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Abstract. We derive a discrete version of the results of [2]. If M is a
compact metric space, c : M × M → R a continuous cost function and
λ ∈ (0, 1), the unique solution to the discrete λ-discounted equation is the
only function uλ : M → R such that

∀x ∈M, uλ(x) = min
y∈M

λuλ(y) + c(y, x).

We prove that there exists a unique constant α ∈ R such that the family of
uλ+α/(1−λ) is bounded as λ→ 1 and that for this α, the family uniformly
converges to a function u0 : M → R which then verifies

∀x ∈ X, u0(x) = min
y∈X

u0(y) + c(y, x) + α.

The proofs make use of Discrete Weak KAM theory. We also characterize
u0 in terms of Peierls barrier and projected Mather measures.

1. Introduction

In [2], it was proven that the unique viscosity solution of the λ-discounted
Hamilton Jacobi equation converges, as λ tends to zero, to a particular solution
of the critical Hamilton–Jacobi equation. In other words, the limit selects one
solution among the several possible choices. In this work, we prove the discrete
version of the same result. In this discrete setting, minimization of the action
of curves is replaced by minimization of costs for sequences, and the Hamilton–
Jacobi equation by fixed points of the Lax–Oleinik semigroup. This theory is
known as Discrete Aubry-Mather Theory. It was mainly developed in [1] and
[4].

LetM be a compact metric space, and c : M×M → R a continuous function,
that will be called cost function. The discrete version of the Hamilton–Jacobi
equation H(x, dxu) = α is to find a u ∈ C0(M,R) such that

u(x) = T (u)(x) + α for every x ∈M, (1.1)

where T is the Lax–Oleinik operator, defined on the set C0(M,R) of continuous
functions from M to R as

T (g)(x) = inf
y∈M

g(y) + c(y, x) for every x ∈M and g ∈ C0(M,R).
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Due to the compactness of M , there is only one constant α for which we can
find solutions of (1.1). This number is called the critical value. As we will see,
it has several characterizations.

The discrete version of the λ-discounted Hamilton–Jacobi equation λu +
H(x, dxu) = α is

u(x) = Tλ(u)(x) + α for every x ∈M, (1.2)

where λ is a parameter between 0 and 1, and Tλ is an operator defined on
C0(M,R) as

Tλ(g)(x) = inf
y∈M

λg(y) + c(y, x) for every x ∈M and g ∈ C0(M,R).

Equation (1.2) admits a unique solution uλ. Moreover, the family of solutions
(uλ)0<λ<1 is equicontinuous and equibounded, see Proposition 2.3. Clearly,
any accumulation point of the uλ, as λ→ 1−, will be a solution of the discrete
Hamilton–Jacobi equation.1 Yet, equation (1.1) has several possible solutions,
therefore it is not a priori clear whether the family uλ is fully convergent as
λ→ 1−. The main Theorem of this work is to establish this convergence.

Theorem 1.1. The solutions uλ of equation (1.2) converge, as λ < 1 tends to
1, to a particular solution u0 of equation (1.1).

Stephane Gaubert pointed out that the result was already known when M
is finite. For example, it could be deduced from [3].

The definitions involved in the following paragraphs, subsolutions, projected
Mather measures and Peierls barrier, will be given in the appendix.

Subsolutions of (1.1) do not need to be continuous, however, according to
Proposition A.10, all subsolutions of (1.1) are integrable with respect to any
projected Mather measure (see Definition A.4). We denote by F− the set of
subsolutions such that ∫

M

u(x) dµ(x) ≤ 0

for all projected Mather measures. We have the following characterizations for
the solution selected in the limit.

Proposition 1.2. The limit solution u0 in Theorem 1.1 can be characterized
in either of the following two ways:

(1) u0(x) = sup
uεF−

u(x),

(2) u0(x) = min
µ

∫
M

h(y, x) dµ(y),

where h is the Peierls barrier and µ varies in the set of projected Mather
measures.

1In the continuous case we study the limit as λ > 0 tends to 0, and in the discrete case
the limit as λ < 1 tends to 1.



CONVERGENCE OF SOLUTIONS OF THE DISCRETE DISCOUNTED EQUATION 3

For convenience of the reader, we will also state, in the appendix, the results
we use from Discrete Aubry–Mather Theory, see [1] or [4] where proofs can be
found. The non-expert reader should probably first look at the appendix.

Acknowledgement. − Part of this work was done while the first (AD)
and second (AF) authors were visiting CIMAT in Guanajuato, that they both
wish to thank for its hospitality. The final version was done while the second
author was visiting DPMMS, University of Cambridge. The authors thank the
anonymous referee for useful comments that helped improve the presentation
of the present paper.

2. Preliminaries

In this section we shall state and prove some preliminary facts about the
discounted equation

u(x) = Tλ(u)(x) + β = inf
z∈M

λu(z) + c(z, x) + β, (2.1)

for every x ∈M , where β is a fixed real constant.
Let u be a continuous function on M . We will say that u is a subsolution

of (2.1) if u(x) ≤ Tλ(u)(x) + β for every x ∈ M . We will say that u is a
supersolution of (2.1) if u(x) ≥ Tλ(u)(x) + β for every x ∈M .

In the sequel, we shall denote by Sn(x) the set of M -valued sequences of the
form (x−n, x−n+1, . . . , x−1, x0) with x0 = x, and by S∞(x) the set of M -valued
sequences x̄ = (x−n)n≥0 such that x0 = x. It will also be convenient to set
Sn(M) = ∪x∈MSn(x), and S∞(M) = ∪x∈MS∞(x).

One of our main tools is the following comparison principle:

Proposition 2.1. Let v and w be a pair of continuous functions on M that
are, respectively, a sub and a supersolution of (2.1). Then

v(x) ≤ min
x̄∈S∞(x)

∞∑
n=0

λn
(
c(x−n−1, x−n) + β

)
≤ w(x) (2.2)

for every x ∈M .

Proof. Replacing the cost function c(x, y) with c(x, y) + β, we can always as-
sume that β = 0. Let us pick a point x ∈ M . By the definition of Tλ and the
fact that v ≤ Tλ(v) on M we get

v(x) ≤ min
x−1

(
λv(x−1) + c(x−1, x)

)
≤ min

x−1

(
λTλ(v)(x−1) + c(x−1, x)

)
= min

x−2,x−1

(
λ2v(x−2) + λc(x−2, x−1) + c(x−1, x)

)
.

Arguing inductively, we derive

v(x) ≤ min
x̄∈S∞(x)

(
λnv(x−n) +

n−1∑
k=0

λkc(x−k−1, x−k)
)
.
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Since v, c are continuous functions defined on compact spaces, and λ < 1,

the sequence of continuous functions λnv(x−n) +
n−1∑
k=0

λkc(x−k−1, x−k) converges

uniformly to
∞∑
k=0

λkc(x−k−1, x−k) on the compact space S∞(x). Therefore, the

left hand side inequality in (2.2) holds. The inequality for w follows arguing
analogously. �

The existence of a (unique) solution of equation (2.1) is established in the
next proposition.

Proposition 2.2. For 0 < λ < 1 there is only one solution uλ of the discounted
equation (2.1) and it can be represented by

uλ(x0) = min
x̄∈S∞(x0)

∞∑
n=0

λn
(
c(x−n−1, x−n) + β

)
for every x0 ∈M. (2.3)

Proof. As before, to simplify notations, replacing the cost function c(x, y) with
c(x, y) + β, we will assume β = 0. For λ strictly smaller than 1, the operator
u 7→ Tλ is a contraction in the space of continuous functions with the C0–norm.
Indeed, let f and g be two continuous functions. For a given x in M , let y such
that Tλf(x) = λf(y) + c(y, x). By definition we have Tλg(x) ≤ λg(y) + c(y, x),
so

Tλg(x)− Tλf(x) ≤ λ(g(y)− f(y)) ≤ λ‖f − g‖0,

where ‖ · ‖0 denotes the C0 norm. Reversing the roles of f and g we obtain

|Tλg(x)− Tλf(x)| ≤ λ‖f − g‖0.

Since this is true for every x, we obtain

‖Tλf − Tλg‖0 ≤ λ‖f − g‖0.

Therefore, from the Banach fixed point theorem, we obtain that there is a
unique fixed point uλ. The representation formula (2.3) is a direct consequence
of Proposition 2.1. Alternatively, since iterates of the contraction map converge
to the fixed point, we can obtain the same formula as the limit, as n tends to
infinity, of T nλ (0). �

Some crucial properties of the solutions of the discounted equation are es-
tablished in the next proposition. It incidentally entails a characterization for
the critical value α (see Theorem A.2).

Proposition 2.3. For every β ∈ R, the family {uβλ : 0 < λ < 1 } of solutions
of (2.1) is equicontinuous. Furthermore, it is equibounded if and only if β is
equal to the critical value α.

Proof. For the first part, let x and y be two points in M and z a point realizing
the infimum of the discounted Hamilton–Jacobi equation (2.1) for the point x.
We obtain

uβλ(y)− uβλ(x) ≤ c(z, y)− c(z, x),
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so the solutions uβλ have all the same modulus of continuity as the cost function
c.

Let us prove that they are equibounded when β equals the critical constant
α. Take a solution u of

u = T (u) + α. (2.4)

Since u is continuous and M is compact, we can find a constant k such that
u(x) := u(x) + k and u(x) := u(x)− k are a positive and negative solution of
(2.4). It is then easily seen that

u(x) = T (u)(x) + α ≤ Tλ(u)(x) + α,

u(x) = T (u)(x) + α ≥ Tλ(u)(x) + α,

for x ∈ M , and 0 < λ < 1. Namely, for every 0 < λ < 1, the continuous
functions u and u are, respectively, a subsolution and a supersolution of (2.1),
with β = α. By the comparison principle stated in Proposition 2.1, we conclude
that u ≤ uαλ ≤ u on M for every 0 < λ < 1. This implies that the family
(uαλ)0<λ<1 is equibounded.

To prove the only if part, it is enough to observe that uβλ = uαλ −
α−β
1−λ . �

3. Proof of the main Theorem

In this section, we will prove both Theorem 1.1 and the first characterization
given in Proposition 1.2.

Again, to simplify notations, we will assume in the sequel that the critical
value α is equal to 0. As previously noted, this does not affect the generality.
Therefore the discounted equation rereads as

u = Tλ(u), (3.1)

where λ is a real parameter such that 0 < λ < 1. We will denote by uλ the
unique solution of equation (3.1). Since we are assuming α = 0, the discrete
version of the critical Hamilton–Jacobi equation is

u = T (u). (3.2)

Let us denote by M0 the set of projected Mather measures (on M) for (3.2)
(see the appendix, Definition A.4) and set u0(x) := supu∈F− u(x) for every
x ∈M , where F− is the set of subsolutions u of (3.2) such that∫

M

u(x) dµ(x) ≤ 0 for every µ ∈M0.

The following holds:

Proposition 3.1. Let u be a limit point of the functions uλ, as λ→ 1−. Then,
u ∈ F−, i.e. for any measure µ in M0 we have∫

M

u(x) dµ(x) ≤ 0.

In particular, u ≤ u0.
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Proof. Since uλ is a solution of (3.1) we have

uλ(x)− λuλ(y) ≤ c(y, x) for every (x, y) ∈M ×M.

Integrating the inequality above with respect to a Mather measure µ̃ defined
on M ×M yields∫

M×M

(
uλ(x)− λuλ(y)

)
dµ̃(x, y) ≤

∫
M×M

c(y, x) dµ̃(x, y).

Since µ̃ is a Mather measure the right hand side of this inequality is zero.
Therefore, we have

(1− λ)

∫
M

uλ(x) dµ(x) ≤ 0,

where µ is the projection of µ̃ on either the first or second factors of M ×M .
Dividing by 1−λ > 0 we conclude that

∫
M
uλ(x)dµ(x) ≤ 0. So if u is a uniform

limit of uλi for some sequence λi → 1−, we obtain the first assertion. Since u
is a solution, it is in particular a subsolution; therefore u ≤ u0. �

To prove the other inequality, we need to introduce a special class of mea-
sures. Given a sequence x̄ in S∞(M) and a positive λ < 1, we denote by µ̃λx̄
the probability measure in M ×M defined as∫

M×M
f(x, y) dµ̃λx̄(x, y) = aλ

∞∑
n=0

λnf(x−n−1, x−n)

for any continuous function f : M ×M → R, where aλ = 1− λ. The choice of
the constant aλ guarantees that µ̃λx̄ is a probability measure.

Lemma 3.2. Let (x̄λ), with 0 < λ < 1, be a family of sequences in S∞(M). If
µ̃ is an accumulation point of µ̃λ

x̄λ
as λ tends to 1, then µ̃ is a closed measure.

Moreover, if for every λ the sequence x̄λ realizes the infimum in (2.3), then
the measure µ̃ is a Mather measure.

Proof. For the first part it is enough to show that for any continuous function
φ : M → R we have ∫

M×M

(
φ(x)− φ(y)

)
dµ̃(x, y) = 0.

We have that∫
M×M

(
φ(y)− φ(x)

)
dµ̃λx̄λ(x, y) = aλ

∞∑
n=0

λn
(
φ(xλ−n)− φ(xλ−n−1)

)
= aλ

[ ∞∑
n=0

λnφ(xλ−n)−
∞∑
n=1

λn−1φ(xλ−n)
]

= aλ

[
φ(xλ0) + (λ− 1)

∞∑
n=0

λnφ(xλ−n−1)
]

= aλ

(
φ(xλ0)−

∫
M×M

φ(x) dµ̃λx̄λ(x, y)
)
. (3.3)
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It follows that
∣∣∣ ∫M×M (φ(x)−φ(y)

)
dµ̃λ

x̄λ

∣∣∣ ≤ 2aλ‖φ‖0, where ‖φ‖0 is, as before,

the C0 norm of φ. Since aλ = (1− λ) → 0 as λ → 1, we obtain the first part
of the lemma.

Furthermore, if for every 0 < λ < 1 the sequence x̄λ realizes the infimum in
(2.3), we have∫

M×M
c(x, y) dµ̃λx̄λ(x, y) = aλ

∞∑
n=0

λnc(xλ−n−1, x
λ
−n) = aλuλ(x

λ
0). (3.4)

Since the functions uλ are equibounded, and aλ → 0 as λ → 1, for any limit
measure µ̃ of µλ

x̄λ
, we obtain

∫
M×M c(x, y) dµ̃(x, y) = 0. Hence µ̃ is a Mather

measure. �

The following is a key lemma for the end of the proof and for the second
characterization.

Lemma 3.3. Suppose w is a continuous subsolution of (3.2). If x̄λ = (xλ−n)n≥0

is a minimizing sequence for (2.3), we have

uλ(x
λ
0) ≥

(
w(xλ0)−

∫
M×M

w(x) dµ̃λx̄λ(x, y)
)
.

Proof. By using the fact that x̄λ realizes the minimum in (2.3), together with
(3.4) and (3.3), we get

uλ(x
λ
0) =

1

aλ

∫
M×M

c(x, y) dµ̃λx̄λ(x, y)

≥ 1

aλ

∫
M×M

(
w(y)− w(x)

)
dµ̃λx̄λ(x, y)

= w(xλ0)−
∫
M×M

w(x) dµ̃λx̄λ(x, y).

�

In the above lemma, the continuity of the subsolution is used to integrate it
with respect to the measure µλ

x̄λ
.

We derive from Lemma 3.3 the following asymptotic result:

Proposition 3.4. Suppose u is a uniform limit of a subsequence of uλ as λ
converges to 1. Then, for every (possibly discontinuous) subsolution w, we
have

u ≥ w − sup
µ∈M0

∫
M

w(x) dµ(x). (3.5)

Therefore u ≥ u0.

Proof. We first prove (3.5) when w is continuous. We fix x0 ∈ M , and find,
for 0 < λ < 1, a sequence x̄λ = (xλ−n)n≥0 minimizing (2.3), with xλ0 = x0. For
each such sequence x̄λ, we consider the probability measure µ̃λ

x̄λ
on M ×M .

Extracting further, we can assume that µ̃λi
x̄λi

converges weakly to a measure
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µ̃ on M ×M . From Lemma 3.2, we know that µ̃ is a Mather measure. By
Lemma 3.3, we have

uλi(x0) ≥ w(x0)−
∫
M×M

w(x) dµ̃λi
x̄λi

(x, y).

As i → +∞, the sequence λi converges to 1, the functions uλi converge uni-
formly to u, and the probability measures µ̃λi

x̄λi
converge to µ̃. Therefore we

can pass to the limit in the inequality above, we obtain

u(x0) ≥ w(x0)−
∫
M

w(x) dµ(x),

where µ = π∗1µ̃ is a projected Mather measure. This proves (3.5) when w is
continuous.

Let us consider the case of a not necessarily continuous subsolution w. By
Proposition A.5, we know T (w) is a continuous subsolution of (A.1) such that
T (w) ≥ w, and T (w) = w on A. Therefore, by Proposition A.9, we get∫
M
w dµ =

∫
M
T (w) dµ, for every projected Mather measure µ. Since (3.5) is

true for the continuous subsolution T (w), we obtain

u ≥ T (w)−
∫
M

T (w)(x) dµ(x),

≥ w −
∫
M

w(x) dµ(x).

If w ∈ F−, we note that
∫
M
w(x) dµ(x) ≤ 0, for every projected Mather

measure µ. Therefore, in this case, the inequality (3.5) implies u ≥ w. Taking
the sup over all w ∈ F− yields u ≥ u0 = supw∈F− w. �

We now finish the proof of Theorem 1.1.

Proof of Theorem 1.1 . The family (uλ)0<λ<1 is equicontinuous, hence rela-
tively compact in the C0 topology by the Arzelà-Ascoli theorem. It therefore
suffices to show that any limit of a subsequence of solutions uλ, as λ converges
to 1, is necessarily equal to u0. Let u be such a limit. From Proposition 3.1,
we obtain u ≤ u0, and from Proposition 3.4 we obtain u0 ≥ u.

�

4. Proof of the second Characterization

In this section, we will prove the second characterization stated in Proposi-
tion 1.2, namely that the function u0 obtained as the limit of the solutions of
the discounted equations coincide with the function û0 : M → R defined by

û0(x) = min
µεM0

∫
h(z, x) dµ(z) for every x ∈M.

We start by proving the following results:

Lemma 4.1. The function û0 is a subsolution.
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Proof. For µ ∈M0, define the function

hµ(x) =

∫
M

h(y, x) dµ(y) for every x ∈M.

Since hµ is the convex combination of an equibounded family of solutions
of (3.2), see (1) of Proposition A.8, by (1) of Proposition A.6, it is itself a
subsolution of (3.2). As an infimum of equibounded subsolutions, we infer,
by the second item of the same proposition, that û0 is also a subsolution of
(3.2). �

Lemma 4.2. We have that u0 ≤ û0

Proof. By definition of u0 and û0, we only need to show that u ≤ hµ on M ,
where u is a subsolution in F− and µ is a projected Mather measure. By
proposition A.7 we have

u(x)− u(z) ≤ h(z, x) for every (x, z) ∈M ×M.

Integrating with respect to µ ∈M0 we obtain

u(x)−
∫
M

u(z) dµ(z) ≤ hµ(x).

Using that
∫
M
u(z)dµ(z) is non-positive, we get the assertion. �

We are now ready to prove the announced equality.

Proof of Proposition 1.2 . By the previous lemma we already know that u0 ≤
û0. We have to show the reverse inequality u0 ≥ û0. Since we know that u0 is
a solution and that û0 is a subsolution, by Proposition A.11 we only have to
show the inequality on the projected Aubry set A.

Fix y in A. By Proposition A.8, the function x 7→ −h(x, y) is a subsolution
of (3.2). Hence, adding the constant û0(y) to this function, we obtain that

w(x) = −h(x, y) + û0(y),

is a subsolution, which is clearly in F−. So u0 ≥ w, in particular, by evaluating
at y, we get

u0(y) ≥ −h(y, y) + û0(y).

Since h(y, y) = 0 on the projected Aubry set A, this yields u0 ≥ û0 on A and
therefore also on M . �

Appendix A. Discrete Aubry-Mather Theory

A.1. Lax Oleinik Operator. Let M be a compact metric space, and

c : M ×M → R

be a continuous cost function. For every function u : M → R (not necessarily
continuous), we set

T (u)(x) = inf
y∈M

u(y) + c(y, x) for every x ∈M. (A.1)
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When computed for functions u that are continuous on M , the operator T is
the Lax–Oleinik operator as defined in the introduction. As a direct conse-
quence of the definition, we derive

Proposition A.1. Let u be a (possibly discontinuous) real function on M such
that T (u)(x) > −∞ for every x ∈ M . Then T (u) is continuous on M , with
the same continuity modulus as c.

Since c is continuous, and therefore bounded on the compact space M ×M ,
it is not difficult to see that T (u) is bounded below if and only if u is bounded
below, and also if and only if T (u)(x) > −∞ for some x ∈M .

The following Theorem is the discrete version of the Weak KAM theorem a
proof of which can be found in [4, Theorem 1.2]

Theorem A.2. There is a unique constant α such that the equation

u = T (u) + α

admits (necessarily continuous) solutions u : M → R.

Such a constant α is called the critical value.

A.2. Mather measures. For i = 1, 2, let πi be the projection to each factor
of M ×M , that is (x1, x2) 7→ xi. For a probability measure µ̃ in M ×M , the
projected measures π∗i µ̃ are given by the formula∫

M

f(x) dπ∗i µ̃(x) =

∫
M×M

(f ◦ πi)(x, y) dµ̃(x, y).

A Borel probability measure in M ×M is called closed if the projections are
the same, i.e. π∗1µ̃ = π∗2µ̃. A proof of the following proposition can be found
in [1, Theorem 15].

Proposition A.3. We have

− α = min
ν

∫
M×M

c(x, y) dν̃(x, y), (A.1)

where the minimum is computed for ν̃ in the class of closed probability measures
on M ×M .

Definition A.4. A closed probability measure that is a solution of the mini-
mization problem (A.1) is called Mather measure. The set of Mather measures
on M ×M is denoted by M and the set of projected Mather measures is de-
noted by M0.

Measures on M ×M will be denoted with a tilde, while for the projection
we will use the same letter without the tilde.
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A.3. Peierls Barrier and Aubry set. For each pair of points x and y let
Sn(x, y) be the set ofM -valued sequences of the form x̄ = (x−n, x−n+1, . . . , x−1, x0)
such that x−n = x and x0 = y. Denote by c(x̄) the cost of the sequence, that

is,
n∑
i=1

c(x−i, x−i+1). For each natural number n define the function

cn(x, y) = inf
x̄∈Sn(x,y)

c(x̄).

For each real value κ, we define the functions

hκn(x, y) = cn(x, y) + nκ,

hκ(x, y) = lim inf
n→∞

hκn(x, y).

The function hκ is finite valued if and only if κ equals the critical value α,
see [4]. The function hα is called the Peierls barrier. As noted before, up
to adding a constant to the cost, we can always suppose that α is zero. To
simplify notations, this will be always assumed in the rest of this appendix.
Moreover, we will write h, hn instead of hα, hαn, respectively.

Since

hn+m(x, z) ≤ hn(x, y) + hm(y, z) for every positive integers m and n, (A.1)

it is easy to show that h satisfies the triangle inequality. The symmetrized
function h(x, y) + h(y, x) is nonnegative, but, usually, it is not a distance
function because in general h(x, x) can be positive and there might be different
points such that h(x, y) + h(y, x) = 0. Partially motivated by this, we define
the projected Aubry A by

A := {y ∈M : h(y, y) = 0 }.

A.4. Subsolutions and supersolutions. We consider the following discrete
version of the Hamilton–Jacobi equation:

u(x) = T (u)(x) for every x ∈M . (A.1)

A function u defined on M is called subsolution of (A.1) if

u ≤ T (u).

A function u defined on M is called supersolution of (A.1) if

u ≥ T (u).

A function u defined on M is called solution if it is both a subsolution and
supersolution, i.e. if it is a fixed point of the operator T . The following holds:

Proposition A.5. Let u be a subsolution of (A.1), which is bounded from
below. Then T (u) is a continuous subsolution of (A.1) such that T (u) ≥ u on
M , and T (u) = u on A. In particular, u is continuous on the projected Aubry
set A.

Proof. The first assertion has been proven in [4, Proposition A.10]. This im-
mediately gives the continuity of u on A in view of Proposition A.1. �

The following is mostly contained in [4, Lemma 2.32 and Proposition A.8.3].



12 A. DAVINI, A. FATHI, R. ITURRIAGA, M. ZAVIDOVIQUE

Proposition A.6.

1) A convex combination of an equibounded family of subsolutions is a
subsolution.

2) If {ui}i∈I is an equibounded family of subsolutions, then v = infi∈I ui
and V = supi ui are subsolutions.

3) If ui is an equibounded family of supersolutions, then V = infi∈I ui is
a supersolution.

Proof. For completeness, let us explain the last point. It is a direct consequence
of the monotonicity of T :

T V = T inf
i
ui ≤ inf

i
T ui ≤ inf

i
ui = V.

�

The next two propositions are contained in [4, Theorem 2.32], and [4, The-
orem 2.29], respectively.

Proposition A.7. If u is a subsolution then we have

u(x)− u(y) ≤ h(y, x).

This is [4, Theorem 2.29].

Proposition A.8. Let y ∈M .

1) The function h(y, ·) is a solution (A.1).
2) The function −h(·, y) is a continuous subsolution of (A.1).
3) The family of functions

(
− h(·, y)

)
y∈M is equi-bounded.

The following proposition is from [1, Theorem 13]. We provide here a dif-
ferent proof using subsolutions.

Proposition A.9. The support of a projected Mather measure is contained in
the projected Aubry set.

Proof. Let (x, y) be in the support of a Mather measure µ̃. Then we have

u(y)− u(x) = c(x, y). (A.2)

for all continuous subsolutions. Indeed, since u is a subsolution, if we integrate
with respect to µ̃ we obtain∫

M×M

(
u(y)− u(x)

)
dµ̃(x, y) ≤

∫
M×M

c(x, y) dµ̃(x, y).

But both sides are equal to zero, the left hand side because the measure is
closed and the right hand side because it is a Mather measure. So the inequality
u(y) − u(x) ≤ c(x, y) is an equality µ̃-almost everywhere, and since they are
continuous functions the equality is everywhere on the support of µ̃. So u(y) =
u(x)+c(x, y) ≥ T (u)(y), but u being a subsolution we conclude that T (u)(y) =
u(y). Applying (A.2) to T (u) we obtain

T (u)(y)− T (u)(x) = c(x, y), (A.3)
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yielding that also in x we have T (u)(x) = u(x).
We have thus proven that, for a given Mather measure µ̃ and for every

continuous subsolution u of (A.1),

T (u)(x) = u(x) and T (u)(y) = u(y) for every (x, y) ∈ supp(µ̃).

We will prove that this implies that the points x and y are in the projected
Aubry set A, that is h(x, x) = h(y, y) = 0. Indeed, suppose that T (u)(z) =
u(z) for all continuous subsolution u of (A.1). By using u(·) = −h(·, z) and
by an immediate induction we infer that for every positive integer n

u(z) = T n(u)(z) = inf
z′∈M

u(z′) + cn(z′, z) = u(zn) + cn(zn, z),

where zn is a suitable point that exists by compactness of M and continuity
of u and cn. Up to extracting a subsequence, (nk)k, we may assume that znk
converges to some ξ ∈M and then get

u(z) = lim inf
k

u(znk) + cnk(znk , z) ≥ u(ξ) + h(ξ, z).

We just proved that −h(z, z) ≥ −h(ξ, z) + h(ξ, z) = 0. The other inequality
being always true, we get h(z, z) = 0 and z ∈ A. �

As a corollary of Proposition A.5 and Proposition A.9 we obtain

Corollary A.10. Any subsolution of (A.1) is integrable with respect to any
projected Mather measure.

We remark that the main point is that the measurability of the subsolution
is not a priori required.

A.5. Maximum Principle.

Proposition A.11. If v is a subsolution and w is a continuous supersolution
of (A.1) such that v ≤ w on the projected Aubry set A, then v ≤ w on M .

Proof. Let us set u := T (v). Then u is still a subsolution of (A.1) such that
u = v on A, see Proposition A.5. Since v ≤ u on M , it suffices to prove the
statement with u in place of v. The advantage is that u is always a continuous
function, while the subsolution v we started with may be discontinuous a priori.

Let us proceed to prove the statement with u in place of v. Let x be an
arbitrary point in M . Since w is a supersolution, we can find a point x−1 such
that

w(x−1) + c(x−1, x) ≤ w(x).

Arguing inductively, we construct a sequence x̄ in S∞(x) such that

w(x−i−1) + c(x−i−1, x−i) ≤ w(x−i) for every i ∈ N

and

w(x−n) + c(x−n, x−n+1) + ...+ c(x−1, x) ≤ w(x).
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On the other hand, since u is a subsolution, we have

u(x) ≤ u(x−1) + c(x−1, x)

u(x−1) ≤ u(x−2) + c(x−2, x−1)
...

u(x−n+1) ≤ u(x−n) + c(x−n, x−n+1)

for every n ∈ N, so u(x) ≤ u(x−n) + c(x−n, x−n+1) + ...+ c(x−1, x). Therefore

w(x)− u(x) ≥ w(x−n)− u(x−n).

We claim that any accumulation point of x̄ belongs to the projected Aubry set.
This is enough to conclude. Indeed, let (x−nk)k be an appropriate subsequence
converging to a point z ∈ A. Then

w(x)− u(x) ≥ lim
k→+∞

w(x−nk)− u(x−nk) = w(z)− u(z) ≥ 0.

Let us then prove the claim. Let z be an accumulation point of x̄. Then we can
find two diverging sequences (nk)k and (Mk)k such that the points x−nk−Mk

and x−nk are converging to z as k → +∞. We have

hMk
(x−nk−Mk

, x−nk) ≤ c(x−nk−Mk
, x−nk−Mk+1) + ....+ c(x−nk+1, x−nk)

≤ −w(x−nk−Mk
) + w(x−nk−Mk+1) + ...− w(x−nk+1) + w(x−nk)

= −w(x−nk−Mk
) + w(x−nk),

so sending k → +∞ we infer that h(z, z) = 0, i.e. z belongs to the projected
Aubry set A, as it was claimed. �
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