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We study the solutions of a generalized Allen–Cahn
equation deduced from a Landau energy functional,
endowed with a non–constant higher order stiffness.
We analytically solve the stationary problem and
deduce the existence of so-called compactons, namely,
connections on a finite interval between the two
phases. The dynamics problem is numerically solved
and compacton formation is described.

1. Introduction
Phase-field models describe physical systems that can
exhibit different homogeneous phases. The state of the
system on the volume Ω ⊂ R

3 is coded into a so-called
phase-field u(x, t) depending on the space and time
variables x ∈ Ω and t ∈ [0, ∞), respectively. In particular,
two values of the phase-field, say 0 and 1, represent the
two homogeneous phases of a diphasic system. From
now on we concentrate our attention on this case.

These models play a crucial role, for instance,
in the study of phase reordering [1–3]: a system is
quenched from the homogeneous high-temperature
phase into a broken-symmetry one (a ferromagnet or a
gas abruptly cooled below their critical temperature) and
the evolution of the phase-field u describes the process of
separation of the two phases.

A straightforward way to derive the evolution
equation for the field u is that of assuming a gradient
equation [4,5]

∂u
∂t

= −grad H(u) (1.1)

associated with the Landau energy functional

H(u) :=
∫
Ω

[
1
2
ε‖∇u‖2 + W(u)

]
dx, (1.2)
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where W ∈ C2(R) associates an energy with the phase-field u and the squared-gradient term of the
phase-field variations is weighted by the energy cost ε, called higher-order stiffness. According to
the usual physical interpretation, the energy W has to be chosen as a double well function with
the two minima corresponding to the two phases 0 and 1 and W(0) = W(1) = 0.

If the higher-order stiffness ε is a constant positive number and no constraint to the total value
of the field u is imposed, it is possible to compute the gradient of the Landau functional in the
Hilbert space L2(Ω) to get the standard Allen–Cahn equation

∂u
∂t

= ε�u − W′(u) (1.3)

with normal derivative of the phase-field on the boundary equal to zero. Analogously, the
Allen–Cahn equation endowed with Dirichlet or mixed boundary conditions could be derived
specifying a priori the proper essential boundary conditions in the definition of the Hilbert space
in which the gradient of the Landau functional should be computed.

The standard Allen–Cahn equation, also called the time-dependent Ginzburg–Landau
equation, was introduced in [6] to describe the motion of anti-phase boundaries in crystalline
solids. In this context, u represents the concentration of one of the two components of the alloy
and ε is proportional to the squared interface width. A well-known explanation of this equation
in terms of balance of microforces can be retrieved in [7] and the related literature. Among others
one can refer to [8] for a clear statement of the continuum mechanical framework within which
the Allen–Cahn (and the Cahn–Hilliard) equation(s) can be deduced.

In this paper, we consider the case in which the higher-order stiffness is not constant, but
it is a sufficiently regular positive function of the field, namely, ε ∈ C2(R) such that ε(u) ≥ 0 for
any u ∈ R. This situation has been considered, for instance, in [9] in which the authors studied
a similar model to describe glass-like relaxation in binary fluid models. A closely connected
problem, in which a not constant higher-order stiffness is used, is the study of the gas–liquid
interface in capillary tubes [10]. In these cases, the gradient equation (1.1) provides the generalized
Allen–Cahn equation, see appendix A,

∂u
∂t

= 1
2
ε′(u)‖∇u‖2 + ε(u)�u − W′(u) (1.4)

again with suitable conditions on the boundary ∂Ω .
We focus on the one-dimensional case Ω = [a, b] and study the solutions of the Allen–Cahn

equation (1.4) when the higher-order stiffness coefficient vanishes at the phases, namely, ε(0) =
ε(1) = 0. As we shall discuss in the following section, in such a ‘pathological’ case there exist
stationary solutions connecting the two phases on a finite interval of length δ > 0. It is well known
that this is not possible in the standard constant higher-order stiffness case, in which connections
can only be considered on the infinite domain [11].

These solutions appeared in the scientific literature in different contexts, see, e.g. [9,10,12], and,
at variance with [13], have been called compactons, in order to underline the property of being
localized within a domain of finite measure.

Our main goal, here, is to study the behaviour of the solutions of the evolution equation (1.4)
and, in particular, to describe the process leading to the formation of a compacton on the finite
interval Ω = [a, b]. We shall discuss both the interface Dirichlet boundary conditions

u(a) = 0 and u(b) = 1

and the homogeneous Neumann boundary conditions

ux(a) = 0 and ux(b) = 0.

We shall, respectively, refer to these two cases as the (D)- and (N)-boundary conditions.
Let us summarize our main result. Compactons can be used to construct stationary solutions

of the Allen–Cahn equation performing many excursions between the two phases, whose total
number is bounded by (b − a)/δ. In the standard Allen–Cahn stationary problem, i.e. when the
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higher-order stiffness coefficient is constant, stationary profiles oscillating between the two phases
are not allowed when (D)-boundary conditions are imposed. On the other hand, it is possible
to construct profiles oscillating between two values of the phase-field u ‘close’ to the two pure
phase values in the (N)-boundary condition case. These solutions, in the conservative mechanics
equivalent model language in which the stationary Allen–Cahn model can be immediately
recasted, correspond to the periodic motions of the system with total (kinetic plus potential)
energy slightly smaller than zero.

In the (N)-boundary condition case single interface and periodic profiles are proved to be
unstable [14,15].

We then expect that any time-dependent solution of the Allen–Cahn evolution equation,
for any choice of the initial profile, will never tend in the long time limit to one of these
oscillating stationary solutions. In other words, the standard Allen–Cahn evolution cannot create
an alternating profile and, indeed, such an equation is used to model domain coarse-graining in
phase separation.

The question we pose in this paper is the following: in the presence of compactons, can the
Allen–Cahn evolution describe the alternating profile formation? In this paper, by means of a
numerical computation in the framework of a specific model, we shall give a positive answer to
such a question. In particular, we shall show that the alternating compacton profile formation is
possible with both (D)- and (N)-boundary conditions.

In our study, we shall use the following techniques: the stationary solution of the Allen–
Cahn equation (1.4) will be studied analytically and the ‘usual’ qualitative Weierstrass study
will allow the construction of the phase portrait which will provide a thorough description of
the structure of the stationary profiles. On the other hand, the time-dependent solutions will be
studied numerically and a code based on the finite-element method will be adopted.

In order to perform the numerical study a particular choice of the functions ε(u) and W(u) will
be done. We borrow those functions from [10] where a model describing the gas–liquid interface
in a capillary tube has been proposed. It is worth noting that we shall not discuss the evolution
equations proposed in [10], but the Allen–Cahn equation with stationary profiles coinciding with
the ones in the [10] model. Indeed, our main interest is that of understanding the Allen–Cahn
evolution in the presence of compactons and to this aim we have chosen, as a prototype model, the
one in [10] whose stationary solutions has a clear physical interpretation. Moreover, this model
allows us to study analytically the compactons, whose behaviour can be expressed in terms of
special functions. This will provide us with an effective analytical control of our numerical results.

One of the main results in [10] is the possibility to describe the existence of local, non-spreading
and compactly supported bubbles in a capillary tube. In that paper, the model was studied
numerically. Here we solve analytically the equation giving the stationary states of the system
and explain some of the features of the compacton solutions presented in [10].

The paper is organized as follows: in §2, we discuss under quite general hypotheses the
existence of compactons for the stationary Allen–Cahn equations. In §3, we consider the model
introduced in [10] to study the gas–liquid interface in capillary tube and, in such a context, we
find explicitly (in terms of special function) the compacton solutions and discuss their main
physical properties. In §4, we study numerically the solutions of the Allen–Cahn equation with
higher-order stiffness ε and energy W as in [10]. Section 5 is devoted to some brief conclusions.

2. Compactons
We consider the Allen–Cahn problem (1.4) on the one-dimensional space [a, b]. The equation for
the stationary solutions u = u(x) then becomes

ε(u)uxx + 1
2 ε′(u)u2

x − W′(u) = 0. (2.1)

Here, and in the following, the prime will always denote the derivative with respect to the natural
argument, whereas space (time) derivatives will be written explicitly as d/dx or with a subscript
x (d/dt or with a subscript t).
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We assume W(u) = W0u2(1 − u)2, with W0 > 0, and ε ∈ C2([0, 1]) such that ε(u) > 0 for u ∈ (0, 1),
and ε(0) = ε(1) = 0. The choice of the potential energy W with two isoenergetic minima models
the existence of two coexisting phases. Moreover, we assume that ε tends to 0 in 0 and 1 at least
as a power law, namely, there exists χ > 0 such that

lim
u→0+

ε(u)
uχ

= 0 and lim
u→1−

ε(u)
(1 − u)χ

= 0.

The two last assumptions are crucial for the compacton existence,1 see (2.3) and the discussion
which follows, as well as the related arguments in [9,10].

It is very important to remark that any regular solution u(x) of (2.1) is such that the
conservation law

d
dx

[
1
2
ε(u)u2

x − W(u)
]

= 0 (2.2)

is satisfied.
Note that the problem is similar, see also [16–19], to that of an holonomic conservative

mechanical system with Lagrangian coordinate u, not constant mass matrix ε(u), and potential
energy of the conservative force −W(u), once the space variable x is interpreted as time. A lot of
care has to be used when one wants to exploit this analogy, as the mass matrix ε(u) is not positive
defined, but it is equal to zero in the pure phases u = 0 and u = 1.

The aim of this model is that of describing a compact interface (or connection) between the
pure phases u = 0 and u = 1, namely, we look for a solution of (2.1) equal to zero on a finite (say
left) space interval, equal to one on a finite (say right) space interval, and continuously joining
these two pure phases on an intermediate ‘finite’ space interval. This intermediate interval will
be the compact interface (or connection) between the two pure phases.

In standard cases, i.e. when the higher-order stiffness coefficient is constant, an interface with
zero derivative at the boundary can only be achieved on the whole R (heteroclinic problem). This
property is very general and is connected to the uniqueness of the solution of a Cauchy problem
which is ensured if the differential equation describing the interface is sufficiently regular. In the
model we are studying here, this regularity of the equation is not satisfied due to the presence of
the not positive definite mass matrix ε(u). This is the key peculiarity of the model that gives rise
to the existence of compacton solutions.

First of all, we note that the constant functions u(x) = 0 and u(x) = 1 trivially satisfy (2.1). So
that we can imagine to construct a solution of this equation such that u(x) = 0 for all x ∈ [a, c] and
u(x) = 1 for all x ∈ [c + δ, b], with c, δ ∈ R given. The problem, now, is that of finding the interface
joining the two pure phases on the ‘finite’ interval [c, c + δ]. Note that the pure phases fix the value
of the constant of motion (2.2) to zero; hence, the interface we are looking for has to satisfy

1
2 ε(u(x))u2

x − W(u(x)) = 0 for x ∈ [c, c + δ].

By separation of variables we get the implicit solution

x − c =
∫u

0

√
ε(y)

2W(y)
dy. (2.3)

As we assumed ε to vanish in 0 and 1 at least as a power, we have that the integral above is
convergent on the interval [0, 1]. Hence, we have proved the existence of the compacton and we
can also conclude that

δ =
∫ 1

0

√
ε(u)

2W(u)
du (2.4)

expresses its width.

1We have chosen the Duffing potential energy W for simplicity. The same discussion can be repeated for very general double
well potential energies, but the condition on the higher-order stiffness coefficient have to be chosen accordingly.

 on April 13, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150852

...................................................

u

ux

Figure 1. A possible phase portrait of the stationary equation (2.1). The dotted lines represent the compactons: in the picture
they assume finite values at u= 0 and u= 1, but, recall, they could also tend to zero or diverge (see also figure 2).

We close this section by noting that, by means of the conservation law, it is possible to describe
the structure of all the solutions of the stationary equation (2.1). Indeed, (2.2) ensures that any
regular solution satisfies the equation

1
2 ε(u)u2

x − W(u) = E (2.5)

for some E ∈ R.
The structure of the solution of the equation (2.5) lying in the interval 0 ≤ u ≤ 1 is as follows.

For E = 0 the constant, u(x) = 0 and u(x) = 1, solutions and combination of them with compactons
are found. Note that, as we assumed a power law behaviour of ε(u) for u → 0, 1, we have that the
space derivative of the profile can be zero, finite or divergent in the phases 0 and 1. For E > 0, as
ε(u) vanishes in u = 0 and u = 1, the profile u(x) must have divergent derivative in 0 and 1. For
−W0/16 < E < 0, the solution is bounded to the region in which W(u) + E ≥ 0; as in such a region
ε(u) > 0, we find a classical oscillating solution. Finally, for E = −W0/16, the unique solution is the
constant u(x) = 1

2 .
These results are summarized in figure 1 in which the three points represent the constant

solutions u(x) = 0, u(x) = 1
2 and u(x) = 1, the dotted lines represent the compactons, the lines

diverging in 0 and 1 are the solutions for E > 0, and, finally, the closed loops are the solutions
for −W0/16 < E < 0. Note that in the figure we have depicted the compacton line finite at the
phases, but, as we discussed above, it can happen that close to the phases the line tends to zero or
diverges.

Recalling that δ denotes the length of the compactons solution, note that the length

δu(E) =
∫ 1

0

√
ε(y)

2[E + W(y)]
dy

of profiles connecting the two phases 0 and 1 and corresponding to E > 0 is such that

δu(E) < δ for E > 0.
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On the other hand, for E < 0, we let 0 < u−(E) < u+(E) < 1 be the two solutions of the equation
W(u) + E = 0 lying in the open interval (0, 1). Hence, the length of a single interface connecting
u−(E) to u+(E) is given by

δd(E) =
∫u+(E)

u−(E)

√
ε(y)

2[E + W(y)]
dy.

This analysis on the phase space trajectories allows us to state the following results about
the existence of solutions of the stationary problem. The stationary equation (2.1) with (D)-
boundary conditions has a unique solution corresponding to a phase line with E > 0 if b − a < δ,
has the unique compacton solution if b − a = δ, and has infinite solutions if b − a > δ which can be
constructed by gluing compactons and pure phase constant segments.

The stationary equation (2.1) with (N)-boundary conditions has always the two pure phase
constant solutions u(x) = 0 and u(x) = 1. If b − a is large enough, so that for some E < 0 one has
δd(E) < b − a, the problem can have single connection or oscillating solutions connecting two
points 0 < u− < u+ < 1 and corresponding to the phase lines with E < 0. Moreover, if b − a > δ

the problem has also solutions which can be constructed by gluing compactons and pure phase
constant segments.

3. Bubbles in a capillary tube
A one-dimensional model is adopted for describing the spatial distribution, in a capillary tube,
of the liquid and the gaseous phases regarding the mixture as a non-uniform fluid, which means,
according to [20], a system having a spatial variation of one of its intensive scalar properties. In
particular, following [10] one can assume this property, say the phase-field u introduced in §2,
to be the density of the gas with respect to the volume locally available. In the specific case of a
capillary tube with a constant section, the phase-field is the fraction of the cross-sectional area of
the tube occupied by the gaseous phase Sg, per unit length of the tube.

Apparently, the gas saturation Sg can be related to the volume density of the liquid phase Sl
keeping in mind the obvious constraint

Sg + Sl = 1. (3.1)

According to the general formulation presented in §2, a Landau energy functional is
introduced whose density per unit volume is the sum of a bulk contribution, prescribed in terms
of a double well potential, F(Sg), and an energy penalty for gradients of the gas saturation
Sg, affected by the current value of Sg. In order to characterize the admissible equilibrium
configurations of the system, we refer from now on to the constitutive model given in [10].
Assuming the equilibrium between the gaseous and the liquid phase to be controlled only by
capillary forces and, therefore, by the adjustment of the contact angle θ ∈ (0, π ) between the
gas–liquid and the liquid–solid interfaces, see [21], the double well potential F(Sg) is prescribed
following [10] by

F(Sg) = γ (1 − cos θ )
R

(1 − Sg)2S2
g + γ cos θ

R
[(1 − Sg)2 − S2

g], (3.2)

γ being the surface energy relative to the gas–liquid interface, and R the radius of the capillary
tube. Following [10] the higher-order stiffness will be written in terms of the product of

Γ = CΓ γ R(1 − cos θ )
[

1 − sin θ

cos θ

]2
(3.3)

and
k(Sg) = Sα

g(1 − Sg)β , (3.4)

with α = 2 − cos θ , β = 2 + cos θ . In [10], a dimension argument is given for the definition of Γ ,
moreover, it is remarked that the peculiar expression of k plays a key role in the existence of
compact interfaces, see also [9].
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The derivative of the double well potential (3.2) specifies the difference between the chemical
potential of the gas and the chemical potential of the liquid or, analogously, the negative chemical
potential μ of the liquid, once that of the gas has been fixed to zero, as a reference value. Its value
at the pure phases, Sg = 1, the gas, and Sg = 0, the liquid, is the same, say

∂F
∂Sg

∣∣∣∣
Sg=0

= ∂F
∂Sg

∣∣∣∣
Sg=1

= −2
γ cos θ

R
, (3.5)

so that, according with classical Maxwell’s rule, the non-uniform fluid exhibits coexistence of the
two phases at equilibrium only when the chemical potential is uniformly equal to μ = ∂F/∂Sg =
−2γ cos θ/R over the whole spatial domain. Requiring this condition to be verified corresponds
to find out the solutions of the minimization problem

min
Sg

(
F(Sg) + 2

γ cos θ

R
Sg

)
, (3.6)

which admits two solutions at Sg = 0 and Sg = 1. Owing to the additional linear term,
2γ cos θ/RSg the two phases correspond, now, to two isopotential minima of the function
F(Sg) + 2γ cos θ/RSg.

The regularization provided by the energy penalty proportional to the squared-gradient
term via the higher-order stiffness Γ k(Sg), see equations (3.3)–(3.4), implies, at coexistence, the
conservation law (2.2) to be rewritten as follows:

0 = 2γ

R
(1 − cos θ )(1 − Sg)Sg(1 − 2Sg) − Γ

√
k(Sg)

d
dx

(√
k(Sg)

d
dx

Sg

)
, (3.7)

which therefore reads as a specialization of the Allen–Cahn equation when a non-uniform fluid
is placed into a capillary tube.

(a) The compact interface problem
From now on, we shall simplify the notation by letting Sg = S and rewrite equation (3.7) as

Γ k(S)Sxx + 1
2 Γ S2

xk′(S) − V′(S) = 0, (3.8)

where we have set

V(S) = F(S) + 2S
γ

R
cos θ − γ

R
cos θ = γ

R
(1 − cos θ )(1 − S)2S2. (3.9)

In order for the physical dimensions of the quantities introduced above to be consistent with
the notation of §1 a suitable viscosity parameter μ must be introduced so that W = F/μ and ε =
Γ k(S)/μ.

It is important to remark that the interface problem (3.8) in the capillarity set-up is an example
of applications of the theory developed in §2. Thus, as discussed in §2, in order to ensure that the
integral (2.3) is convergent, it is sufficient to require that the parameters α, β in (3.4) are strictly
positive. In other words, the particular dependence of α and β on the contact angle θ discussed
below (3.4) is not necessary to prove the existence of compactons, but, as we shall see below,
affects their width δ. Indeed, by (2.4) we get

δ =
∫ 1

0

y−(1/4) cos θ (1 − y)(1/4) cos θ√
2γ (1 − cos θ )/(RΓ )

dy, (3.10)

for the compacton width. Moreover, by (B 9), we have

δ = 1√
2γ (1 − cos θ )/(RΓ )

(π/4) cos θ

sin[(π/4) cos θ ]
.

Finally, recalling (3.3), we get

δ = R

√
CΓ

2
1 − sin θ

| cos θ |
(π/4) cos θ

sin[(π/4) cos θ ]
. (3.11)
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(b) Compacton profile
As above it is possible to write an implicit expression of the compacton profile S(x) in terms of
special functions. Indeed, by performing the same computation as above, from (2.3) we get

x(S) − c =
∫S

0

y−(1/4) cos θ (1 − y)(1/4) cos θ√
2γ (1 − cos θ )/(RΓ )

dy. (3.12)

Equation (B 8) and some simple algebra yields

x(S) − c = R

√
CΓ

2
1 − sin θ

| cos θ | B
(

S, 1 − 1
4

cos θ , 1 + 1
4

cos θ

)
, (3.13)

where we have denoted by B the incomplete beta function, see (B 2) in appendix B, which gives
implicitly the profile of the compacton S(x) for x ∈ (c, c + δ).

By using the explicit solution given above, many interesting physics features of the compactons
discussed in [10] can be proved analytically. For instance, in that paper it has been noted that the
convexity of the interface profile S(x) for x ∈ [c, c + δ] depends on whether the liquid phase has a
wetting (θ > π/2, for instance water) or a not wetting (θ < π/2, for instance mercury) behaviour.
By means of (3.13), this problem is reduced to a simple computation. Indeed, recall that the
compacton satisfies (3.8) and along the compacton the constant of motion (2.2) is equal to zero;
thus, from (3.8) and (2.2), we get that

Γ k(S)Sxx = V(S)
[

1
V(S)

V′(S) − 1
k(S)

k′(S)
]

,

for any x ∈ (c, c + δ). A simple computation yields

1
V(S)

V′(S) = 2(1 − 2S)
S(1 − S)

and
1

k(S)
k′(S) = α − 4S

S(1 − S)
.

Thus, for any x ∈ (c, c + δ), we have that

Sxx(x) = V(S(x))
2Γ S(x)[1 − S(x)]k(S(x))

cos θ . (3.14)

As Γ ≥ 0, and V(S(x)), S(x), 1 − S(x) and k(S(x)) are strictly positive in the open interval (c, c + δ),
we have that the profile is convex for θ < π/2 (not wetting liquid) and not convex for θ > π/2
(wetting liquid).

(c) Phase portrait
In this section, we discuss the structure of the solutions of the stationary equation (3.8) by means
of the qualitative Weierstrass analysis. The conservation law (2.2) in this case reads

1
2 Γ k(S)S2

x − V(S) = E, (3.15)

with E ∈ R.
The phase portrait of the model can be deduced by solving (3.15) with respect to Sx. Following

[10], we assume CΓ = 3
2 , while the other parameters are chosen to simplify the numerical

calculation as γ = 1, R = 1 and θ = π/4. With these assumptions, we find the drawing depicted
in figure 2. The discs in the pictures denote the constant solutions, the line tending to zero in zero
represents the compacton, closed curves are associated with the cases E < 0, the remaining lines
represent the profiles in the case E > 0.

In order to find the stationary profiles one has to integrate the equation (3.15). For E = 0, the
solutions of (3.15) are the constant profiles S(x) = 0 and S(x) = 1, and the compacton. For E > 0,
the problem of finding the stationary profiles (in an implicit form) is reduced to the computation
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Figure 2. Phase portrait associated with the equation (3.15) for γ = 1, R= 1, CΓ = 3
2 and θ = π/4.
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Figure 3. From the left to the right, we plot the stationary profiles of the equation (3.8) computed via the integral (3.16)
for E = 10, 1, 0.1, 0.01, 0.001. Parameters: γ = 1, R= 1, CΓ = 3

2 and θ = π/4.
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Figure 4. We plot the stationary profiles of the equation (3.8) computed via the integral (3.17) for
E = −0.016,−0.012,−0.008,−0.004. Parameters: γ = 1, R= 1, CΓ = 3

2 and θ = π/4.

of the definite integral (figure 3)

x =
∫S(x)

0

√
Γ k(y)

2[E + V(y)]
dy. (3.16)
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Figure 5. Allen–Cahn dynamics with (D)-boundary conditions and a linear initial profile (dashed black) connecting the two
phases. Two intermediate profiles (dashed grey) and the stationary profile (solid black) are depicted. The domain of length
(b − a)= 19/20δ is discretized into 102 finite elements, the time needed to get a distance of 10−3 between two subsequent
profiles is tf = 189.

For E < 0, denoted by S− < S+ the two solutions of the equation V(S) + E = 0, lying in the open
interval (0, 1), which rephrases the condition of vanishing derivative of S, the problem of finding
the stationary profiles (in an implicit form) is reduced to the computation of the definite integral
(figure 4)

x =
∫S(x)

S−

√
Γ k(y)

2[E + V(y)]
dy. (3.17)

4. Approaching compactons
Once defined the admissible stationary configurations, which solve (2.5), in particular those
describing the spatial distribution of the liquid and the gaseous phases in a capillary tube, see
(3.13), (3.16) and (3.17) and figures 3 and 4, it is interesting to discuss which of them can be attained
through the dissipative evolution described by the Allen–Cahn equation (1.4), endowed with (D)-
or (N)-boundary conditions.

In the following, the solutions of the Allen–Cahn equation with (D)- and (N)-boundary
conditions are separately discussed when considering (b − a) < δ, say the length of the interval
smaller than the length of the compacton, and (b − a) > δ. In the first case, no compacton
stationary profile is admissible, conversely in the second one, suitable profiles, constructed gluing
compactons and pure phases, are admissible solutions of the problem. The time-dependent spatial
profiles are numerically captured using a finite-element code which has been implemented within
MATHEMATICA. Time is made dimensionless with respect to the ratio μ/(γ /R).

Let (b − a) < δ. In this case, the dynamics does not tend to the compacton simply because
there is not sufficient space for the compacton to arise. Assuming (D)-boundary conditions, the
stationary configuration is a regular profile (figure 5), whereas for (N)-boundary conditions the
dynamics tends to one of the two pure phases, depending on the initial data (figure 6). It is
interesting to note that intermediate profiles of S, for (D)-boundary conditions, can be obtained
gluing regular profiles, of length smaller than (b − a), similar to those of figure 3, and pure phase
solutions (in particular, S = 1), where the measure of the subdomain corresponding to this last
partial solution fades away with increasing time. On the other hand, assuming (N)-boundary
conditions, the evolution passes through a progressive flattening of the profiles.

Consider now (b − a) > δ, for both (D)- and (N)-boundary conditions, two different situations
are discussed corresponding to a length of the interval (b − a) larger or much larger than δ. In the
first case only one compacton can arise whereas in the second one more than one compacton
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Figure 6. Allen–Cahn dynamics with (N)-boundary conditions and a branch of a sinusoidal-type initial profile (dashed black)
connecting the two phases. Two intermediate profiles (dashed grey) and the stationary profile (solid black) are depicted. The
domain of length (b − a)= 19/20δ is discretized into 102 finite elements, the time needed to get a distance of 10−3 between
two subsequent profiles is tf = 39.
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Figure 7. Allen–Cahn dynamics with (D)- and (N)-boundary conditions and a linear initial profile (dashed black) connecting
the two phases. Two intermediate profiles (dashed grey) and the stationary profile (solid black) are depicted. The domain of
length (b − a)= 21/20δ is discretized into 102 finite elements; after 500 dimensionless time steps,with�t = 2. The distance
between two subsequent profiles was d(D) = 0.00013765 and d(N) = 0.000108560687 for the two cases.

can form, depending on the initial conditions. Assume a linear initial profile connecting the
two phases and the length of the interval close to the length of the compacton, for instance
(b − a) = 21/20δ; the dynamics is definitely similar to that in figures 5 and 6, where the stationary
profile is indeed formed by the compacton and the solution corresponding to the pure phase S = 1
(figure 7).

Consider now an interval whose length is (b − a) = 6δ. In this case, depending on the initial
conditions, one or more compactons can form in the domain so that oscillating solutions can
indeed correspond to stationary states of the Allen–Cahn dissipative dynamics. In figures 8
and 9, two distinct cases are exhibited which correspond to (D)- and (N)-boundary conditions.
In particular, in figure 8, a non-oscillating and an oscillating profile are obtained starting from
different initial data.

5. Conclusion
We have considered a generalized Allen–Cahn equation deduced from a Landau energy
functional with a non-constant higher-order stiffness vanishing at the two pure phases. We have
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Figure 8. Allen–Cahn dynamicswith (D)-boundary conditions and two co-sinusoidal initial profiles (dashed black), connecting
the two phases; the initial data are periodic of period 4δ and 12δ, respectively, in the left and the right panel. Two intermediate
profiles (dashedgrey), the stationaryprofiles (solid black) and the compactonprofiles (thick solid grey) aredepicted. Thedomain
of length (b − a)= 6δ is discretized into 2 × 102 finite elements; the time needed to get a distance of 10−3 between two
subsequent profiles is tf = 29 and tf = 25, respectively.
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Figure9. Allen–Cahndynamicswith (N)-boundary conditions anda co-sinusoidal type initial profile (dashedblack) connecting
the two phases. Two intermediate profiles (dashed grey), the stationary profile (solid black) and the compacton profile (thick
solid grey) are depicted. The domain of length (b − a)= 6δ is discretized into 2 × 102 finite elements; the time needed to get
a distance of 10−3 between two subsequent profiles is tf = 35.

solved analytically the stationary problem and deduced the existence of the so-called compactons.
We have also shown the possibilities of piecewise stationary solutions made of the superposition
of compactons and constant pure phase profiles.

In a case of particular physical interest, the compacton problem has been solved explicitly and
the main physical features of such profiles connecting a liquid and a gas phase in a capillarity
tube have been deduced.

The dynamics has been studied numerically and the compacton formation has been described
in detail. In this framework, one of the most relevant result we discussed is the possibility that,
due to the presence of compactons and by choosing the initial condition properly, the dissipative
Allen–Cahn evolution can result in the formation of periodic profiles connecting the two pure
phases. This stationary profiles pops up as the long time limit of the dynamical problem. It is
important to stress that this possibility is ruled out in the standard Allen–Cahn dynamics.
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Appendix A. Derivation of the Allen–Cahn equation
For completeness, we sketch the derivation of the Allen–Cahn equation (1.4) in the case in which
the higher-order stiffness coefficient is not constant.

The gradient grad H of the Landau functional (1.2) in the space L2(Ω) is a function in such
a space such that

d
ds

H(u + sv)
∣∣∣∣
s=0

=
∫
Ω

v grad H dx,

for any v ∈ L2(Ω). In other words, the derivative of the function in any direction is equal to the
scalar product of such a function with the one characterizing the direction. By (1.2), it follows that

d
ds

H(u + sv) =
∫
Ω

[
1
2
ε′(u + sv)‖∇u + s∇v‖2v + ε(u + sv)(∇u + s∇v) · ∇v + W′(u + sv)v

]
dx

and hence
d
ds

H(u + sv)
∣∣∣∣
s=0

=
∫
Ω

[
1
2
ε′(u)‖∇u‖2v + ε(u)∇u · ∇v + W′(u)v

]
dx.

For f , g, h : R
3 → R sufficiently regular, we recall the Green identity

∫
Ω

f∇g · ∇h dx = −
∫
Ω

h∇ · ( f∇g) dx +
∫
∂Ω

hf
∂g
∂n

dS

with ∂Ω the boundary of Ω and ∂g/∂n the derivative in the direction orthogonal to the boundary.
We then get

d
ds

H(u + sv)
∣∣∣∣
s=0

=
∫
Ω

[
1
2
ε′(u)‖∇u‖2 − ∇ · (ε(u)∇u) + W′(u)

]
v dx +

∫
∂Ω

vε(u)
∂u
∂n

dS.

Moreover, recalling the properties of the divergence operator we get

d
ds

H(u + sv)
∣∣∣∣
s=0

=
∫
Ω

[
−1

2
ε′(u)‖∇u‖2 − ε(u)�u + W′(u)

]
v dx +

∫
∂Ω

vε(u)
∂u
∂n

dS.

Finally, from this equality, in the Lebesgue space of functions such that the normal derivative to
the boundary of Ω vanishes, we have that

grad H(u) = − 1
2 ε′(u)‖∇u‖2 − ε(u)�u + W′(u),

which yields the Allen–Cahn equation (1.4).

Appendix B. Integral computations
The integrals (3.10) and (3.12) can be computed by using the properties of the gamma and beta
functions.
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Recall the definition of the beta function and that of the incomplete beta function

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt (B 1)

and

B(x, p, q) =
∫ x

0
tp−1(1 − t)q−1 dt (B 2)

with Re(p), Re(q) > 0. It is immediate to prove that

B(p, q) = B(1, p, q) (B 3)

and
d

dx
[xB(x, p, q) − B(x, p + 1, q)] = B(x, p, q). (B 4)

In the following, we shall also need some properties of the gamma function. Recall its
definition

Γ (p) =
∫∞

0
tp−1e−t dt (B 5)

with Re(p) > 0, and the two properties

Γ (p + 1) = pΓ (p) and Γ (1 − p)Γ (p) = π

sin(πp)
. (B 6)

The beta function is related to the gamma function by the equality

B(p, q) = Γ (p)Γ (q)
Γ (p + q)

. (B 7)

Let a be a real such that 0 < a < 1, it is immediate to remark that∫ x

0
t−a(1 − t)a dt = B(x, 1 − a, 1 + a). (B 8)

Indeed, it is sufficient to let p = 1 − a and q = 1 + a and recall (B 2).
Moreover, ∫ 1

0
t−a(1 − t)a dt = B(1, 1 − a, 1 + a) = B(1 − a, 1 + a),

where we used (B 3). On the other hand, by (B 7) and the fact that Γ (2) = 1, we have that

B(1 − a, 1 + a) = Γ (1 − a)Γ (1 + a) = Γ (1 − a)aΓ (a),

where in the last step we have used the first of (B 6). Hence, recalling the second of (B 6), we have
that ∫ 1

0
t−a(1 − t)a dt = πa

sin(πa)
. (B 9)

Finally, with simple algebra, we get that
∫ 1

0
dx

∫ x

0
t−a(1 − t)a dt = B(1 − a, 1 + a) −

∫ 1

0
B(x, 1 − a, 1 + a) dx.

By (B 4), we find ∫ 1

0
dx

∫ x

0
t−a(1 − t)a dt = B(2 − a, 1 + 1).

On the other hand, by using the properties of the gamma and the beta functions as above and
recalling that Γ (3) = 2, we have that

B(2 − a, 1 + 1) = Γ (2 − a)Γ (1 + a)
Γ (3)

= Γ (2 − a)Γ (1 + a)
2

= 1
2

(1 − a)aΓ (1 − a)Γ (a).

By the second of (B 6), we thus get
∫ 1

0
dx

∫ x

0
t−a(1 − t)a dt = 1

2
(1 − a)a

π

sin(πa)
. (B 10)
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