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ABSTRACT

Disconnection between membrane signalling and actin networks
can have catastrophic effects depending on cell size and polarity. The
survival motor neuron (SMN) protein is ubiquitously involved in
assembly of spliceosomal small nuclear ribonucleoprotein particles.
Other SMN functions could, however, affect cellular activities driving
asymmetrical cell surface expansions. Genes able to mitigate SMN
deficiency operate within pathways in which SMN can act, such as
mRNA translation, actin network and endocytosis. Here, we found
that SMN accumulates at membrane protrusions during the dynamic
rearrangement of the actin filaments. In addition to localization data,
we show that SMN interacts with caveolin-1, which mediates
anchoring of translation machinery components. Importantly, SMN
deficiency depletes the plasma membrane of ribosomes, and this
correlates with the failure of fibroblasts to extend membrane
protrusions. These findings strongly support a relationship between
SMN and membrane dynamics. We propose that SMN could
assembly translational platforms associated with and governed by
the plasma membrane. This activity could be crucial in cells that have
an exacerbated interdependence of membrane remodelling and local
protein synthesis.
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INTRODUCTION

The establishment of cell polarity depends on the ability to
dissect functional subcellular domains in response to intrinsic
developmental programmes or external stimuli (Wodarz, 2002,
Bryant and Mostov, 2008). An advantageous mechanism to select
the protein profile both in space and in time is the asymmetrical
distribution or translation of mRNAs (Besse and Ephrussi, 2008;
Medioni et al., 2012; Xing and Bassell, 2013; Jung et al., 2014). At
least two factors contribute to restricting protein synthesis to discrete
compartments: the highly oriented cytoskeletal network, and the
packaging of mRNAs into dedicated ribonucleoprotein particles
(mRNPs) (Holt and Bullock, 2009; Xing and Bassell, 2013).
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Furthermore, membrane receptor signalling provides essential
inputs to ensure a fine-tuning of the cytoplasmic control of gene
expression (Latham et al., 1994; Willis et al., 2007; Ridley, 2011).
Signal transduction pathways, such as the mammalian target of
rapamycin (mTOR) signalling cascade, switch receptor activity into
localized translational outputs by activating components of
translation machinery (Berven et al., 2004; Hoeffer and Klann,
2010). Notably, an elegant work has highlighted the ability of the
plasma membrane to govern local protein synthesis not only as
mediator of extracellular cues (Tcherkezian et al., 2010). The
authors showed that the plasma membrane of neural cells sequesters
inactive components of translation machinery, including the 40S
and 60S ribosomal subunits. In an activity-dependent manner,
ribosomes are released from the plasma membrane and are recruited
into translating polyribosomes, to promote spatially restricted
protein production. Furthermore, a great deal of progress has been
made in identifying mechanisms that regulate the local translation,
revealing RNA-binding proteins involved in the sorting or
translation of mRNAs (Xing and Bassell, 2013). Some of these,
such as the zipcode-binding protein 1 (ZBP1) and the KH domain-
containing splicing regulatory protein (KSRP, also known as
KHSRP), contact the mRNA upon transcription or splicing (Pan
et al., 2007; Holt and Bullock, 2009). Other RNA-binding proteins,
such as the fragile X mental retardation protein (FMRP, also known
as FMR1) and the fused in sarcoma protein (FUS), affect their target
transcripts preferentially at the translational level (Napoli et al.,
2008; Darnell et al., 2011; Yasuda et al., 2013). Consistent with the
crucial role of the local protein synthesis in the generation of cell
polarity, the genetic alterations of RNA-related proteins have been
linked to severe neurological disorders (Bassell and Warren, 2008;
Kwiatkowski et al., 2009).

The survival motor neuron (SMN) protein is known to be
involved in important tasks of RNA metabolism (Li et al., 2014). In
humans, two almost identical genes, SMNI and SMN2, encode
SMN protein. Although SMNI produces full-length transcripts,
SMN2 mainly produces an alternatively spliced mRNA, whose
product is rapidly degraded. As a consequence, SMN2 can not
compensate for SMNI defects, unless SMN2 is present in multiple
copies. Mutations of SMNI result in spinal muscular atrophy
(SMA), the leading genetic cause of infant mortality (Hamilton and
Gillingwater, 2013). The complete loss of SMN is not compatible
with the cell viability in all tissue types, whereas reduced SMN
levels affect cells differentially. The large a-motoneurons in the
spinal cord display the highest susceptibility to SMN deficiency, but
the molecular mechanism underlying this selectivity remains
obscure. To date, the best-characterized function of SMN is the
cytoplasmic assembly of the small nuclear RNPs (snRNPs), the core
components of the pre-mRNA splicing machinery (Pellizzoni et al.,
2002). However, an emerging idea is that the loss of additional
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function(s) of SMN unrelated to RNA splicing could co-contribute
to SMA pathogenesis. In particular, it has been strongly suggested
that SMN is involved in the trafficking and/or translation of target
transcripts (Rossoll et al., 2003; Tadesse et al., 2008; Glinka et al.,
2010; Peter et al., 2011; Hubers et al., 2011; Fallini et al., 2011,
2014; Yamazaki et al., 2012; Rathod et al., 2012; Sanchez et al.,
2013). In this context, it is noteworthy to mention cross-species
conserved genes able to mitigate the SMN loss-of-function defects
(Dimitriadi et al., 2010). Among others, the modifier gene plastin 3
(PLS3) has been shown to protect fully against deficiency in SMA
(Oprea et al., 2008). PLS3 is an F-actin-bundling protein, primarily
involved in the regulation of the actin cytoskeleton (Delanote et al.,
2005). Interestingly, zebrafish SMN mutants display reduced
PLS3 protein production, without changes at the transcriptional
level (Hao et al., 2012). Importantly, proteins encoded by SMA
modifier genes operate within distinct cellular networks,
specifically, actin dynamics, endocytosis and mRNA translational
control (Dimitriadi et al., 2010). These apparently dissimilar
pathways might act in concert, and their perfect coupling might
converge on the generation and maintenance of cell polarity
(Gibbings et al., 2009; Lee et al., 2009; De Rubeis et al., 2013).
Collectively, these findings prompted us to investigate a possible
involvement of SMN at the functional interplay between actin
dynamics and translational control networks.

In this study, we provide evidence for an intimate link between
SMN and plasma membrane dynamics. We found that SMN
interacts with caveolin-1, a key regulator of plasma membrane
composition and expansion. We demonstrate that SMN coexists
with translation machinery components in caveolin-rich
membrane domains. Importantly, SMN deficiency depletes the
plasma membrane of ribosomal proteins, and this correlates with
the impairment of actin and membrane remodelling. In
conclusion, our findings reveal a possible involvement of SMN
in local protein production underlying plasma membrane-actin
network axis.

RESULTS

Subcellular distribution of SMN during actin remodelling

All membrane protrusions known to occur at the leading edge of
the cell, such as lamellipodia and filopodia, are dynamically
orchestrated by changes in the polymerization and assembly of the
actin cytoskeleton (Ridley, 2011). In order to explore a functional
link between SMN and actin dynamics, we subjected fibroblasts to
an ATP depletion and recovery assay. This approach stimulates the
extension of actin-based membrane protrusions, and provides a
useful tool to address key determinants of the actin network in living
cells (Svitkina et al., 1986; Bear et al., 2002). In our system, after
30 min of ATP recovery, ~70% of the cells exhibited different
types of membrane protrusions. At this time point, an
immunofluorescence assay was performed to visualize the
subcellular distribution of SMN. As expected, in unstimulated
fibroblasts, SMN displayed a punctuate pattern distributed
throughout the whole cell body, and a typical localization in
nuclear bodies, named gems (Fig. 1 A, unstimulated). Surprisingly,
in ATP-recovering cells, we observed a strong redistribution of
SMN in vesicle-like structures within the protrusive areas of the
plasma membrane. Interestingly, SMN-positive dots were also
detectable along the cell perimeter of stimulated cells (Fig. 1A,B,
stimulated). In order to correlate SMN distribution to the actin
filament meshwork, we probed cells with phalloidin (Fig. 1C).
Stimulated fibroblasts displayed a well-organized cortical actin
network underneath the plasma membrane, as well as several

filopodial extensions. In these cells, SMN accumulated at the tips of
both the cortical actin arc and filopodia. Notably, in similar
membrane protrusions observed in unstimulated fibroblasts, SMN
was not detectable (see detail in Fig. 1C), suggesting that the
peripheral recruitment or localization of SMIN is mainly governed in
an activity-dependent context. In support of this, and to exclude
exacerbated effects due to the ATP depletion and recovery
treatment, we tested the localization of SMN wupon more
physiological conditions known to induce actin filament
rearrangements (Ridley, 2011). In particular, we performed
immunofluorescence assays of starved fibroblasts stimulated with
fetal bovine serum (FBS) for 30 min, or with basic fibroblast growth
factor (bFGF, 50 ng/ml) for 15 min. Both conditions led to
extension of cellular protrusions, although with a lesser frequency
compared to the ATP depletion and recovery assay. However, in
cells exhibiting membrane remodelling, we observed a peripheral
accumulation of the SMN protein (see Fig. S1A), consistent with the
idea that a fraction of SMN moves to the periphery in an activity-
dependent manner. Given that accumulation of SMN at the raffling
membrane could occur for a thickness effect, we examined the SMN
distribution in fibroblasts expressing a freely diffusible green
fluorescent protein (GFP). Following ATP depletion and recovery,
we observed that GFP was present at the membrane protrusions, but
it was not able to compensate for SMN recruitment at the same
subregions (Fig. S1B). Finally, we also verified the subcellular
distribution of another RNA-related protein. We checked the
localization of KSRP, given that this RNA-binding protein
interacts with SMN (Tadesse et al., 2008), and shuttles between
nuclear and cytoplasmic compartments. In contrast to SMN, KSRP
was not enriched in membrane protrusions, and its localization was
almost unaffected in stimulated cells (see Fig. S1C).

Interestingly, these findings reveal a peripheral recruitment of
SMN in structures underlying actin filament remodelling.

A fraction of SMN colocalizes with translation machinery at
membrane protrusions

We asked whether molecules related to translational control were
present in the same subregions where SMN was shown. In
particular, we imaged cells for both RNA and components of
translation machinery (Fig. 2A). Cellular RNA, including mRNPs,
was labelled by using an RNA-selective fluorescent probe. In
parallel, protein synthesis machinery was visualized by the
immunostaining of ribosomal protein S6 (S6, also known as
RPS6). In the case of RNA, in unstimulated cells, maximal
fluorescence was detectable in the nucleoli and throughout
the nucleus. A diffuse and faint signal was also present in
the cytoplasmic compartment. Under the same conditions, the
ribosomal protein S6 displayed a typical pattern throughout
the cytoplasm (Fig. 2A, unstimulated). In stimulated cells, we
found an asymmetrical redistribution of both RNA and S6, with a
robust detection of the respective signals at the membrane
protrusions (Fig. 2A, stimulated). Finally, to verify the presence
of initiation sites of protein synthesis, we checked the
phosphorylation status of S6 by using an antibody against S6
phosphorylated at Ser235 or Ser236 (phospho-S6). Phospho-S6
immunostaining suggested that there was active translational
hotspots at the leading edge of stimulated cells (Fig. 2A,
stimulated). To validate this result, we carried out the surface
sensing of translation technology (SUnSET) (Schmidt et al., 2009).
Newly synthesized proteins were traced by puromycin incorporation
and revealed by immunostaining with anti-puromycin antibody. As
shown in Fig. 2B, in stimulated fibroblasts, newly synthesized
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(A—C) Representative fluorescence
microscopy images. Human
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(unstimulated) or ATP-depleted for
60 min, and then stimulated to extend
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proteins were enriched at membrane protrusions, this pattern clearly
overlapped with phospho-S6 as well as SMN immunostaining.
Notably, the total fluorescence intensity of phospho-S6 was
significantly stronger in fibroblasts extending protrusions
(Fig. 2A,B, stimulated). This was consistent with a switching on
of'the mTOR pathway. We further monitored the mTOR pathway by
western blot analysis. As shown in Fig. 2C, the p70S6 kinase, a
downstream target of mTOR, shifted to an active status in fibroblasts
extending protrusions, and this correlated with Ser235 or Ser236
phosphorylation in the S6 protein. This result was not surprising,
because a direct link between mTOR activity and actin dynamics is a
well-accepted notion (Berven et al., 2004; Hoeffer and Klann,
2010). Our main interest was to verify the colocalization between
SMN and translation machinery during the actin remodelling. To
this end, we subjected stimulated cells to dual immunofluorescence
for SMN and S6, or SMN and phospho-S6, and then analysed
slides by confocal laser scanning microscopy (Fig. 2D).
Immunostaining of both SMN and the S6 proteins appeared to be
overlapping in several subcellular regions. By performing z-stack
imaging and orthogonal analysis, we identified several yellow
dots that showed colocalization between SMN and both S6
and phospho-S6. Interestingly, the colocalization spots were
preferentially located near the cell surface of stimulated cells
(see graphs in Fig. 2D).

These data show that SMN partially compartmentalizes with
translation machinery in cellular structures in which dynamic
changes of the actin cytoskeleton are coupled with spatially
restricted protein synthesis.

SMN associates with the plasma membrane

Taking into account our images displaying SMN dots along the cell
perimeter of ATP-recovering cells (Fig. 1B), we suspected a
physical contact of SMN with the plasma membrane. In order to
support this hypothesis, we prepared plasma-membrane-enriched
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were detectable in ~70% of the
stimulated cells. Cells were fixed and
immunostained with anti-SMN
antibody (green in A and C, red in B)
or stained with Alexa-Fluor-594—
phalloidin to visualize the F-actin
filaments (C red). B shows a
representative overlay of the phase
contrast image with SMN
immunostaining (red) of ATP-
recovering cells (stimulated). The
‘detail’ images in C, represent high
magnification images of the boxed
area. Nuclei were labelled with DAPI
(blue). Scale bars: 10 ym.

fractions from both unstimulated and ATP-recovering fibroblasts,
and performed western blot analysis to check for SMN presence. As
shown in Fig. 3A, SMN was detectable in plasma membrane
fractions of both control (unstimulated) and ATP-recovering
fibroblasts (stimulated), without significant differences. This result
was apparently in disagreement with images showing the increased
peripheral localization of SMN under stimulating conditions. We
suppose that during actin remodelling, cytoplasmic SMN granules
accumulate within membrane protrusions that are in close proximity,
but not physically anchored, to the plasma membrane. In addition, a
membrane-bound fraction of SMN, as revealed by the biochemical
approach, is usually present, even if apparently it is less detectable
by immunofluorescence assays. When we probed blots with an
antibody specific for the core-splicing factor protein SmB (also
known as SNRPB), only the whole-cell extracts displayed
immunoreactive bands (Fig. 3A). This is consistent with the fact
that the canonical SMN complex assembles Sm proteins into the
cytoplasm (Li et al., 2014). We also tested components of the
translation machinery. We used antibodies against S6 and L7 (also
known as RPL7), markers of 40S and 60S ribosomal subunits,
respectively. Both S6 and L7 were present in plasma membrane
fractions from unstimulated fibroblasts (Fig. 3A). In contrast to
SMN, no, or almost no, ribosomal proteins were detectable in
plasma membrane fractions from stimulated cells. Interestingly, this
result was in agreement with the previously published work
(Tcherkezian et al., 2010) reporting that inactive ribosomes,
anchored to plasma membrane of unstimulated neurons, are
released in an activity-dependent manner. Notably, the
endoplasmic reticulum (ER) marker, calreticulin, was present but
not enriched in our plasma membrane preparations (Fig. 3A). In
addition to fibroblasts, we also achieved similar results in HelLa
cells. In western blot analyses, we observed a decrease of S6 in the
plasma membrane fractions from both ATP-recovering and EGF-
stimulated cells (see Fig. S2). This event correlated with Thr389
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Fig. 2. SMN colocalizes with translation machinery in membrane protrusions. (A) Representative images of unstimulated and stimulated fibroblasts. Fixed
cells were stained with SYTO RNAselect (green) or immunostained for S6 and phospho-S6 (Ser235 or Ser236) (red). The ‘detail’ images show a high
magpnification view of the boxed area of each panel. Scale bars: 10 um. (B) Unstimulated and ATP-recovering fibroblasts (stimulated) were subjected to dual
immunostaining for phospho-S6 (red), SMN (red) and puromycin (green). The high magnification panel shows the overlap in staining for the boxed areas. Scale
bars: 10 ym. (C) Awestern blot analysis was performed in parallel for the cells described in A and B. Equal amounts of the protein extracts were analysed by using
anti-phospho-p70S6K (Thr389) and anti-phospho-S6 antibodies. a-tubulin and S6 were monitored as controls of the protein loading. (D) Upper panels,
representative confocal microscopy images of stimulated cells subjected to dual immunostaining with anti-SMN (green) and anti-S6 (red), or anti-SMN (green)
and anti-phospho-S6 (red) antibodies. The nucleus is stained with DAPI (blue). Orthogonal projection of the confocal z-stack analysis showing colocalization
(yellow) of SMN with both S6 and phospho-S6 at membrane protrusions. Scale bars: 10 ym (S6) 7.5 ym (phospho-S6). (D) Lower panels, quantification of SMN—
S6 and SMN-phospho-S6 colocalization over the membrane protrusion and cytoplasm. Results are meants.e.m. (n=4). ***P<0.01 (unpaired t-test).

phosphorylation in p70S6 kinase, confirming that ribosomes are
released from the plasma membrane in combination with mTOR
switch-on. Likewise in fibroblasts, the amount of SMN anchored to
plasma membrane fractions of HeLa cells appeared to be almost
unchanged. This result not only excluded the possibility of a cell-
type-specific event, but pointed to the idea that a translational
platform anchored to the plasma membrane might occur commonly
in many cell types. Furthermore, we carried out a more stringent
fractionation approach to dissect membranes in different
subdomains (Fig. 3B). Detergent-resistant membranes (DRMs),
containing lipid rafts, can be separated from heavy non-raft domains
and analysed by western blot assay. In both unstimulated and ATP-
recovering fibroblasts (stimulated), the majority of SMN protein
was detectable in the non-raft fractions of membranes. However,
SMN was also present in lipid-raft-containing light fractions.
Interestingly, the amount of raft-localized SMN protein increased

following the cellular ATP-recovery treatment (Fig. 3B, stimulated).
Apparently, L7 was not recovered in DRMs. Given that detergent
extraction affects lipid—protein interactions, so that only the proteins
strongly associated with lipids are detectable in DRMs (Schuck
et al., 2003), we could not exclude the presence of ribosomal
proteins also in lipid rafts subdomains.

Collectively, we provide biochemical evidence of a physical
association of SMN with plasma membrane. In addition, these data
suggest that SMN protein relocalizes at specific plasma membrane
subdomains during actin or cell surface remodelling.

SMN interacts with caveolin-1

To further define the SMN-membrane association, we verified a
possible interaction between SMN and caveolin-1. Caveolin-1 is the
main component of plasma membrane caveolae, which are implicated
in cell membrane composition and expansion, and cytoskeleton
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Fig. 3. SMN-plasma-membrane association. (A) Representative western blot analysis of whole-cell extracts (WCE) and plasma-membrane-enriched fractions
(PM), from unstimulated and ATP-recovering cells (stimulated). Equal amounts of the protein extracts were immunoblotted for SMN and SmB. The anti-S6 and
-L7 antibodies were used to monitor the 40S and 60S ribosomal subunits, respectively. o-tubulin was detected as cytoplasmic marker. Calreticulin was checked
as the ER marker. Both caveolin-1 and B1-integrin were detected as plasma membrane markers. (B) Raft and non-raft membrane subdomains were isolated from
both unstimulated and ATP-recovering (stimulated) fibroblasts. Cell lysates were solubilized with 20 MM CHAPS and subjected to sucrose density gradient

centrifugation. A total of ten fractions, collected from the top of each gradient, were analysed by western blotting. Lipid-raft-containing light fractions were revealed
by the specific markers flotillin-1 and caveolin-1. Rab5 was used as marker of heavy non-raft fractions. Blots are representative of three independent experiments.

remodelling (Grande-Garcia et al., 2007; Dubroca et al., 2007).
Furthermore, we were very interested to explore a possible link
between caveolin-1 and SMN, because caveolin-1 unexpectedly
appears in the interaction map of modifier genes of SMN defects
(Dimitriadi et al., 2010). To this end, we prepared plasma membrane
fractions from unstimulated fibroblasts, and carried out co-
immunoprecipitation assays by using anti-caveolin-1 antibody.
SMN co-precipitated with caveolin-1 from the plasma membrane
fractions, which also displayed immunoreactivity to the anti-L7
antibody (Fig. 4A, left). This result was confirmed by reciprocal co-
immunoprecipitation using a monoclonal antibody against SMN
(Fig. 4A, right). These findings provided biochemical evidence that
SMN coexists with components of translation machinery in caveolin-
rich membrane domains. In parallel, we imaged cells subjected to
dual immunostaining for SMN and caveolin-1. Interestingly,
colocalization spots were seen in both intracellular and peripheral
subregions (see Fig. S3A). SMN—caveolin-1 association was also
explored by an in situ proximity ligation assay (PLA), which reveals
endogenous protein—protein interactions in fixed cells. Both
unstimulated and ATP-recovering fibroblasts were subjected to PLA
using antibodies against SMN and caveolin-1, and then processed for
confocal microscopy (Fig. 4B,C). In unstimulated cells, several PLA
dots were present, and some of these dots were clearly detectable at the
cellular leading edge (Fig. 4B). Interestingly, PLA occurrence was
significantly increased in ATP-recovering fibroblasts (Fig. 4C). PLA
specificity was validated by testing different combinations of primary
antibodies against SMN and caveolin-1 (see Fig. S3B). By
performing in situ PLA, we confirmed that the interaction between
SMN and caveolin-1 also occurs in cultured neurons from rat spinal
cord (see Fig. S3C). PLA was performed in untreated or brain-derived
neurotrophic factor (BDNF)-stimulated spinal cord neurons. Notably,
BDNF treatment led to higher PLA signals, compared to the
unstimulated cultures. These data prompted us to investigate
whether caveolin-1 could affect SMN and/or ribosome linkage at
the plasma membrane. We assessed this aspect by preparing plasma
membrane fractions from caveolin-1-depleted fibroblasts (Fig. 4D).
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Fibroblasts transfected with control small interfering RNA (siRNA)
(siC) or siRNA against caveolin-1 (siCav-1) were subjected to the
ATP depletion and recovery assay, and then processed to obtain
plasma membrane fractions. Western blot analysis showed that
caveolin-1 deficiency did not change the SMN abundance at the
plasma membrane of unstimulated cells. More substantial differences
were observed in plasma membrane fractions from ATP-recovering
cells (stimulated), which retained more SMN protein following
caveolin-1 knockdown. Interestingly, caveolin-1 deficiency depleted
plasma membrane compartments of ribosomal proteins (Fig. 4D).
These results suggest that SMN could contact the plasma
membrane in a caveolin-1-independent manner. However, caveolin-
1 could affect turn over of membrane SMN. In addition, we provide
evidence that caveolin-1 could mediate ribosome anchoring.

SMN depletion impairs actin dynamics

By performing loss of function studies, we evaluated the effects of
SMN function in actin dynamics. We reduced the expression of
endogenous SMN by the transient transfection of fibroblasts with
SMN1-selective siRNAs (siSMN). Scrambled siRNAs were used as
control (siC). At 48 h post transfection, we probed actin filaments
and imaged cells by using fluorescence microscopy (Fig. 5A).
Unstimulated cells displayed mild perturbations of the actin
meshwork in the absence of SMN (Fig. SA, unstimulated). Major
differences were observed under stimulating conditions (Fig. 5A,
stimulated). In particular, stimulated control cells were able to
properly reassemble actin filaments, exhibiting robust actin arcs, as
well as several filopodial extensions. Under the same condition,
SMN-depleted cells displayed an aberrant and unorganized actin
network. In the absence of SMN, the amount of actin filaments in the
growing tips of filopodia appeared to be low compared to similar
structures observed in control cells (Fig. 5A’). Overall, the ability to
extend membrane protrusions was significantly reduced in SMN-
deficient fibroblasts (Fig. 5B). Moreover, owing to the non-oriented
cytoskeleton, we thought that SMN-depleted cells were unable to
deliver mRNPs for local translation. To verify this idea, we assessed
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Fig. 4. SMN interacts with caveolin-1. (A) Plasma-membrane-enriched fractions (PM) from untreated fibroblasts were immunoprecipitated with non-specific
antibodies (immunoprecipitation control), anti-caveolin-1 polyclonal antibody (IP cav-1) or anti-SMN monoclonal antibody (IP SMN). 10% of the total lysates was
used as input. Antibodies against SMN, L7, and caveolin-1 were used for the western blot analysis. (B) An in situ proximity ligation assay (PLA) was performed in
unstimulated fibroblasts using primary antibodies against SMN and caveolin-1 [polyclonal (Santa Cruz Biotechnology) and monoclonal (R&D), respectively]. The
representative overlay of phase-contrast and PLA images (red dots) was obtained by epifluorescence microscopy. The ‘detail’ image represents a high
magnification of the boxed area. Nuclei were stained with DAPI (blue). Scale bar: 10 um. (C) The PLA assay was performed on both unstimulated and ATP-
recovering fibroblasts (stimulated) using primary antibodies against SMN and caveolin-1 [monoclonal (BD) and polyclonal (Santa Cruz Biotechnology),
respectively]. Detection of PLA signals (red dots) was achieved by confocal microscopy. As a negative control, one of the primary antibodies was omitted (neg ctr).
Nuclei were stained with DAPI (blue). Scale bars: 10 ym. The graph shows a quantification of PLA puncta per cell indicating the increased SMN—caveolin-1
interaction in ATP-recovering cells (stimulated). Data are the mean from three independent experiments. Results are meants.e.m. (n=4). ***P<0.01 (unpaired
t-test). (D) Western blot analysis of both whole-cell extracts (WCE) and plasma-membrane-enriched fractions (PM) from fibroblasts transfected with control (siC)
or caveolin-1 siRNA (siCav-1), and subjected to an ATP-depletion and recovery assay. The density of the immunoreactive bands to anti-caveolin-1 antibody were
reduced in caveolin-1-deficient-cells. Immunoblots are representative of three independent experiments.

the subcellular localization of B-actin mRNA. We focused on the
B-actin transcript for two main reasons: (1) the B-actin mRNA
asymmetrically relocalizes in regions where actin protein production
supports cell polarity, and (2) its peripheral distribution has been
linked to SMN function. To visualize both B-actin transcript and
the SMN protein, fibroblasts extending protrusions were subjected
to combined fluorescent in situ hybridization (FISH) and
immunostaining. As showed in Fig. 5C, in the absence of SMN,
B-actin mRNA appeared diffuse throughout the cytoplasm, without
asymmetrical accumulation to the cell periphery. The quantification
of the FISH signal confirmed the reduced peripheral recruitment of
B-actin transcript in SMN-depleted cells (Fig. 5D). These results
strongly confirm the notion that SMN loss of function is deleterious in
actin-based membrane remodelling.

SMN loss of function depletes the plasma membrane of
ribosomes

It has been reported that dysregulated mTOR signalling occurs in
the SMA disease context (Kye et al., 2014). This prompted us to

verify whether, in our SMN-depleted cells, the perturbation of actin
network combines with a reduced mTOR activity. Western blot
analysis of fibroblasts stimulated to extend protrusions revealed that
the p70S6 kinase was activated in both control and SMN-depleted
cells (Fig. 6A). Phospho-S6 immunostaining confirmed that mTOR
and p70S6 activity was independent of SMN expression levels
(see Fig. S4A). Notably, in stimulated SMN-knockdown cells,
phospho-S6 immunostaining appeared diffuse throughout the
cytoplasm, without peripheral accumulations. Apparently, our
findings are in disagreement with the notion that SMN deficiency
dysregulates mTOR activity (Kye et al., 2014). However, we do not
exclude perturbed translational events downstream of mTOR. To
assess this question, we evaluated in vivo the protein synthesis rate
of SMN-depleted cells by performing a SUnSET assay. Both siC-
and siSMN-transfected fibroblasts were subjected to ATP depletion
and recovery assay, in which the ATP recovery step was carried out
in the presence or absence of the mTOR inhibitor rapamycin. Newly
synthesized proteins were traced by puromycin incorporation and
detected by western blot analysis with anti-puromycin antibody
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Fig. 5. SMN depletion affects actin filaments assembly. (A) Representative images of fibroblasts transfected with the control (siC) or SMN7 siRNA (siSMN).
Unstimulated and stimulated cells were immunostained for SMN (green) or probed for F-actin (red). Nuclei were counterstained with DAPI (blue). Scale bars:
10 um. (A’) Representative images of filopodial structures, observed in both stimulated control cells (siC) and SMN-depleted cells (siSMN). (B) Graph
showing the percentage of the cells extending protrusions, for each of the untransfected (control), siC and siSMN groups. Data are the meanz s.e.m. from four
independent experiments, in which a total of 50 cells were analysed for each group. ***P<0.01 (unpaired t-test). (C) Fibroblasts extending protrusions were
subjected to combined FISH and immunostaining. The localization of the SMN protein (green) and B-actin mRNA (red) was visualized by performing fluorescence
microscope. The ‘detail’ image represents a high magnification of the boxed area. Scale bars: 10 ym. (D) Graph showing the increase of B-actin mRNA in the
protrusions of both siC- and siSMN-stimulated cells. The fluorescence signal from each protrusion was normalized to signal from the adjacent area (left region
delimited by the dashed line). Data are the meants.e.m. from three independent experiments in which a total of 25 membrane protrusions was analysed for each

experimental group. ***P<0.01 (unpaired t-test).

(Fig. 6B). In non-stimulating conditions, no significant differences
were observed in the protein synthesis efficiency following SMN
depletion. In stimulated cells, SMN knockdown resulted in an
~25% reduction of translation. This difference was completely
abolished by rapamycin treatment, suggesting that a subset of
protein synthesis, downstream of mTOR, could depend on SMN
function. As shown above, the plasma membrane of unstimulated
fibroblasts exhibited immunoreactivity to SMN as well as ribosomal
components of translation machinery (Fig. 3A). Next, therefore, we
asked whether SMN could be implicated in the ribosome—
membrane association. To this end, we performed western blot
analysis of plasma membrane fractions from transiently SMN-
depleted fibroblasts (Fig. 6C). In the absence of SMN, the ribosomal
proteins were not detectable in plasma membrane compartments,
although their total expression remained unchanged (Fig. 6A). This
could be explained by an exacerbated activation of mTOR pathway.
We excluded this because, in our system, SMN depletion was not
sufficient to activate the signalling cascade downstream of mTOR
(Fig. 6A). Moreover, we isolated DRMs fractions from unstimulated
siC- and siSMN-transfected fibroblasts. By using western blot
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analyses, we showed that SMN deficiency changed the membrane
distribution of both L7 and caveolin-1. In particular, the abundance
of caveolin-1 was mainly reduced at the DRMs (Fig. 6D). These
results suggest that SMIN can affect the protein composition of the
plasma membrane and highlight a possible involvement of SMN in
assembly of ribosomal proteins into caveolin-1-rich membranes. In
order to exclude a cell culture artefact, we also addressed the main
crucial aspects of this study in a SMA pathological background. We
prepared plasma membrane fractions from primary fibroblasts of both
a severe type I SMA patient and an unaffected individual. By western
blot analysis, we found that the SMA condition reduces the amount of
ribosomes in plasma membrane compartments (Fig. 7A). In these
cells, we also tested DRM fractions, confirming similar results
obtained in transfected fibroblasts (Fig. S4B). Furthermore, by
performing a western blot analysis, we showed that the ATP
recovery treatment switched on mTOR activity to a similar degree
in unaffected and SMA-affected fibroblasts (Fig. 7B). However,
protein synthesis rate downstream of mTOR activation (stimulated)
was reduced in SMA fibroblasts by ~25%, as evaluated by the
SUnSET assay (Fig. 7C). No significant differences were observed in
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Fig. 6. SMN loss of function depletes membranes of ribosomes. (A) Western blot analysis of siC- and siSMN-transfected fibroblasts, stimulated or not to
extend membrane protrusions by an ATP depletion and recovery assay. Equal amounts of the whole-cell extracts (WCE) were tested for phospho-p70S6K
(Thr389) and phospho-S6 (Ser235 or Ser236). The total pool of both S6 and L7 was detected. (B) Evaluation of protein synthesis rate by SUnSET. Both siC- and
siSMN-transfected fibroblasts were subjected to an ATP depletion and recovery assay, in the presence or absence of rapamycin. Equal amounts of the protein
extracts were immunoblotted and analysed using anti-puromycin. Phospho-p70S6K (Thr389) was monitored as a control for the rapamycin effect. o-tubulin was
detected as a protein-loading control. The graph shows a quantification of protein synthesis rate of SMN-depleted fibroblasts (siSMN) compared to control cells
(siC), expressed as percentage. Data are the meants.e.m. from three independent experiments. (C) Western blot analysis of plasma-membrane-enriched
fractions (PM) from siC- and siSMN-transfected fibroblasts subjected to an ATP depletion and recovery assay. Equal amounts of proteins were immunoblotted for
the indicated antibodies. (D) siC- and siSMN-transfected fibroblasts, subjected to an ATP depletion and recovery assay, were processed to isolate raft and non-raft

fractions. The indicated antibodies were used for immunoblot analysis. Blots are representative of three independent experiments.

unstimulated conditions. Finally, we also subjected the SMA
fibroblasts to an ATP depletion and recovery assay in order to test
their ability to undergo actin cytoskeleton remodelling. By probing the
actin network with phalloidin, we observed that SMA fibroblasts
failed to rearrange actin filaments in stimulating conditions (Fig. 7D,
stimulated). This was clearly evident by defective lamellipodia
formation and irregular filopodial protrusions. As expected, in non-
stimulating conditions, SMN deficiency impacted on cytoskeleton
organization to a lesser extent (Fig. 7D, unstimulated). The results
obtained in SMA patient fibroblasts confirm the idea that SMN is
involved in membrane sequestering of ribosomes, and recapitulate
main crucial aspects observed in transfected SMN-depleted cells.

DISCUSSION

It is still unclear why motoneurons, more than any other cell type,
need high levels of SMN protein for their survival. Taking into
account the housekeeping role of SMN in RNA metabolism, the
idea is that SMN expression levels could become crucial depending
on the phenotypic context in which this protein operates. Two
peculiarities of motoneurons are of particular interest: (1) the large
extension and polarity, and (2) the neuromuscular junction (NMJ), a
specialized membrane domain, which physically and functionally

interconnects the motoneuron to muscle. Both these features are
structurally governed by dynamic rearrangements of actin filament,
which in turn require local protein synthesis of key regulatory
factors. Consistent with the above hypothesis, the interaction map of
SMA modifier genes identifies three specific pathways in which
SMN can act: actin remodelling, local translational control and
endocytosis (Dimitriadi et al., 2010). Of note, membrane signalling
dictates each of these pathways, and their crosstalk drives the
establishment of cell polarity. This scenario suggests a new context
in which SMN can work, and raises some important questions: can
SMN mediate the functional interplay of cellular pathways specified
by SMA modifier genes? Can an exacerbated cell polarity
represent the ‘Achilles’ heel” for SMN-depleted cells? Moreover,
and most importantly: how could SMN, an RNA regulatory
protein, interconnect membrane signalling and the actin network?
To investigate in vitro some of these aspects, we took advantage
of an ATP depletion and recovery assay. This method, based on
the action of metabolic inhibitors on the actin cytoskeleton,
stimulates and recapitulates typical changes of actin filament
underlying the establishment of cell polarity (Svitkina et al.,
1986). For this specific issue and approach, the fibroblast is the
best-performing cell.
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ribosomes are released from the plasma membrane and rapidly engaged into actively translating polyribosomes. This event underlies dynamic rearrangements of
actin cytoskeleton. SMN loss of function depletes the plasma membrane of inactive ribosomes, and this renders plasma membrane not competent to govern the

activity-dependent local production of factors implicated in actin and membrane remodelling.

In our experience, checking for subcellular distributions of a
protein during a specific event can help researchers to understand its
function. Previous attempts to map the intracellular localization of
SMN have revealed that this protein is mainly present in the nucleus
and perinuclear cytoplasm of all cell types. This localization has
been linked to the canonical role of SMN in snRNPs biogenesis.
However, the presence of SMN granules in subcellular regions, such
as the axonal growth cone, filopodia-like structures and the NMJ
(Fan and Simard, 2002; Fallini et al., 2012; Dombert et al., 2014),
implies an involvement of SMN beyond snRNP assembly. Here, we
provide evidence in line with this assumption. First, when we
stimulate fibroblasts to reassemble the actin cytoskeleton, SMN
appears to be strongly redistributed at the cell protrusions, where the
biogenesis of actin network begins (Svitkina et al., 1986). Both
components of translation machinery and newly synthesized
proteins are present at the same substructures. Indeed, it has been
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already reported that foci of active protein synthesis are present at
the leading edge of fibroblasts during migration (Willett et al.,
2013). This suggests that the molecular context in which the
SMN function takes place might be related to local translational
control. In more detail, colocalization studies show that SMN
contacts the translational hotspots underlying membrane
remodelling. A colocalization between SMN and polyribosomes
has been previously reported (Béchade et al., 1999). However, in
that study a direct link to actin dynamics was not proposed. Next,
SMN relocalizes to membrane protrusions in a cellular context in
which the mTOR—p70S6K signalling cascade couples to actin
remodelling. Regarding SMN localization, we also obtained similar
results in fibroblasts stimulated with serum or bFGF. These findings
highlight two important unique functions of SMN: (1) that cell
surface remodelling combines with changes in cytoplasmic
distributions of SMN, and (ii) that SMN accumulates at the cell
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periphery in an activity-dependent manner. In this framework,
receptor tyrosine kinases (RTKs) could be a triggering component
for SMN trafficking, given that actin dynamics require RTK
activation. Further studies will focus on this aspect.

Surprisingly, more than a signalling-dependence for SMN
distributions, here we found a physical link between SMN and the
plasma membrane. Immunofluorescence images support SMN-
membrane linkage mostly in stimulated cells, in which the
cytoskeleton organization unmasks SMN dots along the cell
perimeter. Biochemical approaches reveal that SMN is always
detectable in plasma-membrane-enriched fractions from fibroblasts,
independently of their activity to extend membrane protrusions. In
more detail, by performing DRM isolation, we observed that SMN is
partially associated with lipid-raft-containing fractions, which retain
more SMN protein following ATP recovery treatment. The notion that
SMN associates with lipid rafts could be coherent with published
works suggesting a link between lipid rafts and translational control.
In particular, the netrin receptor DCC, which anchors protein
synthesis machinery in neurons (Tcherkezian et al., 2010), partially
localizes at lipid rafts and this association is required for axon
outgrowth (Hérincs et al., 2005). Importantly, deficiency of the RNA-
binding protein FMRP changes lipid rafts properties (Kalinowska
etal., 2015). In contrast to SMN, ribosomal subunits are present only
in plasma membrane preparations from unstimulated fibroblasts. In
agreement with Flanagan and co-workers, we confirm that ribosomes
are released from the membrane compartment in an activity-
dependent manner (Tcherkezian et al., 2010). However, further
studies are necessary to elucidate the connection between the SMN
fraction that accumulates in close proximity to the plasma membrane
and the SMN fraction found in direct association with it. In this regard,
the demonstration of a bidirectional movement of fluorescently tagged
SMN granules in the axon could be relevant (Zhang et al., 2003).
Notably, these mobile SMN granules do not include core-splicing
factor proteins. It will be interesting to assess whether the trafficking
of'these granules to and from the plasma membrane contributes to the
rapid turnover of the membrane SMN. In this context, an important
novelty of our study is that SMN associates with caveolin-1.
Interestingly, cellular events triggering membrane expansions
increase intracellular contacts between SMN and caveolin-1. It is of
note that an intimate connection between SMN and caveolin-1 has
already been suggested (Dimitriadi et al., 2010). Hart and colleagues
observed that proteins related to endocytosis, including caveolin-1,
unexpectedly predominate in the interaction map of SMN modifier
genes. Consistent with this, defects in vesicle endocytosis and
recycling have been observed at the NMJ in mice severely deficient
for SMN (Kong et al., 2009). More investigations are needed to
understand the functional and physical relationship between SMN and
caveolin-1, as well as other factors, pertinent to endocytosis. Indeed,
the interdependence of the mRNA translational control with the
endocytosis pathway is still enigmatic. In this context, two of our
results become attractive: (1) ribosomal proteins are sequestered like
SMN in caveolin-1 enriched domains; and (2) caveolin-1 mediates
anchoring of ribosomal proteins at the plasma membrane. By
performing loss-of-function experiments, we found that SMN-
depleted fibroblasts fail to rearrange F-actin and, consequently, to
generate membrane protrusions. The non-oriented actin cytoskeleton,
occurring in the absence of SMN, impairs the recruitment of $-actin
transcripts at the leading edge of the cell. In this regard, we do not
exclude that perturbations of B-actin-mRNA-binding proteins linked
to the SMN fate might produce cumulative effects (Fallini et al.,
2012). Next, in our system, SMN knockdown cells retain the ability to
activate the mTOR pathway. Despite the mTOR pathway switch on,

SMN loss of function reduces the protein synthesis rate by ~25%. Of
note, in non-stimulating conditions, the translational efficiency is
almost unaffected by SMN loss of function. This result suggest a
possible functional role for SMN in a subset of protein synthesis
downstream of mTOR. Finally, a recent work has shown that localized
mTOR-dependent protein synthesis is a prerequisite for the membrane
expansion during axon outgrowth (Gracias et al., 2014). Given that
SMN controls different tasks within RNA metabolism, the effect of'its
reduction could not only depend on SMN localization. However, this
does not negate the role of SMN at the cell protrusions. Importantly,
we show that SMN deficiency depletes the plasma membrane of
ribosomes, and this correlates with the altered distribution of caveolin-
1 at DRMs. Of note, this result was also confirmed in SMA-affected
fibroblasts.

Collectively, our findings are compatible with a model in which
SMN arranges the translational platform anchored to the plasma
membrane, whose components are engaged for local protein
synthesis underlying membrane remodelling (Fig. 7E). Future
works should be planned to understand how SMN contributes to the
packaging and/or delivery of membrane proteins competent for
local translation. In addition, our study shows that a cytoplasmic
pool of SMN colocalizes with S6 near the plasma membrane. It will
be interesting to explore in what direction, from and/or to the plasma
membrane, it occurs. This study opens a novel and exciting scenario
in SMN investigations providing the opportunity not only to
advance in functional characterization of the ubiquitous SMN
protein, but also to understand how this new aspect of SMN might
be crucial for motoneuron activity.

MATERIALS AND METHODS

Antibodies and reagents

The following antibodies were used: anti-SMN mouse monoclonal antibody
(cat. no. 610647, BD Transduction Laboratories; work dilution for western
blotting, 1:10,000; for immunofluorescence, 1:150); anti-SMN rabbit
polyclonal antibody (cat. no. sc-15320, Santa Cruz Biotechnology; work
dilution for immunofluorescence, 1:150); anti-S6 rabbit polyclonal antibody
(cat. no. 2217, Cell Signaling Technology; work dilution for western blotting
1:1000; for immunofluorescence, 1:100); anti-phospho-S6 (Ser235 or
Ser236) rabbit monoclonal antibody (cat. no. 4858, Cell Signaling
Technology; work dilution for western blotting 1:1000; for
immunofluorescence  1:100); anti-phospho-p70S6K  (Thr389) rabbit
polyclonal antibody (cat. no. 9234, Cell Signaling Technology; work
dilution for western blotting 1:1000; for immunofluorescence, 1:100); anti-
KSRP rabbit polyclonal antibody (cat. no. 5398, Cell Signaling Technology;
work dilution for immunofluorescence, 1:100); anti-o-tubulin mouse
monoclonal antibody (cat. no. T6074, Sigma-Aldrich; work dilution for
western blotting, 1:2000); anti-flotillin-1 rabbit polyclonal antibody (cat. no.
F1180, Sigma-Aldrich; work dilution for western blotting, 1:1000); anti-
Caveolin-1 rabbit polyclonal antibody (cat. no. sc-894, Santa Cruz
Biotechnology; work dilution for western blotting, 1:5000; for
immunofluorescence, 1:200); anti-Caveolin-1 mouse monoclonal antibody
(cat. no. MABS5736, R&D Systems; work dilution for immunofluorescence,
1:200); anti-Caveolin-1 monoclonal antibody (cat. no. NB100-615, Novus
Biologicals; work dilution for immunofluorescence 1:200); anti-L7 rabbit
monoclonal antibody (cat. no. ab 172478, Abcam; work dilution for western
blotting, 1:1000); anti-Rab5 rabbit polyclonal antibody (cat. no. ab 18211,
Abcam; work dilution for western blotting, 1:500); anti-digoxigenin sheep
polyclonal antibody (cat. no. ab 64509, Abcam; work dilution for
immunofluorescence 1:100); anti-puromycin mouse monoclonal antibody
(cat. no. MABE343, Millipore; work dilution for western blotting, 1:25,000;
for immunofluorescence, 1:10,000); and anti-calreticulin rabbit polyclonal
antibody (cat. no. ADI-SPA-600, Stressgen Biotechnologies Corporation;
work dilution for western blotting, 1:3000). The secondary antibodies
conjugated to horseradish peroxidase were purchased from Jackson
Immuno Research Laboratories and used at a dilution of 1:10,000. The
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Alexa-Fluor-488 or Alexa-Fluor-594-conjugated secondary antibodies were
purchased from Life Technologies and used at a dilution of 1:250. The anti-
Sm mouse monoclonal antibody Y12, was a gift from Mauro Cozzolino
(CNR, Institute of Translational Pharmacology, Italy). Anti-B1-integrin rabbit
polyclonal antibody, was a gift from Rita Falcioni (Regina Elena Cancer
Institute. Italy). The SytoRNASelect probe and Alexa-Fluor-594-conjugated
phalloidin were from Life Technologies.

Cell cultures, treatments and transfections

hTert-immortalized human fibroblasts, obtained from Silvia Soddu (Regina
Elena Cancer Institute. Italy) (Rinaldo et al., 2012), were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with
heat inactivated 10% FBS (Gibco), penicillin-streptomycin (Gibco) and
GlutaMAX (Gibco), in a 5% CO, humidified atmosphere, at 37°C. For
serum stimulation, fibroblasts were cultured for 16 h in free-serum medium
and then were incubated in presence of 15% fetal bovine serum for 30 min.
For bFGF stimulation (Prepotech), starved fibroblasts were treated with
bFGF (50 ng/ml) for 15 min. Human fibroblasts from the SMA type I
patient (GM00232) and healthy control (GM08333) were obtained from the
Coriell Institute for Medical Research (Camden, NJ, USA), and cultured in
DMEM medium supplemented with 10% FBS, penicillin-streptomycin,
and GlutaMAX, in 5% CO, humidified atmosphere, at 37°C. For
EGF stimulation (Prepotech), starved HeLa cells were treated with EGF
(50 ng/ml) for 5 min. For knockdown experiments, cells were transfected
with a combination of three siRNA-27 duplexes targeting the human SMN!
gene or the human caveolin-1 gene. Universal scrambled siRNA duplex was
used as negative control (OriGene). For GFP transfection experiments,
hTert-immortalized human fibroblasts were transfected with pEGFP
plasmid (Clontech). Lipofectamine 2000 (Life Technologies) was used as
the transfection reagent, according to the manufacturer’s instructions. Cells
were harvested after 48 h post transfection. Informed consent was obtained
for all tissue donors, and all clinical investigation have been conducted
according to the principles expressed in the Declaration of Helsinki.

ATP depletion and recovery assay

The ATP depletion and recovery assay was performed as described
previously (Svitkina et al., 1986). Cells were incubated in phosphate-
buffered saline (PBS) supplemented with 1 mM CaCl,, 1 mM MgCl, and
20 mM NaNj for 1 h. This treatment causes a rapid depletion of the cellular
ATP, inducing a reversible disassembly of actin filaments. NaN-containing
buffer was then replaced with fresh medium supplemented with heat
inactivated 10% FBS for 30 min to allow ATP recovery, leading to a rapid
restoration of actin cytoskeleton, which occurs as a synchronous burst of
membrane protrusions.

Immunofluorescence and confocal laser scanning microscopy

Cells were fixed with 4% formaldehyde in PBS, permeabilized in 0.2%
Nonidet P40 (Boehringer Mannheim) for 10 min, and blocked with 1% BSA
in PBS at room temperature. Samples were incubated sequentially with the
appropriate primary and secondary antibodies. Slides were mounted with
ProLong with Dapi (Life Technologies), and examined by conventional
epifluorescence microscope (Olympus BX51; Milano, Italy). Images were
captured by a SPOT RT3 camera and elaborated by IAS software. For
colocalization analysis, slides were examined by acquiring a z-series of 25
optical sections at 0.8 pm intervals, with a x63/1.2 NA water-corrected oil
immersion CApochromat lens, and a digital zoom of 3, with the confocal
system TCS-SP5 (Leica Microsystems GmbH, Wetzlar, Germany).
Orthogonal projections (of an x- or z-plane corresponding to a point on the
y-axis) were calculated from a 20 um z-stack. The quantification of SMN and
S6,and SMN and phospho-S6 colocalization over membrane protrusions and
cytoplasm was performed as previously described (Tcherkezian et al., 2010).

Western blot analysis

Protein extracts were loaded on pre-cast NuPAGE 4-12% gels (Life
Technologies) and transferred onto nitrocellulose membranes (GE
Healthcare; Milano, Italy). Immunodetection of the reactive bands was
revealed by chemiluminescence (ECL kit, GE Healthcare).
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Preparation of plasma membrane-enriched fractions

The preparation of plasma-membrane-enriched fraction was performed as
previously described (Vachon et al., 1987) with little modification. Cells
were lysed in buffer A (5 mM Tris-HC1 pH 7.4, | mM EGTA, 1 mM DTT
and 320 mM sucrose). Extracts were passed five times through a 26G needle
and centrifuged at 1000 g for 10 min at 4°C. The supernatant was kept and
the pellet was quickly vortexed in the presence of the original volume of
lysis buffer and centrifugated at 1000 g for 10 min at 4°C. The two
supernatants were pooled and centrifuged at 24,000 g for 20 min at 4°C in a
Beckman SW41 rotor. The supernatant was discarded and the pellet was
resuspended in 12 ml of buffer B (5 mM Tris-HCI pH 7.4, 1 mM EGTA
and 1 mM DTT), and centrifuged at 24,000 g for 30 min at 4°C at in a
Beckman SW41 rotor. The supernatant was discarded and the pellet was
processed in lysis buffer (100 mM Tris-HCI pH 8.0, 150 mM NaCl, 5 mM
EDTA, 1% Triton X-100). The protein extract was processed for western
blot analysis.

DRM preparation
The isolation of DRM fractions, containing lipid rafts, was performed as
previously described (Clement et al., 2010).

Co-immunoprecipitation assay

For co-immunoprecipitation experiments, plasma-membrane-enriched
fractions were resuspended in immunoprecipitation buffer [SO mM Tris-
HCl pH 7.4,250 mM NaCl, 5 mM EDTA, 0.1% Triton X-100, 5% glycerol
and complete protease inhibitor cocktail (Roche)]. Extracts were passed five
times through a 25G needle, incubated on ice for 15 min, and clarified at
9000 g for 15 min at 4°C. 250 pg of extract was immunoprecipitated in
immunoprecipitation buffer with 1 pg of caveolin-1 polyclonal antibody or
SMN monoclonal antibody, pre-adsorbed with anti-rabbit-IgG- or anti-
mouse-IgG-conjugated magnetic beads (New England BioLabs) for 3 hours
at 4°C. The same amount of non-specific IgG was used as control. After five
washes with immunoprecipitation buffer, complexes were eluted by boiling
in Laemmli’s buffer and analysed by SDS-PAGE on 10% polyacrylamide
gels followed by immunoblotting.

In situ proximity ligation assay

Cultures, treated as indicated were immediately fixed in 4% PFA for 15 min
and thereafter subject to in situ PLA using Duolink In Situ Detection
Reagents Red kit (DUO092008, Sigma-Aldrich), according to the
manufacturer’s instructions. Different combinations of primary antibodies
to SMN and caveolin-1 were used. Then, PLA signals were detected by a
TCS SP5 confocal laser scanning microscope (Leica Mycrosystems) using
an 63x1.35 NA oil immersion objective. High-resolution images were
acquired as a z-stack with a 0.5 um z-interval. Two-dimensional projections
at maximum intensity of each z-series were generated with the LAS AF
software platform (Leica Microsystems). High-resolution (taken using a
63x%,1.35 NA objective) images from single scans were analysed by ImageJ
(NIH) to calculate the density of PLA puncta.

Primary neuron cultures and treatments

Spinal cords were obtained from embryonic day 13 fetal rats. After removal
of the dorsal root ganglia, spinal cords were dissected, washed with 5 ml of
Earl’s Balanced Salt Solution (Gibco), and centrifuged for 2 min at 150 g.
The tissue was resuspended and incubated for 15 min at 37°C with 0.02%
trypsin followed by addition of DNase I (80 ug/ml) and trypsin inhibitor
(0.52 mg/ml). Digested tissues were mechanically dissociated and
centrifuged at 150 g for 10 min. The dissociated cells were plated at a
density of 12x10* cells/cm? in neurobasal media supplemented with B27
(Gibco). For BDNF stimulation, neuron cultures at 3 days in vitro (DIV)
were incubated for 30 min in neurobasal media, and then stimulated with
10 ng/ml BDNF (Prepotech) for 15 min. Fixed neurons were processed for
the in situ PLA assay.

Preparation of nick-translated probe
One digoxigenin-labelled oligonucleotide probe was used to detect human
B-actin mRNA. The probe was obtained by PCR amplification of human
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c¢DNA using the following oligonucleotides: forward, 5'-ACACCCGCC-
GCCAGCTCACCATGGA-3’; reverse, 5'-CCAGGTCCAGACGCAGGA-
TGGCATG-3'. Digoxigenin (DIG)-labelled DNA probe was generated
using a DIG-Nick Translation Mix Kit (Roche) according to the
manufacturer’s instruction.

Fluorescent in situ hybridization

Fibroblasts, subjected to ATP depletion and recovery assay, were processed
for immunofluorescence, as above reported. FISH was performed as
previously described, with little modification (Welshhans and Bassell,
2011). Briefly, cells were fixed in 4% formaldehyde, rinsed three times in
PBS containing MgCl,, permeabilized in 0.2% Nonidet P40 for 5 min and
equilibrated in 1x SSC and pre-hybridized with hybridization buffer (40%
formamide, 10% dextran sulfate, 4 mg/ml bovine serum albumin, 2x SSC,
1x PBS) for 1 h at 37°C. Then, cells were incubated overnight with DIG-
labelled oligonucleotide probe in hybridization buffer at 37°C, rinsed with
40% formamide and 1XSSC (two times, 20 min each) at 37°C, five times
with 1x SSC (two rinses for 15 min each and three rinses for 5 min each) at
room temperature. Cells were washed three times with PBS containing
MgCl, and incubated with anti-digoxigenin antibody for 2 h at room
temperature, followed by Alexa-Fluor-594-conjugated secondary antibody
incubation, for 45 min at room temperature, and mounted with ProLong
with Dapi (Life Technologies). Stacks of images of membrane protrusions
were acquired, and images were analysed using Imagel.

SUNnSET assay

The SUnSET assay was performed as previously described (Schmidt et al.,
2009). Briefly, cells were subjected to the ATP depletion and recovery assay,
in the presence or absence of 10 nM rapamycin. 10 uM of puromycin was
added for an additional 10 min following the ATP recovery. Cells were
harvested and processed for western blot analysis by using anti-puromycin
antibody. Immunoblotting images were quantified by Imagel]. For
experiments in which an immunofluorescence step was combined to the
SUNSET assay, after ATP depletion and recovery assay, cells were incubated
with 10 uM puromycin for 5 min. Samples were washed twice in ice-cold
PBS supplemented with 355 uM cycloheximide, and then incubated on ice
in PBS containing 0.002% Nonidet P-40 (Boehringer Mannheim), for 30 s,
followed by rapid washing in ice-cold PBS. Cells were then fixed and
processed for immunofluorescence as described above.

Statistical analysis
Data are presented as mean+s.d. or s.e.m. Statistical significance between
groups was determined using the GraphPad Prism software. The unpaired
t-test was performed to assess the significance; P<0.05 was considered
statistically significant.
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