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Abstract

In this paper we consider fractional higher-order stochastic differential equations of
the form (

µ+ cα
dα

dtα

)β
X(t) = E(t), µ > 0, β > 0, α ∈ (0, 1) ∪N

where E(t) is a Gaussian white noise. We obtain explicitly the covariance functions
and the spectral densities of the stochastic processes satisfying the above equations.
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1 Introduction

In this paper we consider fractional stochastic ordinary differential equations of
different form where the stochastic component is represented by a Gaussian white noise.
Some of the fractional equations considered here are related to the higher-order heat
equations and thus are connected with pseudo-processes.

The first part of the paper considers the following stochastic differential equation(
µ+

dα

dtα

)β
X(t) = E(t), β > 0, 0 < α < 1, µ > 0, t > 0 (1.1)

where dα

dtα represents the Weyl fractional derivative. We obtain a representation of the
solution to (1.1) in the form

X(t) =
1

Γ(β)

∫ ∞
0

E(t− z)
∫ ∞
0

sβ−1e−sµ hα(z, s) dsdz (1.2)

where hα(z, s), z, s ≥ 0, is the density function of a positively-skewed stable process
Hα(s), s ≥ 0 of order α ∈ (0, 1), that is with Laplace transform∫ ∞

0

e−ξzhα(z, s)dz = e−sξ
α

, ξ ≥ 0.
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Spectral densities related to some fractional stochastic differential equations

For (1.2), we obtain the spectral density

f(τ) =
σ2(

µ2 + 2|τ |αµ cos πα2 + |τ |2α
)β , τ ∈ R (1.3)

and the related covariance function.
The second type of stochastic differential equations we consider has the form(

µ+ (−1)n
d2n

dt2n

)β
X(t) = E(t), β > 0, µ > 0, n ≥ 1, t ∈ R (1.4)

where E(t) is a Gaussian white noise. The representation of the solution to (1.4) is

X(t) =
1

Γ (β)

∫ +∞

−∞
E(t+ x)

∫ ∞
0

wβ−1e−µwu2n(x,w)dwdx (1.5)

where u2n(x,w), x ∈ R, w ≥ 0 is the fundamental solution to 2n-th order heat equation

∂u

∂w
(x,w) = (−1)n+1 ∂

2nu

∂x2n
(x,w) (1.6)

The covariance function of the process (1.5) can be written as

EX(t)X(t+ h) =
σ2

Γ(2β)

∫ ∞
0

dww2β−1e−µw u2n(h,w) =
σ2

µ2β
Eu2n(h,W2β) (1.7)

where W2β is a gamma r.v. with parameters µ and 2β. The spectral density f(τ)

associated with (1.7) has the fine form

f(τ) =
σ2

(µ+ τ2n)2β
, τ ∈ R. (1.8)

For n = 1, (1.6) is the classical heat equation, u2(x,w) = e−
x2

4w√
4πw

and, from (1.7) we obtain
an explicit form of the covariance function in terms of the modified Bessel functions.
In connection with the equations of the form (1.6) the so-called pseudo-processes, first
introduced at the beginning of the Sixties ([7]), have been constructed. The solutions to
(1.6) are sign-varying and their structure has been explored by means of the steepest
descent method ([11, 1]) and their representation has been recently given in [14].

For the fractional odd-order stochastic differential equation(
µ+ κ

d2n+1

dt2n+1

)β
X(t) = E(t), n = 1, 2, . . . , κ = ±1, t ∈ R (1.9)

the solution has the structure

X(t) =
1

Γ(β)

∫ +∞

−∞
E(t+ x)

∫ ∞
0

dwwβ−1e−µwu2n+1(x,w)dwdx (1.10)

where u2n+1(x,w), x ∈ R, w ≥ 0 is the fundamental solution to

∂u

∂w
(x,w) = κ

∂2n+1u

∂x2n+1
(x,w), κ = ±1. (1.11)

The solutions u2n+1 and u2n are substantially different in their behaviour and structure
as shown in [14] and [8].
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Spectral densities related to some fractional stochastic differential equations

A special attention has been devoted to the case n = 1 (and κ = −1) for which (1.10)
takes the interesting form

X3(t) =
1

Γ(β)

∫ +∞

−∞
E(t+ x)

∫ ∞
0

wβ−1e−µw
1

3
√

3w
Ai

(
x

3
√

3w

)
dwdx (1.12)

where Ai(·) is the first-type Airy function. The process X3 can also be represented as

X3(t) =
1

µβ
EE(t+ Y3(Wβ)) (1.13)

where the mean E is defined in formula (1.19) below, Y3 is the pseudo-process related to
equation

∂u

∂t
= −∂

3u

∂x3
(1.14)

and Wβ is a Gamma-distributed r.v. independent from Y3 and possessing parameters β, µ.
Therefore, the covariance function of X3 has the following form

EX3(t)X3(t+ h) =
σ2

µ2β
E

[
1

3
√

3W2β

Ai

(
h

3
√

3W2β

)]
(1.15)

where W2β is the sum of two independent r.v.’s Wβ .
For the solution to the general odd-order stochastic equation we obtain the covariance

function

EX(t)X(t+ h) =
σ2

µ2β
E [u2n+1(h,W2β)] (1.16)

Of course, the Fourier transform of (1.16) becomes, for κ = ±1,

f(τ) =
σ2

µ2β

∫
R

eiτhE [u2n+1(h,W2β)] dh =
σ2

(µ+ iκτ2n+1)2β
. (1.17)

Stochastic fractional differential equations similar to those treated here have been
analysed in [2], [4] and [6]. In our paper we consider equations where different operators
are involved. Such operators are defined as fractional powers (β > 0) of operators of
order α, for α ∈ (0, 1) ∪N. The equations we deal with and involving the white noise E(t)

can be interpreted as integral equations. We define as usual (see [18, pag. 110])

X(f) =

∫
E(s)f(s)ds

so that, for each f, g ∈ L2(dx), we have that

EX(f)X(g) = σ2

∫
f(x)g(x)dx. (1.18)

Thus, by considering integral equations, we do not care about assumptions such as
sample continuity and differentiability. Moreover, for the sake of clarity we introduce
the following conditional expectation

E[E(t+ Y (W ))] =

∫
E(t+ y)P(Y (W ) ∈ dy) (1.19)

where the expectation is performed w.r.t. the probability measure of Y (W ). Throughout
the paper we consider Y given by:

• the stable subordinator of order α ∈ (0, 1], denoted by Hα;
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Spectral densities related to some fractional stochastic differential equations

• the pseudo-processes of order 2n and 2n+ 1 with n ∈ N, denoted by Y2n and Y2n+1.

We also denote by W the Gamma r.v. Wβ with parameters µ and β such that W1 +W2
d
=

W2β .
Pseudo-processes have been developed in a series of papers dating back to the Sixties

([3, 9], [7] for the even-order case, [12] for pseudo-processes related to equations with
two space derivatives) and recently by Orsingher [13] for the third-order case, Lachal
[8] for the general case and also Smorodina and Faddeev [17].

2 Fractional powers of fractional operators

In this section we consider the following generalization of the Gay and Heyde equation
(see [4]) (

µ+
dα

dtα

)β
X(t) = E(t), β > 0, 0 < α < 1, µ > 0, t > 0 (2.1)

where E(t), t ∈ R, is a Gaussian white noise for which (1.18) holds true. Then, we have
that EE(t)E(s) = σ2δ(t − s) where δ is the Dirac function. The fractional derivative
appearing in (2.1) must be meant, for 0 < α < 1, as

dα

dtα
f(t) =

1

Γ(1− α)

d

dt

∫ t

−∞

f(s)

(t− s)α
ds =

α

Γ(1− α)

∫ ∞
0

f(t)− f(t− w)

wα+1
dw.

For α = 1 we have that

dα

dtα
f(t) =

d

dt
f(t)

as usual. Consult, for example, [16, pag. 111] for information on fractional derivatives
of this form, called also Marchaud derivatives. For λ ≥ 0, we introduce the Laplace
transform

L
[
dαf

dtα

]
(λ) =

∫ ∞
0

e−λt
dα

dtα
f(t)dt = λαL[f ](λ) (2.2)

which can be immediately obtained by considering that

L
[
dαf

dtα

]
(λ) =

α

Γ(1− α)

∫ ∞
0

(
L[f ](λ)− e−wλL[f ](λ)

) dw

wα+1
(2.3)

where we used the fact that

xα =
α

Γ(1− α)

∫ ∞
0

(
1− e−wx

) dw

wα+1
, α ∈ (0, 1), x ≥ 0.

Lemma 2.1. The following relationship holds in a generalized m.s. sense

ez
d
dt E(t) = E(t+ z). (2.4)

Proof. In view of the Taylor expansion

f(x) =

∞∑
k=0

f (k)(x0)
(x− x0)k

k!
(2.5)

with x0 = t and x = t+ z we can write

ez
d
dt f(t) =

∞∑
k=0

zk

k!

dk

dtk
f(t) = f(t+ z) (2.6)
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Spectral densities related to some fractional stochastic differential equations

which holds for a bounded and continuous function f : [0,∞) 7→ [0,∞). Since we can
find an orthonormal set, say {φj}j∈N, for which (2.6) holds true ∀ j and a sequence of
r.v.’s {aj}j∈N such that

lim
N→∞

E

∥∥∥∥E − N∑
j=1

ajφj

∥∥∥∥
2

= 0, (2.7)

we can write (2.4). Since E is a generalized white noise with second moment as in (1.18)
we get the claim.

Theorem 2.2. Let us consider the equation (2.1), then a generalized m.s. solution is

X(t) =
1

µβ
E[E(t−Hα(Wβ))], β > 0, 0 < α < 1, µ > 0 (2.8)

=
1

Γ(β)

∫ ∞
0

dz

∫ ∞
0

ds sβ−1e−sµ hα(z, s) E(t− z)

Proof. The solution to the equation (2.1) can be obtained as follows

X(t) =

(
dα

dtα
+ µ

)−β
E(t)

=
1

Γ (β)

∫ ∞
0

sβ−1e−sµ−s
dα

dtα E(t) ds

=
1

Γ (β)

∫ ∞
0

sβ−1e−sµ
{
e−s

dα

dtα E(t)
}
ds. (2.9)

The first step in (2.9) can be justified on the basis of the arguments in Renardy and
Rogers [15, pag. 417)] where the representation of fractional power operators is dealt
with.

Now, for the stable subordinator Hα(t), t > 0, we have that

e−s
dα

dtα E(t) = Ee−Hα(s)
d
dt E(t)

=

∫ ∞
0

dz hα(z, s) e−z
d
dt E(t)

=

∫ ∞
0

dz hα(z, s) E(t− z) (2.10)

where hα(z, s) is the probability law of Hα(s), s > 0. In the last step of (2.10) we used
the translation property (2.4). Therefore,

X(t) =
1

Γ(β)

∫ ∞
0

E(t− z)
∫ ∞
0

sβ−1e−sµhα(z, s)dsdz (2.11)

is the representation of the solution to the fractional equation (2.1).

Remark 2.3. With (2.7) and (1.18) in mind, notice that a representation of (2.8) is given
by

X(t) =
1

µβ

∑
j∈N

aj E[φj(t−Hα(Wβ))], t > 0. (2.12)

Remark 2.4. For the case α ↑ 1, hα(z, s)→ δ(z − s) where δ is the Dirac delta function
and from (2.4) we infer that

X(t) =
1

Γ (β)

∫ ∞
0

e−µssβ−1 E(t− s) ds (2.13)
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Spectral densities related to some fractional stochastic differential equations

is a generalized solution to (
µ+

d

dt

)β
X(t) = E(t). (2.14)

Consult on this point [6]. A direct proof is also possible because from (2.9) we have that

X(t) =
1

Γ (β)

∫ ∞
0

sβ−1 e−µse−s
d
dt E(t) ds

=
1

Γ (β)

∫ ∞
0

sβ−1 e−µsE(t− s) ds. (2.15)

In the last step we applied (2.4).

Remark 2.5. For α = 1 and β = 1, we observe that (2.1) coincides with the Langevin
equation and (2.15) can be reduced to the following form of the Ornstein-Uhlenbeck
process

X(t) =

∫ t

−∞
e−µ(t−s)E(s)ds

with covariance function

E[X(t+ h)X(t)] =
σ2

2µ
e−µ|h|.

Our next step is the evaluation of the Fourier transform of the covariance function of
the solution to the differential equation (2.1). Let

f(τ) =

∫ +∞

−∞
eiτhCovX(h)dh

where
CovX(h) = E[X(t+ h)X(t)]

with EX(t) = 0.

Theorem 2.6. The spectral density of (2.8) is

f(τ) =
σ2(

µ2 + 2|τ |αµ cos πα2 + |τ |2α
)β , τ ∈ R, 0 < α < 1, β > 0. (2.16)

Proof. The Fourier transform of the covariance function of (2.8) is given by∫ ∞
0

eiτhEX(t)X(t+ h) dh

=
1

Γ2(β)

∫ ∞
0

eiτhdh

∫ ∞
0

dz1

∫ ∞
0

ds1

∫ ∞
0

ds2

∫ ∞
0

dz2 s
β−1
1 sβ−12

× e−(s1+s2)µhα (z1, s1) hα (z2, s2) EE(t− z1)E(t+ h− z2)

where

EE(t− z1)E(t+ h− z2) = σ2δ((z1 − z2)− h). (2.17)

Thus, ∫ ∞
0

eiτhEX(t)X(t+ h) dh =
σ2

Γ2(β)

∫ ∞
0

dz1

∫ ∞
0

ds1

∫ ∞
0

ds2

∫ ∞
0

dz2 s
β−1
1 sβ−12

× e−(s1+s2)µhα (z1, s1) hα (z2, s2) eiτ(z1−z2).
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Spectral densities related to some fractional stochastic differential equations

By considering the characteristic function of a positively-skewed stable process with law
hα, we have that∫ ∞

0

eiτ z1hα (z1, s1) dz1 = e−(−iτ)
αs1 = e−s1|τ |

αe−i
π
2
sgn τ

, (2.18)

and ∫ ∞
0

e−iτz2hα (z2, s2) dz2 = e−(iτ)
αs2 = e−s2|τ |

αei
π
2
sgn τ

. (2.19)

Thus, we obtain that∫ ∞
0

eiτhEX(t)X(t+ h) dh

=
σ2

Γ2(β)

∫ ∞
0

ds1

∫ ∞
0

ds2 s
β−1
1 sβ−12 e−(s1+s2)µ e−(iτ)

αs2−(−iτ)αs1

=
σ2(

µ+ |τ |α e− iπα2 sgn τ
)β (

µ+ |τ |α e iπα2 sgn τ
)β

=
σ2(

µ2 + 2|τ |αµ cos πα2 + |τ |2α
)β .

Remark 2.7. In the special case α = 1 the result above simplifies and yields

f(τ) =
σ2

(µ2 + τ2)β
. (2.20)

We note that for β = 1, (2.20) becomes the spectral density of the Ornstein-Uhlenbeck
process. Processes with the spectral density f are dealt with, for example, in [2] where
also space-time random fields governed by stochastic equations are considered. The
covariance function is given by

CovX(h) =
1

2π

∫
R

e−iτhf(τ)dτ

=
σ2

2π

∫
R

e−iτh
(

1

Γ(β)

∫ ∞
0

zβ−1e−zµ
2−zτ2

dz

)
dτ

=
σ2

Γ(β)

∫ ∞
0

zβ−1e−zµ
2

(
1

2π

∫
R

e−iτh−zτ
2

dτ

)
dz

=
σ2

Γ(β)

∫ ∞
0

zβ−1e−zµ
2 e−

h2

4z

√
4πz

dz

=
σ2

2Γ(β)Γ( 1
2 )

∫ ∞
0

zβ−
1
2−1e−zµ

2−h24z dz

=
σ2

Γ(β)Γ( 1
2 )

(
|h|
2µ

)β− 1
2

Kβ− 1
2

(µ|h|) , h ≥ 0

where Kν is the modified Bessel function with integral representation given by∫ ∞
0

xν−1 exp
{
−βxp − αx−p

}
dx =

2

p

(
α

β

) ν
2p

K ν
p

(
2
√
αβ
)
, p, α, β, ν > 0 (2.21)

(see for example [5], formula 3.478). We observe that Kν = K−ν and K 1
2
(x) =

√
π
2xe
−x.

Moreover,

Kν(x) ≈ 2ν−1Γ(ν)

xν
for x→ 0+ (2.22)
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Spectral densities related to some fractional stochastic differential equations

([10, pag. 136]) and

Kν(x) ≈
√

π

2x
e−x for x→∞. (2.23)

Thus, we get that
CovX(h) ≈ µ1−2β , for h→ 0+ (2.24)

and

CovX(h) ≈
(
h

µ

)β
1

h
e−µh, for h→∞. (2.25)

We now study the covariance of (1.2). Recall that, a symmetric stable process S of
order α with density g has the following characteristic function

ĝ(ξ, t) = EeiξS(t) = e−σ
2|ξ|αt, α ∈ (0, 2].

Consider two independent stable processes S1(w), S2(w), w ≥ 0, with σ2
1 = 1 and

σ2
2 = 2µ cos πα2 . Let g1(x,w), x ∈ R, w ≥ 0 and g2(x,w), x ∈ R, w ≥ 0 be the corresponding

density laws. Then, the following result holds true.

Theorem 2.8. The covariance function of (1.2) is

CovX(h) =
σ2

Γ(β)

∫ ∞
0

wβ−1e−wµ
2

∫ +∞

−∞
g1(h− z, w)g2(z, w)dz dw (2.26)

or

CovX(h) =
σ2

µ2β
EgS1+S2

(h,Wβ) (2.27)

and Wβ is a gamma r.v. with parameters µ2, β.

Proof. Notice that

f(τ) =
σ2

Γ(β)

∫ ∞
0

wβ−1e−w(µ2+2|τ |αµ cos πα2 +|τ |2α)dw

where

e−2µ cos πα2 |τ |
αw = EeiτS2(w) = ĝ2(τ, w) and e−|τ |

2αw = EeiτS1(w) = ĝ1(τ, w).

Thus,

f(τ) =
σ2

µ2β
E[ĝ1(τ,Wβ) ĝ2(τ,Wβ)]

from which, we immediately get that

CovX(h) =
σ2

µ2β
E

[∫ +∞

−∞
g1(h− z,Wβ)g2(z,Wβ)dz

]
=

σ2

Γ(β)

∫ ∞
0

wβ−1e−wµ
2

∫ +∞

−∞
g1(h− z, w)g2(z, w)dz dw

3 Fractional powers of higher-order operators

We focus our attention on the following equation(
µ− d2

dt2

)β
X(t) = E(t), µ > 0, β > 0, t ∈ R (3.1)

that is, on the equation (1.4) for n = 1.
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Spectral densities related to some fractional stochastic differential equations

Theorem 3.1. A generalized m.s. solution to the equation (3.1) is

X(t) =
1

µβ
E[E(t+ Y2(Wβ))], β > 0, µ > 0 (3.2)

=
1

Γ (β)

∫ +∞

−∞
E(t+ x)

∫ ∞
0

wβ−1e−µw
e−

x2

4w

√
4πw

dwdx.

Moreover, the spectral density of (3.2) reads

f(τ) =
σ2

(µ+ τ2)2β
(3.3)

and the corresponding covariance function has the form

CovX(h) =
σ2

µ2β
E

 e
− h2

4W2β

2
√
πW2β

 =
σ2

√
πΓ (2β)

(
|h|

2
√
µ

)2β− 1
2

K2β− 1
2
(|h|√µ). (3.4)

Proof. We can formally write

ew
d2

dt2 =

∫ ∞
−∞

ex
d
dt
e−

x2

4w

2
√
πw

dx (3.5)

so that from (3.1) we have that

X(t) =
1

Γ (β)

∫ ∞
0

e−µwwβ−1 dw

∫ ∞
−∞

e−
x2

4w

2
√
πw

ex
d
dt E(t) dx

=
1

Γ (β)

∫ ∞
0

e−µwwβ−1dw

∫ ∞
−∞

e−
x2

4w

2
√
πw
E(t+ x) dx. (3.6)

By observing that, from (1.18),

EE(t+ x1)E(t+ h+ x2) = σ2δ(h+ x2 − x1)

we can write

EX(t)X(t+ h) =
σ2

Γ2 (β)

∫ ∞
0

e−µw1wβ−11 dw1

∫ ∞
0

e−µw2wβ−12 dw2

∫ ∞
−∞

e−
x21
4w1

2
√
πw1

e−
(h−x1)2

4w2

2
√
πw2

dx1

=
σ2

Γ2 (β)

∫ ∞
0

e−µw1wβ−11 dw1

∫ ∞
0

e−µw2wβ−12 dw2
e
− h2

4(w1+w2)

2
√
π(w1 + w2)

=
σ2

µ2β
E

 e
− h2

4(W1+W2)

2
√
π(W1 +W2)


=
σ2

µ2β
E

 e
− h2

4W2β

2
√
πW2β


=

σ2

Γ (2β)

∫ ∞
0

e−
h2

4w

2
√
πw

w2β−1e−µwdw

=
σ2

√
πΓ (2β)

(
h

2
√
µ

)2β− 1
2

K2β− 1
2
(h
√
µ).
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Spectral densities related to some fractional stochastic differential equations

We notice that

CovX(h) =
σ2

µ2β
P (B(W2β) ∈ dh)/dh

where B(W2β) is a Brownian motion with random time W2β . Thus, we obtain that

f(τ) =

∫ ∞
−∞

eiτhCovX(h) dh =
σ2

Γ (2β)

∫ ∞
0

e−wτ
2

w2β−1e−µwdw =
σ2

(µ+ τ2)2β
.

An alternative representation of the process (3.2) can be also given in terms of the
Bessel function Kν . In particular, we observe that

X(t) =
1√
πΓ(β)

∫ +∞

−∞
E(t+ x)

(
|x|

2
√
µ

)β− 1
2

Kβ− 1
2

(|x|√µ) dx

The covariance function of (3.2) can be alternatively written as

EX(t)X(t+ h) =
σ2

Γ2 (β)

∫ ∞
0

e−µw1wβ−11 dw1

∫ ∞
0

e−µw2wβ−12 dw2

∫ ∞
−∞

e−
x21
4w1

2
√
πw1

e−
(x1−h)2

4w2

2
√
πw2

dx1

=
σ2

πΓ2(β)

∫ +∞

−∞

(
|x1||x1 − h|

4µ

)β− 1
2

Kβ− 1
2
(
√
µ|x1|)Kβ− 1

2
(
√
µ|x1 − h|) dx1

where, in the last step we applied formula (2.21).

We now pass to the general even-order fractional equation (1.4).

Theorem 3.2. A generalized m.s. solution to the equation (1.4) is

X(t) =
1

µβ
E[E(t+ Y2n(Wβ))], β > 0, µ > 0 (3.7)

=
1

Γ (β)

∫ ∞
0

wβ−1e−µw
∫ +∞

−∞
u2n(x,w)E(t+ x) dx dw.

Moreover, the spectral density of (3.7) reads

f(τ) =
σ2

(µ+ τ2n)2β
(3.8)

and the related covariance function becomes

CovX(h) =
σ2

µ2β
E [u2n(h,W2β)] . (3.9)

Proof. The solution u2n(x, t) to

∂

∂t
u2n = (−1)

n+1 ∂2n

∂x2n
u2n (3.10)

has Fourier transform
U(β, t) = e(−1)

n+1(−iβ)2nt = e−β
2nt. (3.11)

We write

e−w
∂2n

∂t2n =

∫ ∞
−∞

eix
∂
∂tu2n(x,w) dx. (3.12)

Since
U(−iβ, t) = e−(−1)

nβ2nt, (3.13)
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we also write

e−w(−1)n ∂2n

∂t2n =

∫ ∞
−∞

ex
∂
∂tu2n(x,w) dx. (3.14)

In conclusion, we have that

X(t) =

(
µ+ (−1)n

∂2n

∂t2n

)−β
E(t) (3.15)

=
1

Γ(β)

∫ ∞
0

dw e−µwwβ−1
(∫ +∞

−∞
dxu2n(x,w) ex

∂
∂t E(t)

)
=

1

Γ(β)

∫ ∞
0

dw e−µwwβ−1
∫ +∞

−∞
dxu2n (x,w) E(t+ x) (3.16)

and this confirms (3.7).
From (3.7), in view of (2.17), we obtain

EX(t)X(t+ h) =
σ2

Γ2(β)

∫ ∞
0

dw1 w
β−1
1 e−µw1

∫ ∞
0

dw2 w
β−1
2 e−µw2

·
∫ +∞

−∞
dx1 u2n (x1, w1)

∫ +∞

−∞
dx2 u2n (x2, w2) δ(x2 − x1 + h)

=
σ2

Γ2(β)

∫ ∞
0

dw1 w
β−1
1 e−µw1

∫ ∞
0

dw2 w
β−1
2 e−µw2

·
∫ +∞

−∞
dx1 u2n (x1, w1) u2n (x1 − h,w2)

=
σ2

Γ2(β)

∫ ∞
0

dw1 w
β−1
1 e−µw1

∫ ∞
0

dw2 w
β−1
2 e−µw2 u2n(h,w1 + w2)

=
σ2

µ2β
Eu2n(h,W1 +W2).

By following the same arguments as in the previous proof, we get that

EX(t)X(t+ h) =
σ2

µ2β
Eu2n(h,W2β) =

σ2

Γ(2β)

∫ ∞
0

dww2β−1e−µw u2n(h,w)

The spectral density of X(t) is therefore

f(τ) =
σ2

Γ(2β)

∫ ∞
0

dww2β−1e−µw−τ
2nw =

σ2

(µ+ τ2n)2β
.

Theorem 3.2 extends the results of Theorem 3.1 when even-order heat-type equations
are involved.

We now pass to the study of the equation (1.9) for n = 1 and κ = ∓1,(
µ+ κ

d3

dt3

)β
X(t) = E(t), µ > 0, β > 0, t ∈ R. (3.17)

Theorem 3.3. A generalized solution to the equation (3.17) is

X(t) =
1

µβ
E[E(t+ Y3(Wβ))], β > 0, µ > 0 (3.18)

=
1

Γ (β)

∫ ∞
−∞
E(t+ x)

∫ ∞
0

wβ−1e−µw
1

3
√

3w
Ai

(
κx
3
√

3w

)
dwdx.
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Moreover, the covariance function

CovX(h) =
σ2

µ2β
E

[
σ2

3
√

3W2β

Ai

(
−κh

3
√

3W2β

)]
(3.19)

where Ai(x) is the Airy function has Fourier transform

f(τ) =
σ2

(µ+ iκτ3)2β
. (3.20)

Proof. By following the approach adopted above, after some calculation, we can write
that

X−(t) =
1

Γ (β)

∫ ∞
0

wβ−1e−µw+w d3

dt3 E(t) dw (3.21)

is the solution to (
µ− d3

dt3

)β
X(t) = E(t) (3.22)

whereas

X+(t) =
1

Γ (β)

∫ ∞
0

wβ−1e−µw−w
d3

dt3 E(t) dw (3.23)

is the solution to (
µ+

d3

dt3

)β
X(t) = E(t) (3.24)

The third-order heat type equation

∂

∂t
u = κ

∂3

∂x3
u, u(x, 0) = 0, (3.25)

has solution, for κ = −1,

u(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
, x ∈ R, t > 0, (3.26)

with Fourier transform ∫ ∞
−∞

eiβxu(x, t) dx = e−itβ
3

. (3.27)

Formula (3.27) leads to the integral∫ ∞
−∞

eθxu(x, t) dx = etθ
3

, θ ∈ R

because of the asymptotic behaviour of the Airy function (see [1] and [11]). The solution
to (1.9) with n = 1 (that is κ = −1) is therefore (3.21).

The equation (3.25) has solution, for κ = +1, given by

u(x, t) =
1

3
√

3t
Ai

(
−x
3
√

3t

)
, x ∈ R, t > 0. (3.28)

Thus, by following the same reasoning as before, we arrive at∫ ∞
−∞

eθxu(x, t) dx = e−tθ
3

, θ ∈ R

and we obtain that (3.23) solves (3.17) with κ = +1 is (3.23).
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Spectral densities related to some fractional stochastic differential equations

In light of (2.17) we get

E[X−(t)X−(t+ h)] =
σ2

Γ2 (β)

∫ ∞
0

e−µw1dw1 w
β−1
1

∫ ∞
0

e−µw2dw2 w
β−1
2

·
∫ ∞
−∞

1
3
√

3w1
Ai

(
x1

3
√

3w1

)
1

3
√

3w2
Ai

(
x1 − h
3
√

3w2

)
dx1

=
σ2

Γ2 (β)

∫ ∞
0

e−µw1dw1 w
β−1
1

∫ ∞
0

e−µw2dw2 w
β−1
2

· 1
3
√

3(w1 + w2)
Ai

(
h

3
√

3(w1 + w2)

)

=
σ2

µ2β
E

[
1

3
√

3W2β

Ai

(
h

3
√

3W2β

)]
.

From the Fourier transform (3.27), we get that

f−(τ) =
σ2

µ2β

∫
R

eiτhE

[
1

3
√

3W2β

Ai

(
h

3
√

3W2β

)]
dh

=
σ2

µ2β
E
[
e−iτ

3W2β

]
=

σ2

(µ+ iτ3)2β

=
σ2e−i2β arctan τ3

µ

(µ2 + τ6)β
.

Also, we obtain that

E[X+(t)X+(t+ h)] =
σ2

µ2β
E

[
1

3
√

3W2β

Ai

(
−h

3
√

3W2β

)]
.

with Fourier transform

f+(τ) =
σ2

(µ− iτ3)2β
=
σ2e+i2β arctan τ3

µ

(µ2 + τ6)β
. (3.29)

Theorem 3.4. A generalized m.s. solution to the equation (1.9) is

X(t) =
1

µβ
E[E(t+ Y2n+1(Wβ))], β > 0, µ > 0

=
1

Γ(β)

∫ ∞
0

wβ−1e−µw
∫ +∞

−∞
u2n+1(κx,w)E(t+ x)dwdx.

Moreover, the covariance function

CovX(h) =
σ2

µ2β
Eu2n+1(κh,W2β)

has Fourier transform

f(τ) =
σ2

(µ+ iκτ2n+1)2β
=
σ2e−i2βκ arctan τ2n+1

µ

(µ2 + τ2(2n+1))β
.

Proof. The proof follows the same lines as in the previous theorem.
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Figure 1: The spectral density (1.3) with different values for the parameters (α, β).
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