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PIERLUIGI VELLUCCI AND ALBERTO MARIA BERSANI

In this paper we reinvestigate the structure of the solution of a well-known Love’s
problem, related to the electrostatic field generated by two circular coaxial con-
ducting disks, in terms of orthogonal polynomial expansions, enlightening the
role of the recently introduced class of the Lucas–Lehmer polynomials. More-
over we show that the solution can be expanded more conveniently with respect
to a Riesz basis obtained starting from Chebyshev polynomials.

1. Introduction

In 1949, E. R. Love [1949] considered the electrostatic field generated by two
identical circular coaxial conducting disks at equal, and at equal and opposite,
potentials, the potential at infinity being taken equal to zero. He established a
celebrated expression for the potential, involving the solution of an integral equa-
tion of well-known type, much simpler than that considered by other authors in
previous works.

Love’s integral equation is a Fredholm equation of the second kind. It has found
applications in several applied physics fields such as polymer structures, aerody-
namics, fracture mechanics, hydrodynamics, and elasticity engineering. Recently,
a polynomial expansion scheme was proposed by M. Agida and A. S. Kumar [2010]
as an analytical method for solving Love’s integral equation in the case of a rational
kernel. Their study is concerned with the calculation of the normalized field created
conjointly by two similar plates of radius R, separated by a distance k R, where k is
a positive real parameter, and at equal or opposite potential, with zero potential at
infinity; the solution of this problem solves a Love’s second kind integral equation;
see also [Love 1990; Ren et al. 1999].

We propose two different approaches to this problem. In Section 2, starting
from a classical technique, based on the expansion of the solution in orthogonal
polynomials, we employ a class of polynomials introduced in [Vellucci and Bersani
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2016], in order to solve a modified version of the original Love’s equation. In
Section 3, we recall a work by M. Norgren and B. L. G. Jonsson [2009], and we
show that their results are still valid, expanding the solution of Love’s integral
equation with respect to a nonharmonic Fourier cosine series, which is a particular
case of a Riesz basis [Sun and Zhou 1999].

For literature related to the numerical solutions of singular integral equations of
the deterministic type, we refer to the fundamental book by L. Fox and I. B. Parker
[1968], where different analytical methods for the solution of random integral equa-
tions were investigated.

2. Chebyshev polynomials approach

2.1. Preliminaries. In the following, we introduce the mathematical tools to em-
ploy an analytical method for solving Love’s integral equation in the case of a
rational kernel. Afterwards, we recall a short summary on Love’s original problem.

2.1.1. Chebyshev and Lucas–Lehmer polynomials. The Chebyshev polynomials
of the first kind [Chebyshev 1858; Chebyshev 1875; Erdélyi et al. 1953; Gatteschi
1973; Rivlin 1990] satisfy the recurrence relation

T0(x)= 1,
T1(x)= x,
Tn(x)= 2xTn−1(x)− Tn−2(x), n ≥ 2.

The polynomials Tn(x) are orthogonal with respect to the weight function 1/
√

1− x2

defined on x ∈ (−1, 1). In a previous paper [Vellucci and Bersani 2016], we studied
a class of polynomials Ln(x)= L2

n−1(x)−2, created by means of the same iterative
formula used to build the well-known Lucas–Lehmer sequence, employed in pri-
mality tests [Lucas 1878; Lehmer 1930; Ribenboim 1988; Bressoud 1989; Koshy
2001]. It is clearly crucial to choose the first term of the polynomial sequence. In
[Vellucci and Bersani 2016], we showed that the Lucas–Lehmer polynomials are
orthogonal in the interval (−2, 2) with respect to the weight w(x)= 1/

(
4
√

4− x2
)

and such that their zeros belong to the interval (−2, 2), that is to their orthogonality
interval. From now on we will consider L0 = x .

Let us first recall some important properties of these polynomials.

Proposition 1. For each n ≥ 1,

Ln(x)= 2T2n−1
( 1

2 x2
− 1

)
(1)

Proposition 2. The polynomials Ln(x) are orthogonal with respect to the weight
function 1/

(
4
√

4− x2
)

defined on x ∈ (−2, 2).
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Corollary 3. With x = 2 cos θ , the polynomials Ln(x) admit the representation

Ln(2 cos θ)= 2 cos(2nθ) (2)

For |x | ≤ 2 we can show another formula for Ln:

Ln(x)=
(

1
2 x2
−1−

√( 1
2 x2−1

)2
−1

)2n−1

+

(
1
2 x2
−1+

√( 1
2 x2−1

)2
−1

)2n−1

. (3)

We change the sign inside the radical, factoring out the imaginary unit:

Ln(x)=
(

1
2 x2
−1−ı

√
1−

( 1
2 x2−1

)2
)2n−1

+

(
1
2 x2
−1+ı

√
1−

( 1
2 x2−1

)2
)2n−1

. (4)

We then calculate the powers of the complex conjugate numbers L+n and L−n , de-
pending on the variable x . Let

Ln(x)=
(

1
2 x2
− 1+

√( 1
2 x2− 1

)2
− 1

)2n−1

+

(
1
2 x2
− 1−

√( 1
2 x2− 1

)2
− 1

)2n−1

= L+n (x)+ L−n (x). (5)

The absolute value of both complex numbers is unitary, since

|L−n | =
∣∣∣ 1

2 x2
− 1− ı

√
1−

( 1
2 x2− 1

)2
∣∣∣2n−1

,

|L+n | =
∣∣∣ 1

2 x2
− 1+ ı

√
1−

( 1
2 x2− 1

)2
∣∣∣2n−1

,

and

|L+n | = |L
−

n | =

√(1
2 x2− 1

)2
+ 1−

( 1
2 x2− 1

)2
= 1. (6)

Moreover, since L1(±
√

2)= 0, L2(±
√

2)=−2, and Ln(±
√

2)= 2 for all n≥ 3,
the argument of Ln(±

√
2) is 0 for every n ≥ 3. In the other cases, since we can

write x = 2 cosϑ when |x | ≤ 2, it follows that 1
2 x2
−1= cos 2ϑ . Thus for |x | 6=

√
2,

we can also put

ϑ(x)= 1
2 arctan

√
1−

( 1
2 x2− 1

)2

1
2 x2− 1

+ bπ (7)

where b is a binary digit. Finally, using (2), we obtain Ln(x)= 2 cos(2nϑ(x)).
By further setting

θ(x)= 1
2 arctan

√
1−

( 1
2 x2− 1

)2

1
2 x2− 1

, (8)

we can write

Ln(x)= 2 cos(2nθ(x)+ 2nbπ)= 2 cos(2nθ(x)). (9)
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On the other hand, the Chebyshev polynomials of the first kind can be defined as
the unique polynomials satisfying

Tn(t)= cos(n arccos t)

or, in other words, as the unique polynomials satisfying

Tn(cos(ϑ))= cos(nϑ)

for n = 0, 1, 2, 3, . . . . Therefore, by Proposition 1,

Ln(x)= 2T2n−1
( 1

2 x2
− 1

)
= 2 cos

(
2n−1 arccos

(1
2 x2
− 1

))
.

2.1.2. Love’s problem. Two leading cases of the problem are considered here: to
specify the field generated by two identical circular coaxial conducting disks (a) at
equal potentials and (b) at equal and opposite potentials, the potential at infinity
being taken as zero. The results established by Love are as follows: the upper sign
referring to the case of equally charged disks and the lower to that of oppositely
charged disks. For Theorem 4 we refer to [Love 1949, Figures 1 and 2].

Theorem 4 [Love 1949]. In the two leading cases described above, the potential
at any point (p, ζ, ζ ′), specified by its distance r = ρa from the axis of the disks
and its axial distances z = ζa and z′ = ζ ′a from their planes, is

V0

π

∫ 1

−1

(
1√

ρ2+ (ζ + i t)2
±

1√
ρ2+ (ζ ′+ i t)2

)
f (t) dt, (10)

where V0 is potential of the disks, a is the radius of the disks, each square root has
positive real part, and f (t) is the solution of the integral equation

f (x)±
1
π

∫ 1

−1

k
k2+ (x − t)2

f (t) dt = 1, |x | ≤ 1 (11)

where k is the spacing parameter.

Theorem 5 [Love 1949]. For every positive k, (11) has a continuous solution, and
no other solution: it is real and even, and is specifiable by the Neumann series

f (x)= 1+
∞∑

n=1

(∓1)n
∫ 1

−1
Kn(x, t) dt, (12)

where the iterated kernels Kn(x, t), for n ∈ N, n > 1, are given by

K1(x, t)=
1
π

k
k2+ (x − t)2

and Kn(x, t)=
∫ 1

−1
Kn−1(x, s)K1(s, t) ds.
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Theorem 6 [Love 1949]. The capacitance of each disk in the two cases is

a
π

∫ 1

−1
f (t) dt,

and the components of the field at all points not on the disks are given by the
appropriate formal differentiations of (10).

2.2. The classical approach to the problem in terms of orthogonal polynomials.
For the solution of the problems we will refer to [Fox and Parker 1968]. When the
upper and lower disks are at potentials V0 and ±V0, the potential V at any point
whose spheroidal coordinates are (µ, η) with respect to the upper disk and (µ′, η′)
with respect to the lower one is expressed in terms of Legendre functions. The
upper disk, specified in cylindrical polar coordinates (r, θ, z) by r ≤ a and z = 0, is
taken as “focal disk” η = 0 of spheroidal coordinates (µ, η); in actual study these
are such that −2≤ µ≤ 2, η ≥ 0.

Then (10) can be rewritten in the form

V0

2π

∫ 2

−2

(
1√

ρ2+ (ζ + i t/2)2
±

1√
ρ2+ (ζ ′+ i t/2)2

)
f (t/2) dt, (13)

where each square root has positive real part, and f (t) is the solution of the integral
equation

f (x)±
1

2π

∫ 2

−2

k
k2+ (x − t/2)2

f (t/2) dt = 1, |x | ≤ 2. (14)

By the linear transformation t = 2y, both equations can be reduced to Love’s
original form. In (14) we put k = 1 and consider positive sign, so

f (x)+
1

2π

∫ 2

−2

1
1+ (x − t/2)2

f (t/2) dt = 1, |x | ≤ 2. (15)

We make the substitution x 7→ 1
2 x2
− 1 in (15), yielding

f
( 1

2 x2
− 1

)
+

1
2π

∫ 2

−2

1

1+
( 1

2(x
2− t)− 1

)2 f
( 1

2 t
)

dt = 1.

We can find a Chebyshev series solution as follows: write

f (x)=
∞∑

r=0

ar Tr (x),
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substitute it into (15), interchange the order of integration and summation in the
first term. Then we arrive at the equation

∞∑
r=0

ar Tr
( 1

2 x2
− 1

)
+

1
2π

∞∑
s=0

as

∫ 2

−2

Ts
( 1

2 t
)

1+
( 1

2(x
2− t)− 1

)2 dt = 1 (16)

for |x | ≤ 2. If we can now determine the expansion

1
2

∫ 2

−2

Ts
( 1

2 t
)

1+
( 1

2(x
2− t)− 1

)2 dt =
∞∑

r=0

bsr Tr
( 1

2 x2
− 1

)
,

we can equate the corresponding coefficients of each Tr (x) on both sides of (15),
which is legitimate since the Chebyshev polynomials form a complete set of inde-
pendent functions, to produce an infinite set of algebraic equations for the required
coefficients ar , given by

ar +

∞∑
s=0

asbsr = 0, r = 1, 2, . . . (17)

and, for r = 0,

a0+

∞∑
s=0

asbs,0 = 1.

The ar will decrease rapidly for sufficiently large r , so that in a convenient method
of solving (17) we select the first n+ 1 rows and columns, perform Gaussian elim-
ination and back-substitution for the last few coefficients — an , an−1, an−2, say —
decide by inspection whether convergence is sufficiently rapid for the required
precision with this selected value of n, and if necessary add some extra rows and
columns with only a small additional amount of work.

Let’s go back to (16). Let

J = {1, 2, 4, . . . } = {2r−1
| r ∈ N},

and rewrite (16) in this way:
∞∑

r=0

ar Tr
( 1

2 x2
− 1

)
+

∞∑
s=0

as

∞∑
r=0

csr Tr
( 1

2 x2
− 1

)
= 1,

where csr = bsr/π . Then∑
r∈J

ar Tr
( 1

2 x2
− 1

)
+

∑
r /∈J

ar Tr
( 1

2 x2
− 1

)
+

∞∑
s=0

as

(∑
r∈J

csr Tr
( 1

2 x2
− 1

)
+

∑
r /∈J

csr Tr
( 1

2 x2
− 1

))
= 1.
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By (1),

1
2

∞∑
r=1

ar Lr (x)+
∑
r /∈J

ar Tr
( 1

2 x2
− 1

)
+

1
2

∞∑
s=0

as

∞∑
r=1

csr Lr (x)+
∞∑

s=0

as

∑
r /∈J

csr Tr
( 1

2 x2
− 1

)
= 1

By Proposition 1, we note that solving (17), a subset of first n+1 rows and columns
selected to perform Gaussian elimination, is due to Lucas–Lehmer polynomials.
They not only cannot by themselves guarantee the convergence to the solution, but
also their contributions can be neglected. In fact, by above reasoning, since

f (x)=
∑
r /∈J

ar Tr
( 1

2 x2
− 1

)
+

1
2

∑
r∈J

ar Lr (x),

we have ∣∣∣∣ f (x)−
∑
r /∈J

ar Tr
( 1

2 x2
− 1

)∣∣∣∣≤ 1
2

∑
r∈J

|ar | =
1
2

∞∑
r=1

|a2r−1 |.

Accordingly, when the term on the right hand side can be considered “small” with
respect to other contributions, a convenient method of solving (17) should be to
select the first n+ 1 rows and columns, perform Gaussian elimination and back-
substitution for the last few coefficients — an , an−1, an−2, say — and delete terms
due to Lucas–Lehmer polynomials.

3. An alternative approach: nonharmonic Fourier series

The capacitance of a circular parallel plate capacitor can be calculated by expanding
the solution of the Love’s integral equation in terms of a Fourier cosine series. In
previous literature, this kind of expansion was carried out numerically, leading to
accuracy problems at small plate separations. Norgren and Jonsson [2009] calcu-
lated analytically all expansion integrals in terms of the sine and cosine integrals.
Hence, they approximated the kernel using considerably large matrices, resulting
in improved numerical accuracy for the capacitance. Previously, G. T. Carlson
and B. L. Illman [1994], solved the Love’s equation through an expansion of the
kernel into a Fourier cosine series. To calculate the expansion coefficients of the
kernel, they use numerical integration. Hence, as noted in [Norgren and Jonsson
2009], their method is limited by a combination of the accuracy of the integration
and the large number of terms needed. The accumulated errors effectively limit
the expansion to about 100 terms, which is insufficient for the convergence at very
small separations. Let us observe that both the methods recalled here make use of
orthogonal expansions.
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In this section we will use some basic facts about nonharmonic Fourier series,
and we recall them below.

It is well known that the family of exponentials {eint
}n∈Z forms an orthonormal

basis in L2(−π, π). The natural question that arises is: what happens if we replace
it by a classical system of exponentials {eiλn t

}n∈Z; these bases are very useful for
the study of the so-called almost periodic functions. See, for example, [Andres
et al. 2006; Besicovitch 1932].

The celebrated work of Paley and Wiener [1934] kicked off studies on classical
systems of exponentials {eiλn t

}n∈Z in L2(0, T ), where T > 0. They proved that
if λn ∈ R, n ∈ Z, and

|λn − n| ≤ L < π−2, n ∈ Z

then the system {eiλn t
}n∈Z forms a Riesz basis in L2

[−π, π], i.e., a family of
the form {Uek}

∞

k=1, where {ek}
∞

k=1 is an orthonormal basis for a separable infinite-
dimensional Hilbert space H and U :H→H is a bounded bijective operator.

M. I. Kadec [1964] extended this result to the case L < 1
4 . This is the so-

called Kadec- 1
4 theorem, which over the following 50 years has been extensively

generalized; see, for example [Avdonin 1974; Bailey 2010; Pavlov 1979; Sedletskii
2003; Sun and Zhou 1999; Vellucci 2015]. Let us recall Kadec’s original result:

Theorem 7. If {λn}n∈Z is a sequence of real numbers for which

sup
n
|λn − n|< 1

4 , n = 0,±1, . . .

then the system {eiλn t
}n∈Z is a Riesz basis for L2

[−π, π].

Therefore, if L = supn|λn − n|< 1
4 , then the sine system {sin λnt}∞1 as well as

the cosine system 1∪ {cos λnt}∞1 is a Riesz basis in L2(0, π).
We now approach the problem described in [Norgren and Jonsson 2009]. The

circular parallel plate capacitor is depicted in Figure 1.
The distance between the circular plates is here put equal to their common radius.

Accordingly, the normalized separation between the plates, a constant k, is set for

ka

a

x

y

z

Figure 1. A circular parallel plate capacitor can be viewed as a
cylindrical volume whose bases are the capacitor’s plates.
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the sake of simplicity equal to 1. The model is idealized in the sense that the plates
have zero thickness.

The capacitance of the parallel plate capacitor is [Carlos and Illman 1994]

C = 4ε0 a
∫ 1

0
f (s) ds, (18)

where a is the radius of the circular plate and the function f (s) is the solution of
the modified Love’s integral equation

f (s)−
∫ 1

0
K (s, t) f (t) dt = 1, 0≤ s ≤ 1, (19)

with kernel

K (s, t)=
1
π

(
1

1+ (s− t)2
+

1
1+ (s+ t)2

)
. (20)

To solve (19) numerically, we follow the approach in [loc. cit.] and expand the
kernel and the unknown function into the (nonharmonic) Fourier cosine expansion
in terms of the functions

ψ̃n(s)=
√

2− δn,0 cos(λns), n = 0, 1, . . .

which in our study have been orthonormalized to fulfill the orthogonality relation∫ π

0
ψn(s)ψm(s) ds = δm,n

and satisfy Kadec’s assumption on L = supn|λn − n|< 1
4 . Here, δm,n denotes the

Kronecker delta function.
This orthonormalization process is shown in the following

Theorem 8 (orthonormalization process). Consider L2(−π, π) and a sequence
{λn}n∈Z ⊂ R which satisfies Kadec’s assumption. Let P = (I − S)−1

=
∑
∞

m=0 Sm,
where

S( f )(x)=
∞∑

n=−∞

f̂ (n)(einx
− eiλn x)

and { f̂ (n)} are the Fourier coefficients of f . Then P(eiλn x)= einx for each n ∈ Z.

Proof. By Kadec’s theorem, we have that ‖S‖ < 1. Hence, P = (I − S)−1
=∑

∞

m=0 Sm. To show that P(eiλn x)= einx , we write

eiλn x
= (I − S)einx

= einx
−

∑
k

ck(eikx
− eiλk x)

where ck = 〈einx , eikx
〉. Thus

einx
− eiλn x

=

∑
k

δn,k(eikx
− eiλk x). �



64 PIERLUIGI VELLUCCI AND ALBERTO MARIA BERSANI

In this way we have orthonormalized the Riesz basis {eiλn x
}, in an easy way.

Further results on the orthonormalization of more complex Riesz bases, such as
{φ(t − n)}n∈Z, applied for example to the study of a “digital filter,” can be found
in [Meyer 1989]. For our purposes it is sufficient to consider the basis introduced
at the beginning of Section 3 and used in Theorem 7.

Carrying out the expansions of f (s) and K (s, t) in terms of {ψn}, we obtain

f (s)=
∞∑

m=0

fmψm(s), where fm =

∫ π

0
f (s)ψm(s) ds (21)

and
K (s, t)=

∞∑
m=0

∞∑
n=0

Kmnψm(s)ψn(t), (22)

where

Kmn =

∫ π

0

∫ π

0
K (s, t)ψn(t)ψm(s) ds dt.

These equations yield the infinite linear system of equations for the coefficients
{ fn}

∞

n=0:
∞∑

n=0

(δm,n − Kmn) fn = δm,0, m = 0, 1, . . . . (23)

From (18), (21), and from the orthonormalization process described in Theorem 8
and guaranteed by Kadec’s assumption, which allows to us expand the kernel and
the unknown function into the (nonharmonic) Fourier cosine expansion in terms
of the functions {cos(λns)}, the capacitance reduces to C = 4ε0 a f0, where f0 is
simply the (0, 0)-element in the inverse of the matrix with elements δm,n − Kmn ,
as obtained in [Norgren and Jonsson 2009].

Furthermore, Norgren and Jonsson derive analytical expressions for the expan-
sion of the kernel K (s, t). Proceeding as in [loc. cit.], it is easy to prove that, in
the general case when m 6= n and m, n > 0,

Kmn =
2
π

Ĩ3(nπ,mπ), (24)

where Ĩ3(nπ,mπ)= P I3(λnπ, λmπ), with P as in Theorem 8 and I3 as defined in
[loc. cit.]. The application of the operator P denotes here the orthonormalization
process performed on the set of functions {cos(λns)}n∈Z.

We have extended the results of [Carlos and Illman 1994; Norgren and Jonsson
2009] to a (nonharmonic) Fourier cosine expansion in terms of the set of functions
{cos(λns)}n∈Z, employing a simple procedure, due to Theorem 8, to orthonormalize
the Riesz basis {eiλn x

} under Kadec’s assumption. Therefore, we have found a
further expansion of the solution that it is not in terms of orthogonal polynomials,
but in terms of nonharmonic functions cos(λns), s ∈ R.
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4. Conclusion and perspectives

Orthogonal functions, other classes of polynomials, and Riesz bases have shown to
be very powerful for the search of solutions of several problems in disparate fields,
from physics to engineering, from economics to biology, and so on. In this paper
we applied a new class of orthogonal polynomials, called Lucas–Lehmer polyno-
mials [Vellucci and Bersani 2016] and the tool of Riesz bases [Paley and Wiener
1934] in order to reinvestigate a classical problem, due to Love [1949], obtaining a
further expansion of the solution that it is not in terms of orthogonal polynomials,
but in terms of nonharmonic functions cos(λns), s ∈ R, suitably orthonormalized,
thanks to Theorem 8 which uses the celebrated result due to Kadec [1964]. Many
other applications can be investigated in the future, mainly in the field of mechanics.
In particular, great attention has been recently paid to peridynamics and fracture
mechanics, which are approached in terms of integral equations. In this framework
our researches will be addressed to apply our techniques to the study of some
integral equations of the type introduced by Piola in 1848, recently rediscovered in
the framework of peridynamics and fracture dynamics, and reported in the paper
[dell’Isola et al. 2015].
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