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ABSTRACT
In this paper, we investigate the small-sample performance of LR tests on long-run coefficients in
the I(2) model; we focus on a comparison between I(2) and near-I(2) data, i.e. I(1) data with a
second root very close to unity, and report the results of some Monte Carlo experiments. With
near-I(2) data, the finite-sample properties of the tests are (i) similar to those found with genuine
I(2) data, (ii) systematically superior to those of the analogous tests constructed in the I(1) model,
even if the latter is, in principle, correctly specified and the former is not. Therefore, there seems
to be strong support to the idea that, in practice, modelling near-I(2) data using the I(2) model
may be a good idea, despite the inherent misspecification.
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I. Introduction

Since its introduction, the cointegrated I(1) VAR has
proven to be an invaluable tool to investigate the
long-run dynamics of economic systems in countless
applications. The driving factor behind its success is
that I(1) dynamics is often consistent both with
economic theory and with observed evidence for
macroeconomic variables. However, a view some-
times held among macro practitioners is that incor-
porating the restrictions from cointegration into
VARs used for empirical analysis is a rather futile
exercise. In fact, a statement often heard at seminars
and conferences is that if all you need to do is
analyse the dynamic properties of the economy via
tools such as impulse response analysis, then worry-
ing about cointegration is a waste of time, since ‘unit
roots will take care of themselves’.

This attitude is arguably less justified when it
comes to testing hypotheses which can be given
economic interpretation, especially for the long-run
properties of the system. In this case, one would
surmise that specifying correctly the long-run prop-
erties of the estimated system is a matter of utmost
importance that deserves special care.

The issue becomes even more complex when the
observed persistence of the data series is such that
higher orders of integration should be considered:

for instance, models investigating purchasing power
parity (PPP) for exchange rates have largely failed to
reach clear results (see, e.g., Rogoff 1996).
Bacchiocchi and Fanelli (2005) argued that this
may be due to inadequate specification: modelling
exchange rates may require allowing for I(2), rather
than I(1), dynamics. Analogously, Johansen et al.
(2010) and Juselius (2013) pointed out that the coin-
tegrating relations estimated in I(1) VARs involving
exchanges rates typically show long swings away
from equilibrium. Inspecting the estimates reveals
that, in those cases, the largest unrestricted roots
are very close to unity: in other words, these systems,
although strictly speaking I(1), are in practice very
close to be I(2). Johansen et al. (2010) label these
systems as near-I(2).

If correct specification of the order of integration
was an absolute must, hypothesis testing on the
long-run properties of the system would be consid-
erably complicated when I(1) and I(2) models are
nearly observationally equivalent. Since the cointe-
grated I(2) model is basically an I(1) model with
some extra rank restrictions, the safe option of
applying as few restrictions as possible would lead
to adopting the I(1) model. This, however, would
leave unresolved the problem of explicitly modelling
long swings as I(1) processes, which may be inade-
quate in finite samples. In this paper, we check if the
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reverse option, that is, employing an I(2) statistical
framework and the restrictions it entails, even when
data are not genuinely I(2) (but nearly so), is a
justifiable empirical strategy, given the need for
modelling extremely persistent data paths.

It has already been argued that allowing for I(2) or
near-I(2) dynamics in empirical modelling may be a
very reasonable choice: according to Johansen et al.
(2010), I(2) methods should also be used for data
generated by near-I (2) data generating processes
(DGPs). This would avoid the shortcomings of the I
(1) approach discussed earlier, while yielding the
additional advantage of exploiting the ability of the I
(2) model to allow for short-, medium- and long-run
error correction behaviour separately.1 In other terms,
Johansen et al. (2010) suggest that a (theoretically
misspecified) I(2) VAR is more suited than a (theo-
retically well-specified) I(1) VAR for analysing near-I
(2) data.

The idea of deliberately applying a misspecified
model may appear puzzling at first sight. However, it
may be argued that even if one knew the true DGP,
that may not be the optimal choice for empirically
modelling the data, because the statistical model
implied by the DGP could be too demanding to
apply in a given empirical situation. To exemplify this
concept, consider a situation in which, E yijxið Þ ¼
g x0i; θð Þ where the g(·) function exhibits potentially
problematic features (discontinuities, non-linearity,
and so on). If one had a practical situation where the
dataset was small, or where the observed values for xi
were all concentrated in a small interval, a simple linear
model may well perform better at some tasks (such as
prediction or hypothesis testing) than the true DGP.
This would amount to imposing restrictions that are
not, strictly speaking, satisfied in the population model
but make the empirical model more focused on the
features of interest by the practitioner, and therefore
more effective in finite samples. As the famous quote
goes: ‘Essentially, all models are wrong, but some are
useful.’ (Box and Draper 1987, 424).

The key question is not which of the two options
(I(1) versus I(2)) is ‘less wrong’ for near-I(2) data-
sets, but which one is the more useful in a given

empirical setting.2 Going back to the I(2) model, a
first open question is the following: although the
statistical foundations of the I(2) model are now
over two decades old (Johansen 1992, 1997) and
fairly well developed, very little is known on the
applicability of asymptotic results to finite samples.
A second, even more important point, concerns the
possible adverse consequences of the use of a mis-
specified model, as Elliot (1998) showed that tests on
the cointegrating coefficients of near-I (1) variables
in I(1) cointegrated VARs can be severely biased.
Summing up, there are two empirically relevant
open questions on the I(2) model: first, what are its
small sample performances? Second, what are its
properties when estimated on near-I(2) datasets?

In order to investigate these issues we will con-
centrate, like Elliot (1998), on tests on long-run
coefficients. We deliberately avoid to tackle the
issue analytically and concentrate on a simulation-
based study. This choice will be fully motivated in
the body of the article, but the gist of the argument is
that the technical details involved in tackling the
problem via an abstract and general approach are
extremely complex, and may obfuscate unnecessarily
our message to the practitioner: finite-sample bias
may outweigh misspecification issues in real-life situa-
tions, so a practitioner may end up with more rea-
sonable results by employing the ‘wrong’ models
than the ‘true’ one. Or, as the title goes, you may
be right in doing the wrong thing.

After a brief review of the I(2) model (used mainly
to establish notation) in Section II, in Section III we
illustrate the basic idea that will be developed in the
rest of the paper, that is a thought experiment, in which
we perform a comparison between the same statistic
computed on I(2) and near-I(2) data. A Monte Carlo
experiment is then presented in Section IV; Section V
summarises the results and concludes.

II. I(2) and near-I (2) VARS

The diffusion of I(2) VARs has so far been consider-
ably hampered by the common view of double-unit
roots as economically implausible3. However, the

1See, e.g. Juselius (2006), p. 333. From the empirical point of view this may be important, e.g. in asset markets, where error-increasing medium-run relations
may be associated with error-correcting long-run ones.

2A similar question has been addressed in the I(1) case by (Johansen 2006a) in his critical appraisal of the standard methods used to estimate empirical DSGE
models.

3Applications of the I(2) model are rather scant: besides Bacchiocchi and Fanelli (2005), some examples are Kongsted (2003), Nielsen and Bowdler (2006), and
more recently the empirical section in Kurita, Nielsen, and Rahbek (2011).
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potential usefulness of the I(2) model has probably
been somehow downplayed.

Take, for example, real GDP growth: if one looks
at actual historical data, then that the standard
assumption of stationarity should not be taken for
granted. Table 1 reports the details of ADF tests on
quarterly GDP growth rates of 35 countries and
international aggregates, as supplied by the online
OECD database, for the sample 1982:1–2013:2. Of
course, this should not be taken as a serious model-
ling exercise; these results may be spurious for a
multitude of reasons (structural breaks, misspecifica-
tion of the ADF equation and low power are just
examples), and therefore should not be taken at face
value. However, even with all these caveats in mind,
the number of cases in which the null hypothesis of a

unit root in GDP growth cannot be rejected at the
customary significance levels is striking. In almost
half of the cases (15 out of 35) the p-values are
greater than 5%, and in nearly one-third of the
panel (10 cases) even greater than 10%.

Even under the interpretation of Table 1 as noth-
ing more than a collection of descriptive statistics,
we believe that its message is quite clear: in the
sample sizes typically available to practitioners it
may not be easy to reconcile the standard view of
GDP growth as stationary with observed facts.4

Moreover, the case for I(2) models has been for-
cefully put forward, from a theoretical point of view,
by including agents’ forecasting revision rules based
on Frydman and Goldberg (2007) ‘Imperfect
Knowledge Economics’ (IKE): Frydman et al.
(2012) showed that an IKE-based model of exchange
rates will generate I(2) or near-I(2) dynamics.

The distinction between I(2) and near-I(2) DGPs
can be succinctly illustrated as follows: consider a
p-variate VAR(2) in VECM form

Δ2Xt ¼ �1Xt�1 þ ΓΔXt�1 þ εt (1)

where εt = (ε1t,. . ., εpt)’ ~ IID(0, Σ), and t = 1,. . ., T;
the matrix Π1 is assumed to satisfy the reduced rank
restriction Π1 = αβ’, where α and β are p × r
matrices, with p > r. Now define a second matrix

�2 ¼ α0?Γβ? (2)

If this p – r square matrix has reduced rank s < p – r,
then the order of integration of Xt is (at least) 2;

5 in
this case, a parallel factorisation Π2 = φη’ holds.6

Much of our analysis will involve near-I(2) pro-
cesses, that is, processes that strictly speaking are not
I(2), but exhibit features such that in finite samples
they are almost impossible to distinguish from true I
(2) systems. More formally, following Johansen et al.
(2010), a near-I (2) cointegrated VAR is defined as a
system satisfying the following conditions: (i) Π1 has
reduced rank r; (ii) Π2 is invertible; (iii) the largest
unrestricted roots are very close to unity.7

Table 1. ADF tests on real GDP growth rates.

Countries
Available
obs.

ADF
test

Asymptotic
p-value (%)

Australia 125 –3.87 0.22
Belgium 73 –4.64 0.01
Canada 125 –5.16 0.00
Chile 41 –3.17 2.15
Czech Republic 69 –2.74 6.72
Denmark 89 –3.66 0.47
Estonia 73 –2.52 11.03
Finland 93 –3.24 1.75
France 125 –4.15 0.08
Germany 89 –5.48 0.00
Hungary 73 –1.89 33.72
Iceland 65 –2.21 20.13
Ireland 65 –1.67 44.89
Italy 89 –3.35 1.27
Japan 77 –5.59 0.00
Korea 125 –2.82 5.57
Luxembourg 73 –3.03 3.18
Mexico 81 –4.78 0.01
Netherlands 101 –1.95 30.81
New Zealand 101 –2.52 11.10
Norway 125 –2.57 9.93
Poland 73 –3.89 0.21
Portugal 73 –1.40 58.61
Slovak Republic 65 –2.92 4.28
Slovenia 69 –1.94 31.31
Spain 53 –0.93 77.99
Sweden 81 –3.18 2.09
Switzerland 125 –5.43 0.00
Turkey 61 –4.49 0.01
United Kingdom 65 –2.94 4.08
United States 125 –2.71 7.19
Euro area 73 –3.52 0.75
European Union 73 –3.39 1.14
G7 125 –2.48 12.02
NAFTA 125 –2.79 5.90

4Note also that univariate unit root tests may have a low ability to detect a double unit root when the shocks to the drift term of the differenced process
(which generate the second unit root) are actually small compared to those to the differenced process (see Juselius 2013). Hence, these tests are likely to
be somehow biased against the I(2) hypothesis.

5To exclude orders of integration higher than two, an additional rank condition has to hold; see Johansen (1992).
6Clearly, greater generality can easily be achieved by adding deterministic terms and/or lags of Δ2Xt to the right-hand side of Equation (1), but this is totally
unnecessary in the present context.

7The phrase ‘unrestricted roots’ is meant as a short form of ‘roots of the autoregressive polynomial I(1 – z)2 – Π1z – Γz (1 – z) when estimated unrestrictedly’.
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In a recent working paper, Mosconi and Paruolo
(2013) showed that the following reparametrisation
of (1) holds:

Δ2Xt ¼ α β0Xt�1 þ υ0ΔXt�1ð Þ
þ �γ0þςβ0ð ÞΔXt�1 þ εt (3)

where the matrices υ and ς are p × r, while ξ and γ
are p × s. The terms (β’Xt-1 + υ’ΔXt−1) and [γ |
β]’ΔXt−1 are both stationary; the former is known
as multicointegration relation, or integral control
term, the latter as medium-run relation, or propor-
tional control term. Model (3) can be conveniently
rewritten as

Δ2Xt ¼ α β0 : υ0½ � Xt�1

ΔXt�1

� �

þ � : ς½ � γ0

β0

� �
ΔXt�1 þ εt (4a)

¼ α : � : ς½ �
β0

0

0

υ0

γ0

β0

2
64

3
75 Xt�1

ΔXt�1

� �
þ εt

¼ ηζ 0
Xt�1

ΔXt�1

� �
þ εt

(4b)

The system in this parametrisation can be estimated
using a two-step generalised least squares (GLS)
switching algorithm first devised in Boswijk (2000),
similar to the one proposed by Johansen (1997).
Further, hypotheses on linear restrictions on the
cointegration parameters are easily expressed as

H0 : vec ζð Þ ¼ SΦζ þ s;

where s is a normalisation vector and Φζ is the
vector of unrestricted coefficients in ζ.

As anticipated in the introduction, in our experi-
ments we will concentrate on likelihood ratio (LR)
tests on β, the most important parameter as far as
the interest is on the long-run properties of the
system. For instance, the so-called nominal-to-real
transformation, routinely applied in empirical work
when analysing variables in real terms, implicitly
imposes a restriction on the β vector (Kongsted
2005). Clearly, from the economic point of view,
hypotheses on all elements of the multicointegration
relation are of even higher interest. However,
Johansen (2006b) showed that while, analogously to
the I(1) case, in the I(2) VAR LR tests on β are
asymptotically χ2, the statistics for hypothesis on

the entire vector of multicointegration coefficients
are not LAMN, so that the asymptotic distribution
of the LR test is unknown.

III. The thought experiment

Before proceeding any further, let us state precisely
our questions of interest. What happens, in finite
samples, when the matrix Π2 in Equation (2) is
invertible, but very badly conditioned (that is, very
close to being singular)? Clearly, a rigorous approach
to this matter would involve analysing the issue via a
local-to-unity approach, in a similar way as the lit-
erature on unit root testing has developed over the
past 30 years.

This issue, however, is considerably more compli-
cated than in the simple unit-root test case: first, the
multivariate nature of the models make it far from
obvious to indicate precisely what kind of ‘deviation
from unity’ should be adopted. Moreover, given a
question of interest (say, hypothesis testing on a
certain sub-vector of parameters), a cointegrated
system contains, even in the simplest cases, a high
number of ancillary parameters to consider, which
could potentially make the issue quite murky.
Therefore, we decided to adopt a more experimental
approach and consider Monte Carlo evidence in
some specific cases so as to steer the research ques-
tion to a qualitative appraisal of the issue. A fully
developed analytical approach will form the object of
future research.

Our object of attention here will be the properties
of LR tests on the matrix β, which are by far the
most important subset of parameters in terms of
economic theory, when the order of integration is
unknown and may be misspecified. In other terms,
our purpose is to assess the properties of a certain
testing procedure which assumes I(2)-ness, with
both genuine I(2) and near-I(2) data.

To check the effects on LR tests of misspecifica-
tion of the order of integration, these must be dis-
entangled from other sources of finite-sample
problems. To achieve this, we would need two data-
sets as close as possible and such that Π2 is singular
in one case and invertible in the other, with the
second eigenvalue of the companion matrix of the
system (1) being close to 1. Then, the statistics of
interest could be computed for both datasets and
compared. Our conjecture is that the tests from the
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I(2)-VECM’s should perform (i) in roughly the same
way with genuine I(2) data and with near- I(2) ones;
(ii) with near-I(2) data, not worse, and hopefully
better, than the tests computed from the I(1)-VECM.

Note that, in order for the aforementioned strat-
egy to work, it is not sufficient to have two datasets
generated by slightly different DGPs. If it were so,
the actual datapoints may (and, as a rule, will) be
very different from one another. The requirement
we need is much stricter: we need two datasets in
which the difference between each and every data-
point is attributable only to the difference in the order
of integration of the respective DGPs.

Clearly, no real dataset can ever satisfy this
requirement. On the contrary, a Monte Carlo
experiment allowing such a comparison is readily
designed. Assume the data are generated as per the
VAR(2) formula (1) using X0 as starting (pre-sam-
ple) values, an artificially generated T × p matrix of
disturbances En and a given set of parameter values
θi (where i = 1,2). More precisely, define θ2 as a set
of parameters under which the DGP is I(2) and θ1
as a set such that the DGP is I(1), but nearly I(2).
Further, let X2

n and X1
n, respectively, be the result-

ing datasets obtained in the n-th simulation, and T2

and T1 the LR tests for a given hypothesis on β
computed in the I(2) model estimated, respectively,
on X2

n and X1
n. Since the other two elements of the

DGP (the initial values, X0, and the shocks, En) are
the same, any difference in the behaviour of the LR
statistics τ2 and τ1 can be safely ascribed to model
misspecification alone: the former is obtained
under θi = θ2, so that the data are indeed I(2)
and the I(2) model is correct. The latter, on the
other hand, is computed on data obtained under
θi = θ1, which are I(1): the assumption of two unit
roots underlying the I(2) model is wrong.

Therefore, we first consider the I(2)-VECM model
estimated on I(2) data to evaluate the finite sample
performances of the test. Next, the I(2)-VECM is
estimated again on the corresponding near-I(2) data
to assess the consequences of misspecification of the
integration order. Finally, these latter results are com-
pared to their obvious benchmark, that is, the perfor-
mances of the analogous tests computed from the
correctly specified I(1) VAR. Note that the problem
of assessing the order of integration is totally irrelevant
here. In other words, the I(2) model is not assumed to

be applied to near-I(2) data as a consequence of, for
example, inadequate pretesting. This model is purpo-
sely used because it is believed to bring some distinc-
tive advantages in spite of misspecification.

For a given sample size and significance level, the
performances of the test under the two DGPs over
the N Monte Carlo replications can be usefully sum-
marised in Table 2.

Since under H0 the asymptotic distribution of the
LR test on I(2) data, τ2 is χ

2, then the ratio (C + D)/
N must converge asymptotically to the nominal size,
although its small sample behaviour is unknown. On
the other hand, nothing is known about the LR test
on near-I(2) data, τ1. Is its performance noticeably
different from τ2’s? And if so, how?

A couple of remarks are in order here. First of all,
recall that we are not comparing (as customary in
the literature) two different test statistics on the
same dataset. In fact, we are doing precisely the
opposite: we are comparing the behaviour of the
same test statistic (LR) on datasets generated by
two (slightly) different DGPs; the main point is to
understand how large the differences are. This is
why the rejection rates of the tests, on the marginal
row and column of Table 2, are not the most impor-
tant items to consider. Examining the non-diagonal
cells in the table is crucial for the present purpose, as
those are the cases when the LR tests in models with
correctly specified and misspecified number of unit
roots deliver contrasting results. More specifically, B
is the number of cases when τ2 leads to the correct
decision and τ1 does not, whereas C is the frequency
of the opposite case of τ2 leading to the wrong
decision and τ1 to the correct one. The combination
B, when τ2 leads to the correct decision and τ1 does
not, is relatively unsurprising (the test in the mis-
specified model performs worse than in the right
model); the other, counted by C, is quite counter-
intuitive, as the test in the misspecified model out-
performs the ‘correct’ one. However, in finite sam-
ples, this can be the simple consequence of

Table 2. Acceptance/rejection decisions for the LR test in the I
(2) model, H0 true.
LR test τ1 on near-I(2) data

LR test τ2 on I(2) data no rejection rejection
no rejection A B A + B
rejection C D C + D

A + C B + D N
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misspecification and sample biases of opposite sign
compensating each other.

Hence, to summarise the differences in the out-
comes delivered by the tests with I(2) and near-I(2)
data, the key statistic to compute is the proportion of
simulations in which τ2 and τ1 yield opposite con-
clusions, i.e. � = (B + C)/N.

IV. The Monte Carlo experiments

As argued in the previous section, in order to per-
form the thought experiment, we must simulate
several pairs of datasets as similar as possible to
one another, with one being truly I(2) and the
associated one being near-I(2). In order to achieve
this goal, there are various conditions to be con-
trolled. From Section II, a first requirement which
must be always satisfied is that the matrix Π1 as
defined in (1) must be of the same reduced rank
(say, r). The second requirement is that in the I(2)
datasets the rank of the matrix Π2 must be smaller
than p – r, where p is the number of variables.
Instead, in near-I(2) systems, this matrix must be
invertible, and the largest unrestricted root close to
unity.

Hence, to generate the near-I(2) dataset closest
to a given I(2) one, it is important not only that
the rank conditions apply, but also that the same
number of I(1) cointegrating relationships holds
for the two datasets. Given this rather complex
set of conditions, the task of reconciling the con-
trasting requirements of control and empirical
relevance is more demanding than usual in
Monte Carlo work.

For this reason, we will use different DGPs,
characterized by opposite advantages and disadvan-
tages. The first two DGPs are highly stylized, hence,
on the one hand, easily controlled, but, on the
other, admittedly of limited relevance for applied
work. The first one, inspired by Hendry and von
Ungern-Stenberg’s (1981) famous specification of
the consumption function, has been used in the
previous studies on I(2) systems by Johansen
(1992) and by Paruolo and Rahbek (1999), and is
thus the natural first step of our simulation experi-
ments. The second DGP, taken from Kongsted

(2005), mimics a test of the validity of the nom-
inal-to-real transform (henceforth NtR), thus pro-
viding an example of a theoretically important
question with empirically relevant consequences8.
Finally, the third DGP is one of the models esti-
mated by Bacchiocchi and Fanelli (2005) in their
study of PPP. It is thus by definition of the max-
imum possible relevance for applied work (the DGP
parameters are set at the values estimated empiri-
cally), but, on the other hand, more difficult to
control.9 Should the simulations using these differ-
ent DGPs deliver consistent results, these may pro-
vide some insight into the practical issues of
empirical work. The set-up and results from each
experiment will be presented separately first, and
then an overall assessment will be drawn.

The Hendry and von Ungern-Stenberg DGP

Set-up
The Hendry and von Ungern-Stenberg (briefly
H-US) DGP mimics a system with three variables,
naturally interpreted as logs of consumption (ct),
liquid assets (lt) and income (yt). The system is
driven by one stochastic trend and includes two
error correction mechanisms:

Δct ¼ νΔyt�1 � a11 ct�1 � b1yt�1ð Þþ
� a12 lt�1 � b2yt�1ð Þ þ ε1t

(5a)

Δlt ¼ �a21 ct�1 � b1yt�1ð Þ þ ε2t (5b)

Δyt ¼ ρΔyt�1 þ ε3t (5c)

Equation (5a) is a consumption function,
Equation (5b) describes asset accumulation through
saving, and (5c) is a simple law of motion for GDP.
In this simple formulation, it is immediately obvious
that the order of integration of the system is deter-
mined by the parameter ρ: for ρ = 1 it is I(2) and for
ρ < 1 it is I(1), while near-I(2) systems are charac-
terized by ρ close to 1.

Defining Xt = (ct,lt,yt)’, εt = (ε1t, ε2t, ε3t)’, and
imposing, for convenience, the homogeneity condi-
tion b1 = b2 = 1 the DGP can be compactly written
in levels as

8We thank an anonymous referee for drawing our attention to this point
9For instance, since any change of the long-run parameters would affect in an unknown way the adjustment coefficients, in this case we will not be able to
evaluate the power of the test.

6 F. DI IORIO ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

7:
21

 1
0 

Fe
br

ua
ry

 2
01

6 



Xt ¼
1� a11 �a12 vþ a11 þ a12
�a21 1 a21
0 0 1þ ρ

2
64

3
75Xt�1

þ
0 0 �ν

0 0 0

0 0 �ρ

2
64

3
75Xt�2 þ εt:

(6)

and in a manner compatible with Equation (4a) as

Δ2Xt ¼
a11
a21
0

a12
0

0

2
64

3
75 �1 0 1

0 �1 1

� �
Xt�1

þ
�1 0 ν

0 �1 0

0 0 ρ� 1

2
64

3
75ΔXt�1 þ εt

(7)

Consistently with the remarks made previously on
the order of integration of the system, the matrix Π2

(which equals ρ – 1) has a reduced rank, and there-
fore the system is truly I(2) (with r = 2 and s = 1)
only if ρ = 1.

In the simulation experiments, the loadings aij
have been chosen in such a way to control the roots
of the VAR, so as to generate series with a wide
range of diverse dynamic features. Here we report
detailed results for the three combinations of load-
ings, given in Table 3; other combinations give
essentially the same results. As explained earlier,
using the same loadings and ρ close to 1 yields
near-I(2) systems; the simulations reported here
were obtained with ρ = 0.80 and ρ = 0.90. The
lagged effect of income growth on consumption
growth, v, is always fixed at 0.5. Disturbance

terms are IID Gaussian with covariance matrix
diag(1,1,0.1).10 These choices were made so as to
generate simulated series whose relative order of
magnitude resembles the ones observed in real-
world data. The sample sizes considered are
T = 64,128, 256. The first two are representative
of standard macroeconomic applications (e.g.
T = 128 corresponds to 32 years of quarterly
data), while the last one is useful to check asymp-
totic behaviour.

Some remarks on the estimation strategy are
now in order. Of course, these choices are hardly
representative of a real-world problem. However, in
the experiments with this DGP we aim at maximum
streamlining and ease of control, so the form of
Equations (5a)–(5c) is assumed to be known at
the expense of realism. In other terms, we assume
lag length, type of deterministic terms (constant
only, no trend), cointegration rank and shape of
loadings matrix to be known. In this way elements
of the estimation process, like the selection of lag
length or (more critically) cointegrating rank,
which are irrelevant for our purposes will have no
effect on the results. We will thus be able to evalu-
ate as precisely as possible the effect of the misspe-
cification of the number of unit roots on the
performances of the LR statistic. Note that, in
doing so, we are following to a somewhat wider
scale the standard practice of simulation experi-
ments, as some aspects of the DGP are always
taken as known in order to concentrate on the
point of interest.11 The analysis of a much more
realistic DGP will be provided in section The
Bacchiocchi–Fanelli DGP.

Moreover, the iterative two-step GLS switching
algorithm is, unfortunately, quite cumbersome to
apply here, because the system of constraints to be
applied to the parameters involves non-linear
restrictions which are complicated to handle by the
iterative two-step technique. Therefore, we use the
BFGS algorithm, as implemented in the gretl soft-
ware library. Finally, the number of replications is
5000 in all cases.

Under each setting, we computed the Type I
errors of asymptotic LR tests of H0: vec(ζ) = SΦζ +

Table 3. H-US DGP: VAR dynamic properties in different Monte
Carlo settings – ρ = 1.
Model a11 a12 a21 λ

DGP1 0.20 0.20 –0.20 1 1 0.92 0.92
DGP2 0.80 0.20 –0.20 1 1 0.95 0.25
DGP3 0.80 0.40 –0.40 1 1 0.60 0.60
DGP4 0.50 0.50 –0.50 1 1 0.87 0.87
DGP5 0.80 0.80 –0.80 1 1 0.92 0.92
DGP6 0.40 0.20 –0.20 1 1 0.80 0.80
DGP7 0.80 0.60 –0.60 1 1 0.75 0.75

λ: non-zero eigenvalues of the companion matrix for (1).

10In Elliot (1998), the size distortions in the tests on the cointegration vectors are dependent on the cross correlation in the error term as this leads to
endogeneity bias. However, inference on the cointegration vectors in the VAR is invariant to multiplication by full rank matrices.

11For instance, to the best of our knowledge, all simulation studies of tests on the cointegrating coefficients in the I(1) VAR take the cointegrating rank as
known, and this is also typically the case for the type of deterministic kernel.
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s, with S and s defined so as to (i) have the cointe-
gration vectors normalized, respectively, on ct and lt,
and (ii) impose homogeneity (denoting as usual by β
the 3 × 2 matrix of cointegrating coefficients, β31 = –
β11, β32 = – β22). H0 is thus imposed only on the
coefficients of the level terms of the multicointegra-
tion relation.

Results
The results for this DGP are reported in Tables 4
and 5, respectively, for I(2) and near-I(2) data, and
are easily summarized.

As Table 4 shows, the LR tests computed from the
I(2) model applied to genuine I(2) data are somehow
oversized in small samples. However, the size bias
rapidly disappears as T increases, as dictated by the
asymptotic distribution, but is still quite sizeable
even with 256 observations. In Table 5, an extremely
interesting result emerges: the Type I errors of the
tests in the, theoretically misspecified, I(2) model

(headings MI(2)) are always closer to nominal values
than the Type I errors of the tests in the, theoreti-
cally well-specified, I(1) model (headings MI(1)).
The differences shrink with sample size, but are
still noticeable at T = 256. Remarkably, qualitatively,
the same results hold even for other values of ρ quite
far from unity (results not reported here, available
on request).12

Therefore, on the basis of the simulation evidence,
there are no doubts that if one focuses specifically on
the task of testing hypothesis on the β’s, I(1) data
with a second root very close to unity are best
modelled as if they were I(2). This conclusion is
confirmed by the divergence measure �, the share
of simulations in which the LR test yields opposite
conclusions with I(2) data and the closest near-I(2)
dataset; results are reported in Table 6. The � index
is generally very small, always in the order of 10%.
Curiously enough, it seems to be rather insensitive to
both ρ and T, which suggests that near-observational
equivalence happens for this DGP in a rather large
range of settings.

Finally, for the sake of completeness, we also
checked power for a few selected alternatives. More
precisely, we considered DGPs deviating from
homogeneity by letting b1 and b2 take values differ-
ent from 1. To save space, in Table 7 we report only
the results for the case b1 = b2 = 0.8 with ρ = 0.90.

Remarkably, although rejection rates are always
extremely high for both models, those from the I(2)
VECM are consistently, albeit marginally, higher.
Considering that this model has also a smaller size
bias, we can conclude that it definitely outperforms the
theoretically well-specified I(1) VECM (Table 8) in all
respects.

Table 4. H-US DGP: empirical size of LR tests on long-run
coefficients – I(2) data (ρ = 1), I(2)-VECM model.
T 64 128 256

nominal size 5.0 10.0 5.0 10.0 5.0 10.0

DGP1 8.7 14.8 6.3 12.0 5.7 11.1
DGP2 7.5 13.6 6.5 11.9 5.5 10.9
DGP3 7.3 13.4 6.3 11.6 5.2 10.4
DGP4 6.9 12.0 5.6 11.3 5.3 10.5
DGP5 6.1 12.0 5.4 11.2 5.1 10.1
DGP6 8.3 14.9 7.0 12.8 5.9 11.4
DGP7 6.6 12.1 5.7 11.2 5.1 10.2

Table 5. H-US DGP: empirical size of LR tests on long-run
coefficients – near-I(2) data (ρ = 0.80,0.90).

64 128 256

T MI (1) MI(2) MI (1) MI (2) MI(1) MI(2)

α = 0.05, ρ = 0.90
DGP1 13.5 8.2 8.7 6.5 6.4 5.6
DGP2 18.1 7.6 9.9 6.6 6.8 5.1
DGP3 12.2 7.4 8.3 6.3 6.4 5.5
DGP4 9.9 6.8 7.3 5.9 6.0 5.6
DGP5 8.3 6.1 6.3 5.6 5.7 5.2
dgp6 15.5 8.7 9.3 7.1 7.0 5.8
DGP7 10.1 6.4 7.2 5.8 5.9 5.3

α = 0.05, ρ = 0.80
DGP1 13.9 8.1 8.6 6.6 6.7 5.6
DGP2 19.5 7.2 11.5 6.5 7.7 5.6
DGP3 11.9 7.2 8.2 6.4 8.2 6.4
DGP4 10.1 6.6 7.0 5.6 6.2 5.5
DGP5 8.7 6.2 6.8 5.3 5.6 5.2
DGP6 16.3 8.5 10.0 6.9 7.0 6.0
DGP7 10.2 7.1 6.7 5.7 6.0 5.3

where MI(1) is I(1)-VECM model and MI(2) is I(2)-VECM model

Table 6. H-US DGP: � index of divergence between LR tests
from the I(2)-VECM model on I(2) and near-I(2) data (ρ = 0.80,
0.90).

DGP

ρ = 1 vs ρ = 0.80 ρ = 1 vs ρ = 0.90

T T

64 128 256 64 128 256

DGP1 0.13 0.13 0.12 0.11 0.11 0.10
DGP2 0.12 0.11 0.11 0.09 0.10 0.10
DGP3 0.10 0.10 0.10 0.11 0.10 0.10
DGP4 0.11 0.10 0.10 0.10 0.09 0.10
DGP5 0.10 0.09 0.09 0.08 0.09 0.09
dgp6 0.13 0.12 0.11 0.11 0.11 0.10
DGP7 0.11 0.10 0.10 0.10 0.09 0.10

12We thank Gunnar Bårdsen for his suggestion to try this.
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The Kongsted DGP

Set-up
The Kongsted DGP is a system with three variables,
naturally interpreted as logs of money (mt), nominal
income (yt) and prices (pt). Using for convenience
the same symbols as in Kongsted (2005),

mt � yt ¼ δ � 1ð Þyt�1

þ γ δ � 1ð Þ þ κθ½ �Δpt�1

þ ε1t � ε2t (8a)

Δyt ¼ γΔpt�1 þ ε2t (8b)

Δpt ¼ ρΔpt�1 þ ε3t (8c)

Equation (8a) is a generalized velocity, Equation
(8b) is the equation for nominal income, and (8c) is
the price equation. The scenario here is that of a
study of money and income data in which prices,
and thus the variables in nominal terms, may be
either pure I(2) (hence, with non-stationary infla-
tion) or near-I(2) (hence, with stationary but long-
swinging inflation). Since the integration order of
inflation is often a subject of debate, it is interesting

to examine with this DGP the properties of the test
on β when ρ is smaller or equal to 1 with both the I
(1) and I(2) VECMs. Letting Xt = (mt,yt,pt)’, εt = (ε1t,
ε2t, ε3t)’, the VAR(2) representation is

Xt ¼
0 δ δγ þ κθð Þ
1 1 γ

0 0 1 þ ρ

2
64

3
75Xt�1

þ
0 0 δγ þ κθð Þ
0 0 �γ

0 0 �ρ

2
64

3
75Xt�2þ εt :

(9)

Like in the previous DGP, the value of ρ determines
the order of integration of the system. It is implicitly
set at 1 in Kongsted (2005), who studies a pure I(2)
case (which implies r = 1 and s = 1). There is a single-
level cointegrating vector (from I(2) to I(1) when ρ = 1
and from I(1) to I(0) when ρ < 1), given by β = (1, – δ,
0)’. Hence, H0: β = (1, −1, 0)’ is the first hypothesis to
be considered when testing the NtR transform13.

As in Kongsted (2005) we set the DGP parameters
as follows: κ = − 2, δ = 1 and γ = 1. We also take
advantage of the close similarity of H-US and NtR
GDPs to perform an informal (but still suggestive)
robustness check of our results to the correlation
structure of the disturbances, setting for this DGP
the error term covariance matrix as

� ¼
1 0:1 0:025
0:1 0:9 0:02
0:025 0:02 0:075

2
4

3
5:

Results
The results for I(2) and near-I(2) DGPs are reported
in Tables 10 and 12, respectively. All the simulation
settings (errors, sample sizes, etc.) are as in the
previous set of experiments. The near-I(2) data are
obtained by setting ρ = 0.90 and ρ = 0.80, and the
dynamic properties of the companion form are
reported in Table 9. For the sake of simplicity,
power has been checked only for δ = 0.980, the

Table 7. H-US DGP: power of LR tests on long-run coefficients –
I(2) and near-I(2) data (ρ = 0.90), I(2)-VECM model.

I(2) near-I(2)

T = 64 T = 128 T = 64 T = 128

DGP 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0
DGP1 97.1 97.9 99.9 100.0 90.1 92.5 99.6 99.8
DGP2 98.4 98.8 100.0 100.0 96.6 97.8 99.9 99.9
DGP3 99.9 99.9 99.9 100.0 99.7 99.8 100.0 100.0
dgp4 99.9 100.0 100.0 100.0 99.7 98.8 100.0 100.0
DGP5 100.0 100.0 100.0 100.0 99.9 99.9 100.0 100.0
DGP6 97.0 98.1 100.0 100.0 93.1 95.1 99.9 100.0
DGP7 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0

DGP settings: b1 = 0.8, b2 = 0.8; H0: β31 = – β11, β 32 = – β 22 T = 256:
empirical power is always 100%, omitted.

Table 8. H-US DGP: Power of LR tests on long-run coefficients –
near-I(2) data (ρ = 0.90), I(1)-VECM model.

near-I(2)

T = 64 T = 128

DGP 5.0 10.0 5.0 10.0
DGP1 87.6 91.0 99.5 99.6
DGP2 96.1 97.9 100.0 100.0
DGP3 99.6 99.8 100.0 100.0
dgp4 99.7 99.8 100.0 100.0
DGP5 100.0 100.0 100.0 100.0
DGP6 91.3 94.7 99.8 99.9
DGP7 100.0 100.0 100.0 100.0

DGP settings: b1 = 0.8, b2 = 0.8; H0:β31 = – β11, β32 = – β22 T = 256:
empirical power is always 100%, omitted.

Table 9. NtR DGP: Dynamic properties: non-zero eigenvalues of
the companion matrix for I(2) and near-I(2) data (ρ = 0.90,
0.80).
I(2) 1.00 1.00 1.00
near-I(2) 1.00 1.00 0.90
near-I (2) 1.00 1.00 0.80

13The second set of restrictions, on the polynomial cointegrating vector, is required in the I(2) case to ensures that the (reduced) rank of the Π matrix in the I
(2) system is preserved in the real-transformed system.
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most distant value from the null among those con-
sidered in Kongsted’s ‘Case 1’.

Let us discuss size first. As Table 10 shows, the
Type I errors of the LR tests computed from the I(2)
model applied to genuine I(2) data are close to the
nominal level for all sample sizes. From Table 11 we
can see that very much the same holds for the tests
computed on I(1) data, even with ρ = 0.8. In fact,
although with near-I(2) data the Type I errors of the
tests from the two models are generally quite similar,
those from the I(1) one are always higher. The
difference is especially noticeable for T = 64.

Therefore, simulation evidence seems to indi-
cate that if one focuses specifically on the task of
testing hypothesis on the β’s, I(1) data with a
second root very close to unity are best modelled
as if they were I(2). Besides, the results we obtain
seem to be remarkably robust with respect to
moderate variations in the correlation in the
reduced-form disturbance covariance matrix, as
long as the relative orders of magnitude of the
generated artificial data series remain comparable.
This result, however, should be taken as only sug-
gestive, given that our experimental setup is far
from being comprehensive in this direction. As in
the previous case, this conclusion is fully con-
firmed by the � index (see Table 11), which
takes always rather small values, with no evident
link with ρ or sample size.

This conclusion is fully supported by simulation
results on power. With I(2) data (bottom row of

Table 10), the ability to reject the false null examined
is just acceptable for T = 64, but very high already for
T = 128. With near-I(2) data (Table 12) for both the I
(1) and the I(2) models, the rejection rates are consis-
tently lower: definitely disappointing for T = 64, good
but not as in the I(2) case for the larger sample sizes.
The problem with this DGP is clearly due to the
inadequate signal/noise ratio in small sample sizes,
which affects adversely the ability of both models to
reject false null hypothesis. The important message for
our research question is again that adopting the I(2)
model with I(1) data has no adverse consequences.

The Bacchiocchi–Fanelli DGP

Set-up
Bacchiocchi and Fanelli (2005) studied PPP for a
small panel of advanced economies over the post–
Bretton Woods period and provided a time-series-
based interpretation of the controversial evidence
characterizing the dynamics of real exchange rates.
More precisely, they showed that the persistent devia-
tions from the PPP of the exchange rates between a
set of European countries (France, Germany and UK)
and the United States may be empirically attributed to
the presence of I(2) stochastic trends in prices mea-
sured using Consumer Price Indices. Their model in
the integral-proportional equilibrium correction
representation can be written as (Bacchiocchi and
Fanelli (2005), Equation (17)):

Δ2Xt ¼ α½β0Xt�1 þ ~δg0ΔXt�1� þ ζ�1ðβ0ΔXt�1Þ
þ ζ�2 β01ΔXt�1

� � þ �t

(10)

where, Xt ¼ et; pt; p�t
� �

, et is the bilateral exchange
rate (domestic/foreign) at time t, pt and p�t are,
respectively, the domestic and the foreign currency
prices at time t.

Table 10. NtR DGP: Empirical size and power of LR tests on
long-run coefficients, I(2) data, I(2) − VECM model.
T 64 128 256

nominal size 5.0 10.0 5.0 10.0 5.0 10.0
emp. size 6.04 11.48 5.56 10.80 5.86 11.14
emp. power 59.56 66.72 97.14 98.14 100 100

Power settings: β = (1, – 0.98, 0); H0: β2 = 1, β 3 = 0

Table 11. NtR DGP:Empirical size and divergence measures of
LR tests on long-run coefficients, near-I(2) data (ρ = 0.80, 0.90).

T 64 128 256

Nom. Size MI(1) MI(2) MI (1) MI (2) MI(1) MI(2)

p = 0.90
0.05 7.94 5.96 6.32 5.82 5.02 5.12
0.10 14.44 11.44 12.80 11.14 10.06 10.66
Divergence � 0.09 0.09 0.10

p = 0.80
0.05 7.28 6.00 5.94 6.06 5.14 6.02
0.10 13.88 11.76 11.96 11.64 10.10 12.14
Divergence � 0.10 0.10 0.11

where MI(1) is I(1)-VECM model and MI(2) is I(2)-VECM model

Table 12. NtR DGP: Empirical Power of LR tests on long-run
coefficients, near-I(2) data (ρ = 0.90,0.80).

T 64 128 256

Nom. Size MI(1) MI(2) MI(1) MI (2) MI(1) MI(2)

ρ = 0.90
0.05 34.62 35.94 77.06 79.26 97.40 97.72
0.10 44.60 45.64 82.64 84.36 98.44 98.48

ρ = 0.80
0.05 23.00 22.76 56.48 57.62 88.32 88.78
0.10 31.96 31.28 64.32 65.88 91.38 92.08

where MI(1) is I(1)-VECM model and MI(2) is I(2)-VECM model
Power settings: β = (1, – 0.98, 0); H0: β2 = 1, β3 = 0
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The model estimated for the case USA vs UK
appears particularly convenient as a simulation
DGP for I(2) datasets, as there are no short-run
terms, r = 1 and s = 1. It will be referred to as B-F
DGP and its parameters are as follows (source:
Table V in Bacchiocchi and Fanelli 2005):

α ¼ �0:0298; �0:0025; �0:0049f g
β ¼ 1; 0:95; �0:42f g
β1 ¼ 1; �0:75; 0:55f g
g ¼ 0; 0; 1f g
δ
,
¼ 66:7

ζ�1 ¼ �1:71; �0:24; 0:17f g
ζ�2 ¼ 0:83; 0:24; �0:16f g

� ¼ 0:001 �
287:0 �0:5013 �5:2997

�0:5013 1:5459 0:14

�5:2997 0:14 9:6618

2
64

3
75

To generate the near-I(2) artificial dataset closest
to a given I(2) model, not only that the matrix Π2

must be of full rank, but the two models must also
have the same number of cointegrating relationships.
Unfortunately, contrary to the case of the H-US
DGP, it is now not obvious how the set of para-
meters of the I(2) DGP (see above) should be mod-
ified in order to satisfy these requirements. This
problem is solved by using the VAR(2) representa-
tion in the following levels:

Xt ¼ A1Xt�1 þ A2Xt�2 þ εt

where the correspondence with Equation (1) is
given by A1 = 2I + Π1 + Γ and A2 = – (I + Γ).

Clearly, the rank restrictions of the I(2) VECM
imply restrictions on A1 and A2. We therefore aim
for two transformations of A1 and A2, say, B1 and B2,
which satisfy the rank restrictions implied by the I(1)
VECM. By fine-tuning these transformations, the
desired near-I(2) DGP is obtained. Our method is
based on re-calibration of the original VAR matrices
via two scalars h1 and h2, with two distinct purposes:
(a) scaling the α matrix so as to control the speed of
adjustment to the long-run equilibria without alter-
ing the rank of Π1 and (b) altering the Γ matrix in
such a way that Π2 is closer/further away from being
singular.

In terms of Equation (1), α is multiplied by some
scalar (1 + h1) to increase the speed of adjustment to
disequilibrium for h1 > 0 without affecting the coin-
tegration matrix β; then, a scalar matrix h2 · I is
added to Γ in order to ‘push Π2 away’ from singu-
larity. Hence

B1 ¼ 1þ h1ð ÞA1 þ h1A2 þ h2 � h1ð ÞI (11)

B2 ¼ A2 � h2I (12)

The relationship between h1, h2 and the roots of
the companion matrix of the system proved to be
highly non-linear and thus difficult to control, but a
careful calibration of Equations (11–12) showed that
setting h1 = 1 and h2 = −0.5 the rank conditions of
the I(1) VECM are satisfied and the largest unrest-
ricted root is close to 1, as desired (see Table 13). We
thus generated near-I(2) data from the VAR(2) in
levels with coefficient matrices B1 and B2 derived as
in (11–12) and the same initial conditions and errors
of the experiment with I(2) data.

Sample sizes are T = 64, 128, 256 as before. Since
this DGP is designed to mimic actual empirical work
as closely as possible, the cointegrated I(2) VECM is
estimated using the switching algorithm assuming
known-only cointegrating ranks (s = 1, r = 1) and
lag length (k = 2), as would realistically happen in a
true empirical exercise. Following point (iii) of the
list of the DGP parameters, the null hypothesis of
the LR test is that the second element of the β vector
is equal to 0.95.

The number of Monte Carlo replication is 5000 as
in the first set of experiments, but in a extremely
small number of cases (always less than 1%) the
reduced rank estimation could not be completed
and the replication discarded.14 The exact number
of replications used to compute the rejection rates is
reported in Table 14.

Results
The results are summarized in Tables 14 and 15, respec-
tively, for I(2) and near-I(2) data. Unsurprisingly,

Table 13. B-F DGP: Dynamic properties, non-unit eigenvalues
of the companion matrix.
I(2) 0.1426 0.4099 0.6432 1.0000
near-I(2) 0.3926 0.0885 0.1727 0.9740

14Note: we do not estimate the model exactly as Equation (11); instead of the β1 vector (which is orthogonal to β) what we estimate is some other γ vector
(not necessarily orthogonal to β). For the purposes of testing the hypothesis of our interest, though, this is irrelevant.
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performance is always inferior to the previous experi-
ments 4.1.2, when estimation was carried out on a
much more streamlined DGP, containing a much
lower number of extra parameters.

With true I(2) data the size bias of the test is
much higher, but it shrinks quite rapidly as T
increases, as expected. The striking result is that
performance is essentially the same with near-I(2)
data, and much superior to those of the tests from
the I(1) VECM. Remarkably, the � index, which
measures the consequences of misspecification on
the LR test in the I(2) VECM, is higher than in the
H-US DGP only for T = 64, 128, but it falls
rapidly with sample size and for T = 256 it is
practically the same for the two DGPs. This
means that, even for sample sizes as large as 256,
small-sample effects still dominate the adverse
effects of misspecification.

Although surprising, this behaviour is entirely
consistent with the Type I errors discussed earlier.
With smaller sample sizes, both tests are oversized,
but that from the I(1) model more heavily so; as T
grows, the rejection rates of both tests approach
nominal sizes, and (consistently) the fraction of con-
trasting outcomes falls. In other terms, small sample
bias always dominates model misspecification bias.
We can then conclude15 that even when simulating a
much more realistic DGP two remarkable results
emerge: first, the test from the I(2) model does not
seem to be adversely affected by the misspecification
of the number of unit roots; second, it outperforms
the analogous test computed in the I(1)-VECM even

at sample sizes that an applied macro-economist
would ordinarily consider perfectly adequate.

V. Conclusions

The main conclusion of our study is that, in I(1)
systems characterized by extremely high persistence
in their stationary components (so-called near- I(2)
data), the best empirical strategy for the purpose of
running hypothesis tests on the cointegration para-
meters may be to treat them as if they were I(2). In
other terms, it may make little sense to worry about
telling genuine I(2) processes apart from near-I(2)
ones, as finite-sample bias dominates the effects of
misspecification. More specifically, using a number
of observations in the order of magnitude of most
macro-econometric applications, we found that the
size properties of the LR test on the long-run coeffi-
cients computed in the I(2) VECM estimated on I(2)
data are consistent with asymptotic results, and with
near-I(2) data are superior to those of the corre-
sponding test computed in the I(1) VECM. This
happens in spite of the fact that the number of unit
roots is correctly specified in the latter but not in the
former. Power of the test from the I(2) VECM also
seems to be quite satisfactory.

These findings are of direct relevance for tests that
are, in most applied problems including tests of the
nominal-to-real transform, the most important
application of hypothesis testing for linking the sta-
tistical model to the underlying economic theory
apparatus. Further, it may be conjectured that they
may extend to several other phases of inference.

A natural objection to these statements is that the
special modelling requirements of near-I(2) data
would be better met using a well-specified I(1)
VECM with appropriate corrections if required,
rather than the misspecified I(2) VECM. However,
this strategy would, in turn, open two new issues:
first, it would still leave the ‘long swings’ in the data
emphasized by Johansen et al. (2010) and Juselius
(2013) poorly modelled. Second, we would forsake
the rich modelling potential of the I(2) model. In
conclusion, our results provide considerable support
to the proposal of using I(2) VARs to model both I
(2) and near-I(2) data.

Table 14. B-F DGP: Empirical size of LR tests on long-run
coefficients – I(2) data, I(2)-VECM model.
T 64 128 256

nominal size 5.0 10.0 5.0 10.0 5.0 10.0
13.65 21.25 9.26 16.16 7.10 12.91

Completed replications 4974 4969 4958

Table 15. B-F DGP: Empirical size of LR tests on long-run
coefficients – near-I(2) data.
T 64 128 256

Nom. Size MI(1) MI(2) MI (1) MI (2) MI(1) MI(2)

0.05 23.44 11.60 14.49 8.53 9.06 7.28
0.10 32.95 19.22 22.86 14.61 15.65 12.69
Divergence � 0.20 0.15 0.11

where MI(1) is I(1)-VECM model and MI(2) is I(2)-VECM model

15Power was not evaluated for this DGP: changing the long-run parameters would of course require a corresponding modification in the adjustment
coefficients; the issue is quite complex and was left for future research.
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The message to the practitioner therefore is: no, unit
roots will not always take care of themselves. Actually,
when testing for long-run properties you may have to
choose between small-sample adverse effects and mis-
specification from imposing extra constraints; and in
this case, you had better go for the lesser of two evils,
which could well be not so evil after all.
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Appendix

Dependent variable is the log difference of seasonally
adjusted GDP volume index (OECD code: VIXOBSA).
For uniformity, we used the ‘constant only’ variant

throughout; the lag length was chosen via the modified
Akaike criterion, as per Ng and Perron (2001); the second
column reports the actual number of observation used, as
data for some of the countries start later than 1982.
P-values as per MacKinnon (1996).
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