammalian cell death regulators and
executors, the role of organelles and compartments, and the

cellular phenotypes observed in the different forms of cell

death in response to external and internal triggers. Thanks
to the ease of genetic manipulation of this microorganism,

yeast strains expressing human genes that promote or

counteract cell death, onset of tumors and neurodegenera-
tive diseases have been constructed. The effects on yeast

cells of some of these genes are also presented.
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Introduction

Regulated cell death (RCD) can be executed through dis-

tinct subroutines, sometime partially overlapping, leading
to apoptosis, autophagy and programmed necrosis [1], and

such scenarios have been described also in yeast cells

under physiological or induced stress conditions.
In mammals, RCD can be observed during aging or in

consequence of pathologies including neurodegenerative

disorders, hypoxia and heart strokes. In the opposite
direction, loss of RCD can result in the onset of cancer.

Due to its simple handling, yeast represents a very

useful eukaryotic model system for deciphering the com-
plex network of the different and often interwoven RCD

pathways occurring in mammals, aiming, in particular, to

the identification of executors, to the role of cellular
organelles and compartments, and to the detection of new

cell phenotypes in response to external and internal

triggers.

Apoptotic cell death

Yeast apoptosis was first described in cells carrying a
mutated CDC48 gene (cdc48S565G), which codes for the

AAA-ATPase and has roles in cell division, ubiquitin-de-

pendent ER-associated protein degradation (ERAD) and
vesicle trafficking [2]. Later on, it was found that mutations

in the VCP gene, the metazoan homolog of the yeast

CDC48, gave rise to apoptotic phenotypes in mammalian
cell cultures [3, 4], in trypanosomes [5], in Drosophila [6]

and in zebrafish [7]. Like mammalian cells, yeast cells

undergoing apoptosis display characteristic markers such
as DNA breakage, chromatin condensation, phos-

phatidylserine externalization, reactive oxygen species
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(ROS) accumulation and cytochrome c release from

mitochondria. In nature, this process might favor the
elimination from the yeast population of old and/or

unhealthy cells, increasing the availability of nutrients for

young and healthy cells [8].
In this organism, apoptosis is induced by internal and

external triggers including cellular dysfunctions, H2O2,

acetic acid and many others [9, 10]. Although lacking Bax
and Bcl genes, several yeast orthologs of mammals’ main

apoptotic regulators, such as AIF1 (AIF), NUC1 (EndgoG),
MCA1/YCA1 (metacaspase), NDI1 (AMID), NMA111

(HtrA2/Omi) and others, have been identified, demon-

strating that the basal apoptotic machinery is present in this
unicellular organism [11].

Necrotic cell death

Necrosis in mammals is a physiological cellular process
that becomes more evident in some disorders and after

virus and bacterial infection. In contrast to apoptosis,

necrotic cells release intracellular contents following the
plasma membrane rupture. In yeast cells, H2O2, acetic acid

and heavy metals, well-known triggers of apoptosis at low

doses, can also induce accidental necrosis at higher con-
centration because of the excessive damage to cellular

components [9, 10, 12].

Yeast cells also posses a programmed necrotic pathway
under conditions similar to those regulating programmed

necrosis in mammals [1]. Necrosis in yeast is positively

regulated by aging, low pH and mitochondria while
inhibited by spermidine, EndoG, vacuolar and peroxisomal

functions [13]. Homologs of known mammalian mediators

of necrosis have been found in the Saccharomyces cere-
visiae genome but additional studies are still needed to

identify the executors and clarify a putative altruistic

meaning of necrotic cell death in unicellular yeasts.
Liponecrosis has been recently reported as an additional

cell death module of RCD in yeast cells exposed to

exogenous palmitoleic acid (POA) [14]. Cells undergoing
liponecrosis do not show hallmarks of apoptosis nor plasma

membrane rupture observed in necrosis and exhibit, as in

autophagic cell death, a non-selective degradation of cel-
lular organelles but not increased cytoplasmic

vacuolization. Peroxisomal fatty acid oxidation acts as a

pro-survival process in that protects yeast cells from lipo-
necrotic death by reducing the cellular level of POA [14].

Deletion of ATG32, the gene encoding a mitochondrial

outer membrane protein required to initiate mitophagy,
results in increased sensitivity to death triggered by POA,

pointing to macromitophagy as an opponent of POA-in-

duced cell death. Interestingly, the absence of the serine/
threonine kinase Atg1p, which is required for the execution

of macroautophagy, while lowering clonogenic survival of

yeast cells submitted to apoptosis by H2O2, reduces the
lethality induced by POA [14]. Moreover, while Nuc1p,

Aif1p and Nma111p are not involved in POA response, the

absence of the metacaspase Mca1p enhances POA-induced
cell death, suggesting a pro-survival role of this apoptotic

regulator [15].

These results altogether reinforce the idea that POA-
triggered death is in fact an additional new form of RCD.

Autophagy and cell death

Macroautophagy is a conserved process required for the

degradation and recycling of cytoplasmic components by

delivering molecules and entire organelles to the vacuole or
to lysosomes, depending on the eukaryotic cell type. The

morphological hallmark of autophagy is the formation of

the autophagosome, a vesicle bounded by a double mem-
brane, within which cytoplasmic components remain

randomly (non-selective autophagy) or selectively (selec-

tive autophagy) sequestered. Selective autophagy ensures
the health of cells by removing protein aggregates and

carrying the turn-over of mitochondria (mitophagy), per-

oxisomes (pexophagy), lipids (lipophagy), and ER (ER-
phagy), which might represent potential triggers of apop-

tosis. After fusion with the vacuole, the material is

degraded to simpler molecules, which are then released
again into the cytoplasm for reuse. Autophagy, as well

selective autophagy [16], occurs in yeast cells at basal level

and is up-regulated by nutritional changes and starvation.
The regulation of the process determines the size and

number of autophagosomes under normal and inducing

conditions. Studies with yeast allowed the identification of
more than 30 autophagy-related (Atg) proteins, most of

which are conserved in higher eukaryotes. In the presence

of nutrients, most of ATG genes are repressed at tran-
scriptional level in consequence of the inhibition of

activators and/or activation of repressors of autophagy

[17]. In several organisms, under specific conditions,
autophagy mediates a particular type of RCD, defined as

autophagic cell death [18]. In yeast, relationships between

autophagy and cell death are still to be explored, and some
evidences suggest that autophagy may accelerate cell death

in S. cerevisiae following the expression of human p53,

BAX and under starvation conditions [19–21].

Yeast cell death regulators

One of the first genes involved in yeast RCD was MCA1/

YCA1, which codes for a protein showing a caspase activity
and plays an important role in regulating apoptosis in yeast
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[22]. Mca1p has been classified as a type I metacaspase,

found also in many other organisms, with a characteristic
N-terminal pro-domain that is thought to be cleaved off

upon activation [23]. The autocatalytic processing of

Mca1p requires Ca2? ions and the crystal structure of the
protein revealed a canonical caspase-like fold and it can

exist as a monomer in both solution and crystals [24].

While caspases cleave substrates after an aspartate residue,
metacaspases cleave after arginine or lysine and the iden-

tification of their substrates is poorly known [25].
Concerning the Mca1p substrates, so far only the glycolytic

enzyme GAPDH (glyceraldehyde 3-phosphate dehydroge-

nase) has been identified as a possible target, although the
physiological relevance and effects of this cleaved protein

remain to be elucidated [26]. Mca1p has also been shown

to be involved in protein quality control (PQC) displaying
some pro-survival functions, which suggest a dual role of

this protein acting in both pro-death and pro-survival

pathways [27–29]. As an example, although an increased
caspase activity was detected in the cdc48S565G mutant

[30], from a synthetic genetic array (SGA) analysis it was

found that a cdc48 conditional mutant negatively interacted
with the mca1 null mutant, suggesting that Mca1p can

buffer the absence of Cdc48p [27]. It has been estimated

that about 40 % of cell death in yeast is Mca1p dependent,
suggesting the presence of many alternative cell death

pathways. Beside Mca1p, there are other proteases

involved in yeast PCD. The caspase-like protease Esp1p,
upon H2O2 cell exposure, cleaves cohesin Mcd1/Rad21.

The truncated C-terminal fragment of Mcd1p translocates

from the nucleus to mitochondria, causing the decrease of
mitochondrial membrane potential and the release of

cytochrome c [31]. Moreover, the protease activity Kex1p

plays a role in promoting yeast PCD in wbp1-1 N-glyco-
sylation mutants, during chronological aging, following

tunicamycin and acetic acid treatments [32].

Apoptosis-inducing factor (AIF1), homologue to mam-
malian AIF, is a mitochondrially localized protein that,

upon apoptotic insults, translocates to the nucleus where it

mediates chromatin condensation and DNA degradation
[33]. As its mammalian counterpart, AIF1 DNA degrada-

tion activity requires cyclophilin A and plays a vital role in

maintaining mitochondrial activity [34, 35]. NDI1, which
codes for the inner mitochondrial membrane NADH

dehydrogenase and catalyzes the oxidation of intramito-

chondrial NADH, is the human homologue of the AIF-
homologous mitochondrion-associated inducer of cell

death (AMID). In facts, NDI1 overexpression causes cell

death while its deletion lowers ROS production and
extends CLS [36]. Similar effects, although to a lower

extent, were observed for Nde1p, the protein localized on

the outer mitochondrial membrane and responsible for
oxidation of cytosolic NADH [36].

NUC1, the yeast ortholog of mammalian endonuclease

G (EndoG), is another cell death effector that translocates
from mitochondria to nucleus upon apoptosis induction

[37]. Nuc1p pro-apoptotic activity requires karyopherin

Kap123p, homologue to the mammalian mitochondrial
permeability transition pore (MPTP), and H2B

phosphorylation.

The absence of NUC1 protects yeast from cell death
only in respiratory conditions while, in fermentative

conditions, it enhances necrotic cell death [37]. EndoG
has a vital role in both yeast and mammalian cells in

maintaining polyploidy cells [38]. Nma111p (nuclear

mediator of apoptosis) is a yeast serine protease,
homologous to the mammalian pro-apoptotic protein

mitochondrial-located HtrA2/Omi that, differently from

the latter, it resides in the nucleus. Deletion or overex-
pression of NMA111 causes protection or induction of

cell death, respectively [39].

Bir1p, the target of the Nma111p activity, acts as an
inhibitor of apoptosis (IAP) in yeast [40].

Pep4p, a pepsin-like aspartic protease ortholog of human

Cathepsin (CatD), translocates from the vacuole to the
cytosol and is involved in the degradation of nucleoporins

following H2O2-induced apoptosis [41]. Yeast pep4 mutant

strains undergo both apoptosis and necrosis during
chronological aging.

The proteolytic activity of Pep4p is required to con-

trast apoptotic cell death while the non-proteolytic part
of this protein is involved in its anti-necrotic function

[13]. In addition Pep4p, as well as CatD, shows a pro-

tective role in acetate-induced apoptosis in both yeast
and colorectal cancer (CRC) cells [42, 43] depending on

its proteolytic capacity. In mammalian cells, BH3-only

proteins upon induction of apoptosis are targeted to
mitochondria where they induce mitochondrial outer

membrane permeabilization (MOMP), thereby initiating

the regulated disintegration of the cell [44, 45]. The
presence of a BH3-only protein encoded by the

YNL305c gene has been reported in yeast, later renamed

YBH3. Overexpression of Ybh3p sensitizes yeast to
apoptotic stimuli, while its absence protects cells

against H2O2, acetic acid, murine BAX expression and

extends both replicative and chronological lifespan.
Ybh3p-mediated cell death is independent of Mca1p,

Aif1p, Nma111p and Nuc1p, suggesting that Ybh3p

triggers its own mitochondrial cell death pathway [46].
The same gene, named BXI1 (for Bax inhibitor) in this

occasion, has been reported to be involved in unfolded

protein response (UPR) and to play a protective role in
heat shock response, ethanol and glucose induced cell

death [47]. The opposite pro- and anti-apoptotic role of

this protein might depend on the apoptosis-inducing
conditions applied.
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Internal triggers

Alterations of fundamental cellular pathways, such as DNA
replication, actin cytoskeleton, mRNA stability and protein

modifications and degradation, produce triggers that induce

various forms of yeast cell death [48–53].
Some forms of cell death require the activity of the

metacaspase encoded by the MCA1 gene [22]. Differently,

other forms of PCD are independent of Mca1p and follow
alternative pathways. Yeast cell death can also be induced

by expressing heterologous genes involved in apoptosis,

tumor suppression and neurodegenerative diseases.

Reactive oxygen species (ROS)

Yeast cells accumulating ROS show morphological mark-

ers peculiar for apoptosis in mammals. The phenomenon is

caspase dependent in that, in the absence of the metacas-
pase Mca1p, apoptosis is prevented [22].

ROS in yeast are mainly produced within mitochondria

[54] during aerobic respiration as a result of the leakage
of electrons from the respiratory chain, which react with

oxygen. When ROS concentration exceeds normal
antioxidant defenses, yeast cells respond with the activa-

tion of transcription factors, namely Yap1p, Skn7p,

Msn2p, and Msn4p that, in turn, regulate transcription of
genes involved in antioxidant defenses [55, 56]. ROS

accumulation is the cause of oxidative damaging of

nucleic acids, proteins and lipids and, depending on
concentration, can induce apoptosis as well necrosis in

different cells. ROS-induced cell death has been put in

relation with aging, neurodegenerative diseases and can-
cer and many articles have focused on oxidative stress

also in yeast [55, 57].

Aging

Replicative life span (RLS) and chronological life span
(CLS) are two models of aging in yeast cells. RLS refers to

the number of divisions of an individual cell before bud-

ding arrest while CLS represents the time a culture
maintains viability during stationary phase. In both cases,

cell death eliminates old and damaged cells and is

accompanied by typical markers of apoptosis [58–60].
Nevertheless, the mechanisms underlying the two forms of

cell death are only partially overlapping. As an example,

the deletion of the metacaspase gene MCA1 prevents
apoptotic cell death during CLS while, in contrast, reduces

the numbers of cell divisions in RLS [27, 59]. During CLS,

in addition to apoptosis, yeast cells die also through pro-
grammed necrosis [11].

DNA replication and RNA stability

Initiation of DNA replication is a conserved process that
requires the origin recognition complex (ORC), constituted

by a six-subunit complex of proteins [61]. ORC2 codes for

a subunit of the ORC complex and orc2-1 ts mutant cells,
at non-permissive temperature, show defects in initiation of

DNA replication, activate DNA damage responses, pre-

mature aging and undergo apoptosis following the Mca1p-
dependent pathway [53, 62].

An important component of the pre-replicative complex

required for the initiation of eukaryotic DNA replication is
Cdc6p, which is rapidly degraded in a proteasome-depen-

dent way in cells undergoing apoptosis induced by the

DNA-damaging drug adozelesin [63].
The steady-state level of mRNAs is another fundamental

cellular process, which depends on the equilibrium

between mRNA synthesis and decay [64]. Mutants in
decapping, a crucial event of mRNA degradation, such as

dcp1, dcp2, dhh1, lsm1–7, show apoptotic phenotypes and

accelerated chronological aging [51, 65]. At least in one of
these mutants (Kllsm4D1), apoptotic death was demon-

strated to be Mca1p dependent [66], and most of the

apoptotic phenotypes were suppressed by the overexpres-
sion of HIR1, PGK1 and NEM1, the genes encoding a

subunit of the HIR complex involved in histone gene

transcription, the phosphoglycerate kinase and the catalytic
subunit of Nem1p-Spo7p phosphatase holoenzyme that

regulates Pah1p (lipin) activity, respectively, [67–69]. This

suggests a link between cell death induced by defects in
RNA degradation and histone expression, ATP production

and phospholipid homeostasis.

Metacaspase-dependent apoptotic cell death has been
recently reported in strains defective in cytoplasmic exo-

some function (ski2D mutants) or deadenylation

(ccr4Dpan2D mutants) pointing to mRNA degradation as a
relevant pathway involved in yeast cell death [70].

In mammalian cells undergoing classical apoptosis, 30

truncated mRNA decay intermediates with uridylate-rich
tails are generated, which have been suggested to represent

an early apoptotic phenotype [71, 72].

Although uridylyl transferase has not been described in
budding yeast [73], the accumulation of capped mRNAs in

decapping mutants could represent for yeast cells an

internal apoptotic signal whose molecular mechanisms still
need a deeper investigation.

Apoptotic stimuli in yeast also induce endonucleolytic

degradation of rRNA, more evident in fermenting cells,
which is dependent on histone H2B modifications and

independent of Mca1p and Aif1p [74]. Upon oxidative
stress, also cytoplasmic tRNAs are degraded by the release

from the vacuole of the Rny1p RNase; although little is

C. Falcone, C. Mazzoni

123



know about the cell death-induced pathway, overexpres-

sion of RNY1 exacerbates the bir1 and yap1 growth defect
[75]. Altogether, these results clearly point to crosstalk

between RNA metabolism and RCD.

Epigenetic modifications

Histone modifications, besides their regulative role in a
variety of cellular processes such as gene transcription,

DNA repair, mitosis, meiosis, and development, have been
also associated to the establishment of cell death in both

mammalian and yeast cells [76].

In yeast, H2B-K11 deacetylation, operated by the his-
tone deacetylase (HDAC) Hos3p, is necessary to allow the

phosphorylation of the apoptotic mark H2B-S10 (H2B-S16

in human) by Ste20p kinase, the yeast homolog of mam-
malian Mst1 kinase [77, 78]. Since H2B-S10

phosphorylation is also present during meiosis, it has been

proposed that this modification is associated to large-scale
changes in chromatin structure. [79].

Histone H2B ubiquitination is required for nucleosome

stability and its loss, in the E3 ubiquitin-ligase bre1 and
ubiquitin protease ubp10 mutants, sensitizes metacaspase-

dependent cell death [80, 81].

H2B ubiquitination is a prerequisite for histone H3K4
and H3K79 methylation and it was recently reported that

loss of H3K4 methylation, due to the inactivation of the

methyltransferase Set1p, triggers apoptotic cell death par-
tially dependent on Mca1p during chronological aging and

on EndoG/Nuc1p after hydrogen peroxide treatment [82].

Death in aging colonies

In liquid media, yeast population develops in the form of
single cells that replicate several times and finally die

through the apoptotic process. During growth on solid

media, both in nature and in laboratories, cells remain in
contact giving rise to colonies that enlarge over time. In this

case, apoptotic death occurs in oldest cells, located in the

middle of the colony, through a Mca1p or Aif1p-indepen-
dent pathway in response to an ammonia signal emitted by

aged surrounding colonies. Nevertheless, D2R staining of

cells from colonies of the mca1 mutant, indicated the
presence of Asp-ase or another caspase-like activity [83].

Heterologous expression of cell death genes

Expression in yeast of the human key apoptotic inducer
Bax leads to apoptotic cell death accompanied by cyto-

chrome c release. These events can be reverted by the

contemporary heterologous expression of Bcl-2 or Bcl-xL,
as well of 14-3-3b/a and human LDH [84–86].

Yeast models expressing neurotoxic proteins have been

recently reviewed [87].
Expression in yeast of a-synuclein, an intracellular

trigger of Parkinson’s disease, results in apoptosis as well

as necrosis, which are modulated by the activities of the
ubiquitin–proteasome system (UPS), autophagy, and

ubiquitin-dependent vesicular trafficking [87–89]. More-

over, alpha-synuclein toxicity depends on chronological
aging, functional mitochondria and it requires the presence

of Nuc1p [90].
Expanded poly-glutamine (poly-Q) domains cause pro-

tein aggregation and neurodegeneration [91, 92]. Although

the yeast genome does not contain an ortholog of the
human gene htt, responsible for Huntington disease (HD),

expression of Htt103Q in yeast leads to widespread cellular

dysfunction resulting in death with apoptotic markers [92].
Poly-Q aggregates induce ER stress, mitochondrial dys-

function and impair vesicle-based protein degradation,

including autophagy [87].
The spinocerebellar ataxia type-3 (SCA3) is another

disease caused by the expansion of poly-Q in the gene

atxn3, which encodes a protein known as ataxin-3 (AT3)
[93]. The expression of AT3 in yeast is toxic and leads to

accumulation of ROS, imbalance of the antioxidant defense

system, loss in cell membrane integrity and necrotic cell
death, without the induction of apoptosis [94].

Expression in yeast of a mutated form of DFNA5, a

gene responsible for autosomal dominant hearing loss
(HL), induces ROS accumulation leading to a caspase-in-

dependent cell death that relies on mitochondrial functions

such as the mitochondrial fission protein Fis1p, the voltage-
dependent anion channel Por1p, and the mitochondrial

adenine nucleotide translocators Aac1p and Aac3p [95].

More recently, it has been reported that ER and protein
folding are also involved in RCD caused by DFNA5 both

in yeast and in HEK293T cells [96]. It has also been

reported that the heterologous expression of human
immunodeficiency virus (HIV-1) protease [97] and the

proteinaceous elicitor harpin (Pss) from Pseudomonas

syringae [98] led to regulated necrosis in budding yeast.
Yeast has also been used as a model for the study of

tumors, also because of similarities in carbon metabolism

with cancer cells. The p53 tumor suppressor protein is a
nuclear phosphoprotein that plays a key role in safe-

guarding genome integrity [99]. Mutations in the p53 gene

are found in 45 % of human cancers cells that, in conse-
quence, undergo uncontrolled cell proliferation and often

acquire resistance to chemotherapy [99]. S. cerevisiae does

not contain p53 homologues and, in this respect, it can be
considered a powerful ‘clean room’ model to study the

different molecular pathways associated with the presence

of this protein. Mammalian p53 can function as a tran-
scription factor in yeast [100] and several groups used

External and internal triggers of cell death in yeast

123



yeast for studying the transcriptional activity of human

wild-type and tumor-derived p53 mutated proteins [101].
More recent studies have shown that the expression of p53

induces apoptosis-like cell death making p53, after Bax,

the second heterologous pro-apoptotic gene, and strength-
ening the idea that the apoptotic processes are conserved

throughout the evolution [102, 103]. Cell death induced by

p53 expression in yeast is Mca1p independent and mainly
mediated by Nuc1p, suggesting the importance of yeast

mitochondria in p53-induced cell death [104, 105]. Very
recent studies have shown that the expression of p53 family

proteins in yeast causes growth inhibition, increased actin

expression and actin depolarization, ROS production and
an autophagic cell death [21]. The expression in yeast of

the well-known breast tumor suppressor genes BRCA1 and

BRCA2 suggested a role of these genes in the maintenance
of genomic stability and resulted in pleiotropic phenotype,

such as the inhibition of cell growth and the formation of

small colonies [101]. More recently, it has been reported
that BRCA2 expression sensitizes yeast cells to acetic acid-

induced programmed cell death [106].

External triggers

Many external triggers have been shown to induce apop-

tosis in budding yeast including hydrogen peroxide, acetic

acid, ethanol, high salt, osmotic stress, lipids, UV irradia-
tion, heat stress, and numerous heavy metal ions [11].

Acetic acid-induced cell death

A detailed description of the cellular events accompanying

yeast cell death during exposure to acetic acid has been
recently reported [107]. Acetic acid is one of the main sub-

products, which accumulate in the culture medium during

yeast alcoholic fermentation. Although S. cerevisiae can
utilize acetate as carbon source, high concentration of

acetic acid induces cell death (referred as AA-PCD)

accompanied by all apoptotic hallmarks. In yeast, as in
mammalian cells, mitochondria play a primary role in AA-

PCD. In the course of exposure to acetic acid, yeast cells

show mitochondrial swelling [108], membrane depolar-
ization, ROS production, reduction of cytochrome oxidase

activity and mitochondrial outer membrane permeabiliza-

tion (MOMP), accompanied by release of cytochrome
c and Aif1p [33, 109, 110]. The ROS scavenger

N-acetylcysteine (NAC) prevents AA-PCD in wild-type

cells while not in cells lacking Yca1p and cytochrome c. In
these mutants, acetic acid can still induce cell death,

although at lower rate compared to the respective wild-type

strains, suggesting the existence of Yca1p and ROS-inde-
pendent pathways [111, 112].

The partial prevention of AA-PCD by disrupting cyto-

chrome c could be in relation with the increased
mitochondrial membrane potential and with the lack of

cytochrome c oxidase activity. According to this, respira-

tory deficient cells lacking mitochondrial DNA (q0 cells)
display resistance to acetic acid-induced death [110]. AA-

PCD is regulated by a number of proteins including Por1p

(yeast voltage-dependent anion channel), which plays a
protective role, and ADP/ATP carrier proteins, which are

required for mitochondrial outer membrane permeabiliza-
tion and cytochrome c release [113]. Other factors involved

in some way in AA-PCD execution are Fis1p, Dnm1p and

Mdv1p, the mitochondrial proteins responsible for fission
and fusion events of these organelles, [114], and Pep4p, the

yeast homologue of cathepsin D, which plays an important

role for degradation of mitochondria in AA-PCD [43, 110].
Recently, it has been reported that components of the

MAPK pathways modulate acetic acid-induced cell death.

In fact, mutants in components of the mating pheromone
response, as well in components of the high osmolarity

glycerol (HOG) and the cell wall integrity (CWI) pathways

are significantly more resistant to AA-PCD.
In addition, cytochrome c release from mitochondria

was not detected in acetic acid-treated bck1D or slt2D
mutants, indicating that the CWI pathway mediates acetic
acid-induced apoptosis through a mitochondrial pathway

[115].

It has been recently reported a proteomic study during
AA-PCD in both wt and mca1 null mutants indicating that

in the absence of Yca1p cell death is induced through the

activation of ceramides, whereas in the presence of the
gene yeast cells underwent an AA-PCD pathway charac-

terized by the shift of the main glycolytic pathway to the

pentose phosphate pathway and by a proteolytic mecha-
nism to cope with oxidative stress [116].

Hyperosmotic stress

Hyperosmotic stress, an additional external trigger of cell

death observed in mammalian cells, induces apoptosis in
several pathological states such as diabetes, inflammatory

bowel disease and hypernatremia [117]. Yeast can grow by

fermentation in media containing up to 40 % glucose
[118], a nutrient-rich but dangerous situation in that high

osmolarity induces water efflux, cytosolic ions concentra-

tion and cell shrinkage. Following hyperosmotic stress,
yeast activates adaptive responses that are mainly regulated

by the high osmolarity glycerol (HOG) pathway, evolu-

tionary conserved up to humans [119]. It has been reported
that S. cerevisiae cells exposed to hyperosmotic stress in

the presence of high glucose or sorbitol concentrations

increase ROS production and show all peculiar apoptotic
markers that require the involvement of mitochondria and
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of a partially cyt c-dependent Mca1p activation [120]. It

has also been reported that high salinity, as high NaCl
concentrations, induces in yeast apoptotic cell death [121]

that follows Mca1p-dependent pathway in wild-type

strains, while Mca1p-independent pathways in sro7/sro77
double mutants [122].

Killer toxin

The ‘‘killer phenomenon’’ is widespread in different yeasts
and consists of the secretion of protein toxins by killer

strains that kill sensitive cells. Depending on the toxin

nature, the killing mechanism is different in that some
toxins act as ionophores disrupting the cytoplasmic mem-

brane while others enter sensitive cells by receptor-

mediated endocytosis, block DNA synthesis and arrest cell
cycle in G1/S phase [123].

At low toxin concentrations, which are closer to the

natural environmental situation, killer toxins, whatever the
mode of cell killing, induce ROS production and Mca1p-

dependent apoptotic cell death. In contrast, yeast cells

exposed to high toxin undergo necrotic cell death [124].

Pheromone-induced cell death

Yeast pheromones are short peptides secreted by cells of

opposite mating types required for mating.

Pheromones, after binding to a G protein-coupled
receptor (Ste2p or Ste3p), activate a specific MAP kinase

signaling pathway allowing the induction of mating genes.

The main component of the mating pathway is kinase
Ste20p, the deletion of which prevents pheromone-induced

death and the formation of ROS [125]. Pheromone-induced

apoptosis takes place in consequence of increased intra-
cellular Ca2?, ROS generation, formation of the

permeability transition pore, Ysp1p-dependent mitochon-

drial fragmentation and release of cytochrome c [125, 126].
When cells are exposed to elevated concentrations of

pheromone, as well after failure of mating, cell death seems

to occur without showing certain peculiar apoptotic
markers in a metacaspase-independent way, suggesting the

activation of necrosis-like pathways [31]. This could rep-

resent an altruistic kind of death for the elimination of
infertile or damaged haploid cells from the yeast commu-

nity [11, 125].

Effect of drugs on yeast cell death

The availability of gene deletion collection, together with
the advancing development of yeast-based functional

genomic and proteomic technologies, supports the utility of

S. cerevisiae as a model organism in the drug-discovery
process [127]. Due to the high conservation of basic

cellular processes present in higher organisms, yeast is also

a powerful system for the study of the mechanism of PCD-
inducing drugs, since it is known that most of anticancer

compounds induce apoptotic cell death.

Among antitumor drugs, the apoptotic phenotypes
induced in yeast cells following paclitaxel, arsenic, bleo-

mycin and valproate treatment, as well their mechanism of

action, have been studied in detail. In the case of inhibitors
of topoisomerases and/or cell cycle progression, there is

not sufficient evidence for their role as RCD inducers,
although many of them stimulate ROS production [128].

Some bioisosteres of arylthioindoles, which are potent

tubulin assembly inhibitors, arrest growth of yeast and
MCF-7 human breast carcinoma cells. Interestingly, the

inhibition of tubulin polymerization in yeast triggers

apoptosis mainly through MCA1 and EndoG [129, 130].
Free fatty acids, in dependency on the degree of unsat-

uration, as well as ceramide, stimulate yeast cells to

undergo regulated necrosis, [131]. Due to its sensitivity to
most of antifungal drugs, yeast is used for the search and

characterization of new compounds with lower toxicity

against human pathogens. Molecules of different origins
and mode of action, such as amphotericin B, osmotin,

dermaseptin, pradimicin and histatin, exert their antifungal

activity primarily through induction of apoptosis in Sac-
charomyces cerevisiae and/or Candida albicans [128].

The yeast model system can be applied also to study the

beneficial effects of a range of molecules and nutrients on
cells and large-scale search for anti-apoptotic molecules

has been performed by the use of fzo1 yeast mutants, which

are impaired in mitochondrial fusion [132]. Some com-
pounds such as acetyl-L-carnitine (ALC), used as

therapeutic for stroke, myocardial infarction and neurode-

generative diseases, prolongs yeast lifespan in the presence
of Mca1p, functional mitochondria and counteracts apop-

tosis [133]. Ascorbic acid, beta-carotene and caffeic acid,

contained in some nutrients, are known antioxidants that
reduce accumulation of ROS-protecting cells from aging

and H2O2-induced cell death [134]. Apple’s extracts, rich

in ascorbic acid and polyphenols are known to act as
antitumors and prevent ROS accumulation, aging and cell

death in yeast cells [135]. Resveratrol is a natural

polyphenol, present especially in grapes, red wine and
berries, showing antiaging and potential cardioprotective

effects. This compound is also a potent inducer of autop-

hagy through the activation of deacetylase SIRT1 in
humans, as well of its ortholog SIR2 in yeast. Spermidine, a

polyamine found in citrus fruit and soybean, is an acetylase

inhibitor and also an inducer of autophagy independent of
human SIRT1 and yeast SIR2 genes. It has been reported

that both compounds induce autophagy by distinct path-

ways converging on the acetylproteome [136]. In yeast,
deacetylation of histone H3 by spermidine reduces ROS
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levels produced during aging and has an anti-necrotic role

promoting cell survival through the induction of autophagy
[137].

Organelles

Mitochondria

Mitochondria play a central role in cellular functions

including energy production, iron–sulfur biogenesis, cal-
cium homeostasis, and RCD in eukaryotes. Most of the

mitochondrial functions depend on the maintenance of
tubular network deriving from the equilibrium between

fusion and fission events. Mitochondrial fragmentation

into punctuate structures is a common early feature of
apoptosis in both mammalian and yeast cells [108, 138].

Apoptotic signals determine the release from the mito-

chondria of pro-apoptotic proteins such as cytochrome c,
AIF1, EndoG and Omi/HtrA2 [138]. The release of

cytochrome c from mitochondria, one of the signals

triggering cell death, was firstly demonstrated in cells
expressing the human pro-apoptotic protein Bax [139].

AAC1/2/3 and POR1 are the yeast orthologs of mam-

malian adenine nucleotide translocase (ANT) and voltage-
dependent anion channel protein (VDAC), respectively.

Their role in the release of cytochrome c during Bax-

induced cell death is controversial, depending on the
experimental conditions [140–142]. The absence of ADP/

ATP carrier (AAC) proteins, encoded by AAC1/2/3,

protected cells exposed to acetic acid and diamide but not
to H2O2, while deletion of POR1 enhances apoptosis

triggered by all these compounds [113].

The overexpression of the human gene VDAC1 indu-
ces the accumulation of ROS and is toxic for yeast cells

growing on respiratory carbon sources but not on glucose

[143]. This could be explained by the increase within cell
population of respiratory deficient mutants, which are

known to show extended lifespan [66, 144]. The

machinery responsible for mitochondrial fission in healthy
yeast cells was identified as a complex of three proteins,

Dnm1p, Mdv1p/Net2p, and Fis1p [145]. Dnm1p has been

shown to promote mitochondrial fission and cell death
following exposure to environmental stress while its

deletion protects cells from death and aging [114, 146,

147].
Other proteins, involved in mitochondrial functions,

protect cells from death. As an example, the absence of

Cit1p, the major mitochondrial citrate synthase, or Isc1p,
the inositolphosphosphingolipid phospholipase C, results in

oxidative stress hypersensitivity associated with apoptotic

markers that were suppressed by the contemporary absence
of the Mca1p metacaspase [29, 148].

Peroxisomes

Among cellular organelles, peroxisomes perform funda-
mental metabolic pathways such as b-oxidation of fatty

acids and hydrogen peroxide detoxification.

Peroxisomes are ubiquitous in eukaryotes varying in
shape, size and number adapting to cellular requirements.

Like mitochondria, peroxisomes increase in their number

by a fission mechanism, which in yeast requires Dnm1p or
Vps1p, and it has been recently reported that the inhibition

of peroxisome fission increases yeast chronological lifes-

pan [149].
Together with mitochondria, peroxisomes are the main

source of reactive oxygen species that accelerate aging and

cell death, but their role in these processes still requires
elucidation. Peroxisomes are involved in regulation of

yeast necrosis. In fact, it has been reported that the deletion

of PEX6, the gene encoding a protein involved in peroxi-
somal protein import, results in increased ROS production

and loss of viability upon acetic acid treatment and during

early stationary phase. Moreover, cell death in aging yeast
cells lacking PEX6 is not dependent on Mca1p and Aif1p

and shows necrotic rather than apoptotic markers. The

exact role of Pex6p in cells during acetic acid stress, as
well in aging cells, remains to be clarified [150]. Interest-

ingly, the deletion of the peroxisomal peroxiredoxin

PMP20 gene in the yeast Hansenula polymorpha results in
enhanced ROS production and accumulation of lipid per-

oxidation in methanol growing cells. Similar to the

scenario observed in mitochondria-mediated apoptosis, the
absence of Pmp20p leads to loss of peroxisome membrane

integrity with the release of matrix proteins into the cytosol

followed by necrotic cell death [151].

Endoplasmic reticulum (ER)

The yeast ER, as in all eukaryotes, is required for many

relevant cellular functions such as the translocation and

folding of proteins, the synthesis of lipids and the home-
ostasis of calcium.

In mammalian cells, loss of ER function leads to ER

stress, which in turn can trigger endoplasmic reticulum
stress-associated cell death (ER-SAD) [152]. Overload of

proteins, exposure to long-chain saturated fatty acids,

alterations in calcium levels and disturbances to the redox
balance have been reported as the main factors leading to

ER stress [153, 154]. The unfolded protein response (UPR)

is a signaling network comprising three or two pathways in
animal and plant cells, respectively. The only UPR path-

way in yeast is represented by inositol-requiring protein-1
(IRE1), complementary to IRE1 of plants where it plays an

essential role in viral infection [155]. The UPR restores ER

homeostasis by degrading misfolded proteins, by
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increasing levels of chaperones to improve protein folding

and by inhibiting translation. Failure of UPR activation
leads cells to death. The overexpression of Yno1p, an

NADPH oxidase localized in the perinuclear ER belonging

to the NOX superfamily able to produce superoxide
(O2!-), induces yeast cell death dependent on the presence

of Mca1p [156].

Conclusions and perspectives

The current scenario of cell death has become more and

more complex following the discovery of new forms of this

process. The existence of the basal machinery of apoptosis,
necrosis and apparently of autophagic cell death in yeast,

makes this microorganism an easy model for the study of

these phenomena. Figure 1 summarizes the actual scenario
of regulated cell death.

Due to the easy manipulation by classical and molecular

genetic approaches, yeast may be useful for the identifi-
cation of new mammalian regulators and executors of cell

death and, in the opposite direction, for the study of the

effects of human genes in promoting or counteracting the
different forms of RCD.

Finally, humanized yeast strains, expressing human

genes not present in the yeast genome, constitute very
powerful models for the study of aging, tumor progression,

neurodegenerative disorders and for the development of

new diagnostic assays and therapeutic molecules.
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