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Abstract

Motivation: Predicting the structure of protein loops is very challenging, mainly because they are

not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the pro-

tein, standard homology modeling techniques are not very effective in modeling their structure.

However, loops are often involved in protein function, hence inferring their structure is important

for predicting protein structure as well as function.

Results: We describe a method, LoopIng, based on the Random Forest automated learning

technique, which, given a target loop, selects a structural template for it from a database of loop

candidates. Compared to the most recently available methods, LoopIng is able to achieve similar

accuracy for short loops (4–10 residues) and significant enhancements for long loops (11–20 resi-

dues). The quality of the predictions is robust to errors that unavoidably affect the stem regions

when these are modeled. The method returns a confidence score for the predicted template loops

and has the advantage of being very fast (on average: 1 min/loop).

Availability and implementation: www.biocomputing.it/looping

Contact: anna.tramontano@uniroma1.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The functional characterization of proteins is an important and, at

the same time, challenging problem in biology. The annotation task

can be facilitated by the knowledge of the three-dimensional (3D)

structure of the protein of interest and of its complexes (Holtby

et al., 2013). However, determining a protein 3D structure experi-

mentally is an expensive and time-consuming task. As a result, the

number of experimentally solved protein structures is very small

compared to the number of available protein sequences. However,

this situation is changing and homology modeling is currently mak-

ing structural information available for a large number of proteins

(Schwede, 2013). Structurally speaking, proteins consist of elements

of secondary structure (alpha helices and beta strands) connected by

loops. These often play important functional roles and frequently

interact with other biomolecules. Although they might adopt differ-

ent conformations and/or be flexible, especially when located on the

surface (Eyal et al., 2005), it is still the case that they often adopt a

specific conformation and are well defined in X-ray crystallographic

structures. In terms of sequence composition, loops are the most

variable parts of proteins and tend to be more frequently subject to

insertions, deletions and substitutions than secondary structure re-

gions. Consequently, the accuracy of loop structure prediction by

template-based methods is generally lower than that of other regions

(Venclovas et al., 2003). On the other hand, the most variable re-

gions within a family of evolutionary related proteins are often those

determining the protein specificity (Fetrow et al., 1998; Jones and

Thornton, 1997; Kick et al., 1997; Russell et al., 1998).

Similarly to the prediction of the whole protein structure, loop

modeling methods can be categorized into two main groups.

Ab-initio loop structure prediction is generally based on the ex-

ploration of different loop conformations in a given environment,

guided by minimization of a selected energy function (Bruccoleri
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and Karplus, 1990; Felts et al., 2008; Finkelstein and Reva, 1992;

Fiser et al., 2000; Higo et al., 1992; Jacobson et al., 2004; Mattos

et al., 1994; Rapp and Friesner, 1999; Spassov et al., 2008; Xiang

et al., 2002). Some of the most recent methods in this category in-

clude LEAP (Liang et al., 2014) and DiSGro (Tang et al., 2014).

LEAP starts by generating the backbone conformations of the target

loop using the cyclic coordinate descent ‘CCD’ algorithm

(Canutescu and Dunbrack, 2003), and then selects and optimizes

them using the OSCAR energy function. The side chains for the se-

lected backbone structures are built using the OSCAR side-chains

prediction tool, then optimized and selected according to a com-

bined energy of the OSCAR potential for flexible side-chains rota-

mers and CHARMM bond energies. On the other hand, DiSGro

samples loop conformations using a distance-guided sequential

chain growth Monte Carlo sampling strategy and ranks the gener-

ated conformations with an energy function specifically designed for

loops.

Template-based techniques provide a 3D model for a target loop

based on sequence and stem geometry similarity with respect to can-

didate template loops (Browne et al., 1969; Deane and Blundell,

2000; Deane and Blundell, 2001; Marti-Renom et al., 2000). The

stems/anchors are defined as the main-chain atoms of the residues

that precede and follow the loop. Usually many different alternative

conformations that fit the stem residues are selected and sorted ac-

cording to geometric criteria or to the sequence similarity between

the template and target loop sequences. According to Choi and

Deane (2010), template-based modeling, such as FREAD, can per-

form better than ab-initio methods, such as MODLOOP (Fiser

et al., 2000), PLOP (Jacobson et al., 2004) and RAPPER (de Bakker

et al., 2003), in two-thirds of the cases involving short loops and in

half of the cases for longer loops (tested on the FREAD benchmark

dataset, see Methods). FREAD is based on the assumption that se-

quence similarity (measured by Environment Specific Substitution

Scores) along with the stem distance similarity may be used to pre-

dict the backbone structure of a target loop with reasonable accur-

acy. An updated version of the FREAD method, using a stricter

sequence similarity cut-off, has been recently developed (Choi and

Deane, 2010). This led to an improvement in performance with re-

spect to the original method, but at the expense of a lower coverage

(e.g. the coverage for loops of length 8 is roughly 60%). Another

interesting template-based modeling approach is called LoopWeaver

(Holtby et al., 2013). This uses multidimensional scaling to place

the template loop (selected from a database of protein structures on

the basis of the stem distance similarity) followed by ranking on the

basis of the DFIRE energy function (Zhou and Zhou, 2002).

In a recent work (Messih et al., 2014), we used a Random Forest

model to select templates for the third hypervarable loop of im-

munoglobulins, a rather elusive prolem so far. Motivated by the

good results obtained in that case, we extended the approach to the

general loop prediction problem by developing a method that takes

advantage of both sequence and geometry related features (e.g. loop

sequence, sequence similarity, stem distance, stem secondary struc-

ture and stem geometry). These features are used as input to a

Random Forest (RF) machine learning regression model trained to

select the loop template with the lowest predicted distance from the

target loop among a list of putative ones.

We tested the performance of the LoopIng method on a bench-

mark containing the target proteins of the CASP10 experiment

(Moult et al., 2014). This dataset is considered rather challenging

due to the fact that CASP10 proteins are enriched with irregular

structures, multi-domain and multi-subunit proteins, representing

less standard versions of known folds (Kryshtafovych et al., 2014;

Moult et al., 2014). To compare our results with those of the LEAP

method, we also tested the method on a benchmark used for the as-

sessment of both template-based and ab-initio loop structure predic-

tion methods in (Choi and Deane, 2010).

We show here that LoopIng performs well, better than DisGro

and LoopWeaver and, for loops longer than nine residues, than

LEAP as well.

Importantly, the described method requires substantially less

computing time with respect to other loop prediction methods (on

average 1 min/loop).

The LoopIng tool that, given the PDB file of a protein structure

or model and the amino acid sequence of the loop to be modeled,

provides an ordered list of putative templates in output is publicly

available at: www.biocomputing.it/looping.

2 Methods

2.1 Datasets
The training dataset consists of proteins the structures of which

have been solved by X-ray crystallography with a resolution�3 Å

and R-factor�0.2. Proteins were filtered using the PISCES web ser-

ver (Wang and Dunbrack, 2003) to remove proteins with chain se-

quence identity�90% to each other. The resulting number of non-

redundant proteins is 15 270 (derived from the PDB database on

July 1, 2014). Loops were identified as the regions between two sec-

ondary structure elements defined according to DSSP (Kabsch and

Sander, 1983). Very short (shorter than four residues) and very long

(longer than 23 residues) loops were discarded. Loops with sequence

identity�60% to any other loop were excluded using the cd-hit

suite (Huang et al., 2010) as suggested in Fernandez-Fuentes and

Fiser (2006), even though other methods such as FREAD and

LoopWeaver use a less stringent cut-off.

In addition, we also excluded any protein with a chain sequence

identity�90% and any loop with sequence identity�60% to any

of the members of our test datasets (described below). The total

number of loops satisfying the constraints was 139 849 and these

were used as training dataset. The final number of non-redundant

training loops is shown in Figure 1. These loops also constitute the

template database.

For testing purposes, we selected two publicly available datasets,

namely CASP10 (Moult et al., 2014) and FREAD (Choi and Deane,

2010). Both have been used for the assessment of template-based

and template-free modeling methods. The CASP10 dataset contains

84 target structures, filtered based on resolution�3 Å, protein chain

sequence identity�90% and loop sequence identity�60%. The

final number of non-redundant protein loops was 407 (from 61 pro-

teins). The FREAD benchmark, taken from (Choi and Deane, 2010)

contains 30 targets for each loop length (from 4 to 20 residues). For

this test set, we compared our approach performance with the result

reported in (Choi and Deane, 2010).

Fig. 1. Loop number distribution. The bars represent the number of available

training/template loops for each length range

2 M.A.Messih et al.
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2.2 Stem geometry
It has been shown (Lessel and Schomburg, 1999) that the stem struc-

ture has the largest effect on the accuracy of loop prediction, there-

fore we also computed, for each loop, the geometrical features of its

stems. In particular, we calculated the stem distance D (the Ca dis-

tance between the residue that precedes and the one that follows the

loop), the stem type (the secondary structure of the stems), and the

stem geometry. The latter can be described by three angles (Oliva

et al., 1997) (Fig. 2): the Hoist angle (d), i.e. the angle between the

first vector representing the secondary structure (M1) and the dis-

tance vector (D); the Packing angle (h), i.e. the angle between the

two vectors (M1 and M2) representing the secondary structures

embracing the loop and, finally, the Meridian angle (q) that is the

angle between the vector M2 and the plane P perpendicular to the

plane defined by vectors M1 and D.

2.3 Loop clustering
For each loop length, we first grouped the loops into three clusters

according to their stem distance (the stem distance is defined as the

Ca-distance between the residues that precede and follow the loop).

Clustering was performed using the k-means clustering algorithm

implemented in R (k-means package).

2.4 Candidate loops
Given a loop L, we define its ‘candidate loops’ as all the loops Li in

the same cluster of the target loop that satisfy at least one of the fol-

lowing criteria:

i. The BLOSUM62 score of the alignment of L and Li is positive

ii. (jd – di j �p/4 and jh – hij �p/4 and jq – qij �p/4 where (d, h,

and q) and (dI, hi, and qI) are the stem angles of the L and Li

loops, respectively

The value p/4 was chosen since it has been shown (Marti-Renom

et al., 1998) that this is the expected maximum difference between

two similar loops.

2.5 Random forest model
We followed a procedure similar to the one that we successfully

applied to the prediction of the structure of the antibody H3 loops

(Messih et al., 2014). We used the R (v.4.6) implementation of the

RF (randomForest package) and the RF regression tool to predict

the distance (RMSD) between pairs of protein loops.

The input features of the RF models are, for each pair of loops,

the BLOSUM similarity scores (Henikoff and Henikoff, 1992) for

each aligned residue, the sum of the BLOSUM scores over the whole

sequence, the stem distance, the stem secondary structure, the stem

geometry and the stem geometry difference between the two loops.

The task of the model is to predict the RMSD between each loop

and its candidate loops. Figure 3 shows the training scheme of the

LoopIng procedure. In practice, for each loop of a cluster, we meas-

ure its pairwise RMSD with each of its candidate loops. Once all the

loops of the cluster have been processed, a Random Forest model is

built for each cluster.

For testing, given a query loop, we first assign it to the appropri-

ate cluster based on its length and stem distance. We next select the

corresponding candidate loops and use the appropriate LoopIng

model to predict the RMSD distance between the query loop and

each of its candidate loops. The candidate loop with the minimum

predicted RMSD to the query loop is selected as the best template

loop.

Supplementary Figure S1 shows the input features sorted accord-

ing to their importance in terms of average Mean Decrease Gini

values.

2.6 Model building
The modeled structure of the loop is obtained via MODELLER with

default parameters (Sali and Blundell, 1993) using the loop with the

closest predicted RMSD to the input loop as template. The accuracy

of a loop prediction is measured by the backbone RMSD of the pre-

dicted and native loops after superimposition of the stems.

3 Results

3.1 Model performance on the CASP10 dataset
Table 1 shows the average performance of the LoopIng method on

the CASP10 dataset and the comparison with DisGro and

LoopWeaver approaches [using default parameters settings as speci-

fied in (Holtby et al., 2013; Tang et al., 2014)], respectively.

Overall, LoopIng was able to achieve an average backbone RMSD

of 1.29 6 1.07 Å with statistically significant improvements over

DisGro for 8 out of 10 loop length groups. In about half of the cases,

LoopIng was able to find a template loop closer than 1 Å with re-

spect to the native loop, achieving a better or significantly better

Fig. 2. Illustration of the geometric parameters defined in Marti-Renom et al.,

1998 Fig. 3. Training procedure workflow

LoopIng: template-based loop prediction 3
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(DRMSD�1 Å) accuracy than DiSGRO in 73 and 44% of the cases,

respectively.

Compared to LoopWeaver, LoopIng was able to achieve a better

or significantly better (DRMSD�1 Å) accuracy in 71 and 31% of

the cases, respectively. It is worth noticing that the difference in per-

formance of the two methods increases as the loop length increases.

By and large, the quality of comparative modeling depends on

two factors: the availability of reliable template structures and the

extent of structural similarity between target and template, which in

turn is determined by the extent of the similarity between their se-

quences (Chothia and Lesk, 1986). In line with this reasoning, we

wanted to analyse how much the sequence similarity of the target

with the available template loops influences the LoopIng results.

Figure 4 shows the average sequence identity between the loops

selected by LoopIng and the target loops and the resulting average

RMSD values for the CASP10 benchmark for each loop length

group. It can be noticed that the method performance is related to

the average local sequence identity between the target loop and the

selected template. For example, the average RMSD for loops of

length 12 (1.8 6 1.65 Å) is lower than that obtained for loops of

length 11 (2.38 6 1.4 Å) (Table 1) and this is likely due to the fact

that the average target-template sequence identity for loops of length

12 (28%) is higher than that for loops of length 11 (20%) (Fig. 4).

Sequence similarity is not the only factor affecting the LoopIng

accuracy. Indeed the average backbone RMSD between the LoopIng

models and the native conformations also varies with the number of

available template loops in the different training set. This impacts

more on the performance for long loops (more than 10 residues)

since, as it can be appreciated from Figure 1, a much smaller number

of training loops are available in this range. This, on the other hand,

also implies that the performance of the LoopIng method is likely to

improve as the number of available structures increases.

3.2 Model performance on the FREAD benchmark
The benchmark of the FREAD method contains 30 targets for each

loop length, (from 4 to 20 residues) and a recent assessment using

this benchmark (Choi and Deane, 2010) has shown that template-

based methods such as FREAD can achieve better performance com-

pared to the ab-initio loop modeling methods such as MODLOOP,

RAPPER and PLOP on this benchmark. A more recent work (Liang

et al., 2014) has shown that the ab-initio method LEAP is able to

achieve significant improvements over all the other tested methods

on the FREAD benchmark.

We therefore tested the performance of LoopIng on the same

benchmark and show here the comparison of its results with those

of FREAD and LEAP (Table 2). The full comparison between

LoopIng and the other methods assessed on the FREAD benchmark

is shown in Supplementary Table S2.

The LoopIng results show statistically significant improvements

in average accuracy over the FREAD method for all loop lengths

(Table 3). For loops of length between 8 and 20 residues, the aver-

age improvement is more than 1 Å. It should be mentioned that the

reported FREAD data are taken from a relatively old paper (Choi

and Deane, 2010) and this can of course affect its performance.

Furthermore, Choi and Deane (2010) showed that the perform-

ance of FREAD can be enhanced by setting a much stricter similarity

threshold. However, this choice results in a much lower coverage es-

pecially for loops longer than eight residues (coverage<60%).

Compared to this modified version of FREAD, LoopIng still shows

an improvement for short and medium length loops while FREAD

reaches higher accuracy for longer loops, although the coverage is

lower than 50% in these cases (Supplementary Table S3).

Table 1. Performance comparison between the LoopIng, DisGro (DG) and LoopWeaver (LW) methods on the CASP10 dataset

Loop length

(# of cases)

LoopIng (a) (Å) DG (b) (Å) LW (c) (Å) Prediction� 1 Å (d) (%) LoopIng<DG (e) (%) LoopIng<LW (f) (%)

Mean SD Mean SD Mean SD LoopIng DG LW LoopIng

<DG (I)

(DG – LoopIng)

� 1 Å (II)

LoopIng

<LW (I)

(LW – LoopIng)

� 1 Å (II)

4 (79) 0.74 0.63 1.43* 0.68 0.93 0.64 70 27 47 75 38 52 16

5 (81) 0.85 0.70 1.77* 0.79 1.16* 0.76 62 15 42 76 51 68 23

6(57) 1.06 0.75 2.06* 0.86 1.8* 0.87 58 12 21 83 52 79 38

7(51) 1.6 0.88 2.05* 0.83 2.5* 0.70 29 9 7 61 32 81 39

8(35) 1.88 0.98 2.47* 0.88 2.6* 0.74 24 4 4 72 40 76 40

9(30) 1.7 1.2 2.63* 1.00 3.2* 0.62 45 5 0 60 50 90 45

10(19) 2.4 1.23 3.45* 1.62 3.4* 0.85 22 0 0 76 45 67 56

11(19) 2.38 1.4 3.2 1.9 3.0 1.02 33 0 11 76 56 78 22

12(23) 1.8 1.65 3.55* 1.6 2.69 1.4 46 0 15 77 69 77 46

13(13) 3.1 1.39 3.9 1.8 3.2 1.75 0 0 0 60 0 53 33

Overall (407) 1.29 1.07 2.09 1.44 1.98 1.71 51 14 25 73 44 71 31

Asterisks indicate a statistically significant difference (95% confidence level) with respect to the LoopIng method based on an unpaired t-test. (a, b, c) Mean

RMSD and Standard Deviation for LoopIng, DG, and LW respectively. (d) Percentage of cases where LoopIng, DG and LW were able to give a prediction closer

than 1 Å with respect to the native loop. (e, f) percentage of cases where LoopIng was more accurate (LoopIng<DG) and significantly better (DRMSD� 1 Å)

compared to DG and LW respectively.

Fig. 4. Dependence of the model performance expressed in terms of the aver-

age RMSD values (x-axis) from the average target-template sequence identity

(y-axis) for each loop length group (values inside the bubbles)

4 M.A.Messih et al.
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The accuracy of LEAP and LoopIng on the FREAD benchmark

is very similar. Notably, LEAP is more accurate for short loops

(from 4 to 9 residues) while LoopIng seems to work better

(DRMSD�1 Å) for longer loops (Table 2). It is worth noticing that

the LoopIng method is rather fast, it takes on average 1 min/loop

(CPU speed: 2.5 GHz and RAM: 2 GB) to be compared with an

average running time of 10 h/loop for the LEAP method.

It would have been interesting to compare LoopIng and LEAP also

on the CASP10 benchmark, but this turned out to be unfeasible since

the LEAP results are only available for a limited subset of the targets

(namely 21), the definition of the loops seems to be different and only

the median accuracy is provided by the authors (Liang et al., 2014).

3.3 Model performance on non-native protein

structures
Both LoopIng and other template-based methods (i.e. FREAD,

LoopWeaver) use the stem distance as a filtering step to select the

top template loop(s) from a database of known structures.

However, in a more realistic setting, the native structure of the re-

maining part of the protein is usually unknown, and the loop is built

on the basis of a modeled structure. In these cases, the stem structure

is very likely to be affected by errors. We tested to which extent this

affects the accuracy of LoopIng.

To do so, we downloaded the best model submitted to CASP10

[according to the GDT-TS measure (Huang et al., 2014)] for each tar-

get protein. If there was more than one, we selected the model with the

lowest Ca RMSD. Only modeled structures with GDT-TS score�50

are considered for this test set to ensure that the models were based on

a detectable and appropriate template (Kinch et al., 2011). This re-

sulted in a dataset of 130 non-redundant loops (Table 3).

Table 3 illustrates the difference in performance, in terms of

backbone RMSD between the model and native loop, when the

native structure or the model is used. The performance is very simi-

lar as the mean RMSD values are 0.97 6 0.80 and 1.1 6 0.75 Å, re-

spectively. In 55% of the cases the two predictions (using the native

structure and the modeled one) selected almost identical loop tem-

plate (RMSD�0.1 Å) with respect to the native loop conformation.

The difference in performance between using the native

(LoopIng_Native) and modeled (LoopIng_Modeled) structure for

the rest of the protein is shown in Figure 5 as a function of the

stem distance error. The LoopIng model shows similar performance

(� 1 Å) when using the native and the modeled structure when the

stem distance error is lower than 2.0 Å.

4 Conclusions

We describe here a new template-based method for predicting the struc-

ture of protein loops, a complex, yet critical, problem that is considered

one of the bottlenecks for accurately predicting protein structures.

The method was able to achieve significant enhancements over

other available methods both template-based (i.e. LoopWeaver and

FREAD) and ab-initio (i.e. DiSGRO) with an average improvement

of the backbone RMSD close to 1 Å. It was also able to achieve com-

parable results to those of the LEAP method with a running time

orders of magnitude faster.

The quality of the predictions is not dependent upon the fine de-

tails of the stem geometry, indicating that the method is robust to

errors that unavoidably affect these regions when they are modeled

rather than taken from the native structure.

Our analysis also suggests that combined methods (ab-initio and

template-based) might be worth investigating. Short loops are

Table 3. LoopIng performance using native and modeled protein

structure

Loop length

(# of cases)

Looping_

Native (a) Å

Looping_

Model (b) Å

DRMSD

� 0.1 Å (c)

DRMSD

� 0.5 Å (d)

Mean SD Mean SD (%) (%)

4 (47) 0.58 0.44 0.59 0.67 54 78

5 (33) 0.40 0.39 0.48 0.42 79 92

6(21) 1.23 0.71 1.61 0.57 48 88

7(20) 1.44 1.00 1.77 0.65 45 65

8(9) 1.55 0.99 2.08 0.93 33 33

Overall (130) 0.97 0.80 1.1 0.75 55 73

The performance, in terms of backbone RMSD with respect to the native

loop conformation, using (a) the native structure for the remaining portion of

the protein (LoopIng_Native) and (b) the best CASP10 predicted model

(LoopIng_Model). (c) Percentage of cases where the RMSD difference between

LoopIng_Native and LoopIng_Model is� 0.1 Å. (d) Percentage of cases where

the RMSD difference between LoopIng_Native and LoopIng_Model� is 0.5 Å.

Fig. 5. Model performance using native and modeled protein structures from

CASP10 dataset. The stem distance error (x-axis) is calculated as the differ-

ence in stem distance between the modeled and native stem structures. The

RMSD error (y-axis) is calculated as the difference in backbone RMSD be-

tween LoopIng_Native and LoopIng_Model

Table 2. Performance of the LoopIng method on the FREAD

benchmark

Loop length Original FREAD LoopIng LEAP

Mean SD Mean SD Mean SD

4 1.29* 1.14 0.61 0.55 0.39* 0.23

5 2.19* 2.02 0.68 0.52 0.40* 0.27

6 1.79* 1.37 1.01 0.63 0.49* 0.33

7 2.53* 2.34 1.26 0.9 0.69* 0.38

8 2.88* 2.37 1.47 1.07 0.68* 0.56

9 3.08* 2.60 1.71 1.23 0.93* 0.69

10 4.25* 3.58 1.90 1.34 1.44 0.84

11 4.55* 3.63 1.93 1.48 2.24 1.08

12 3.99* 3.88 2.20 1.70 3.14 2.52

13 5.54* 4.25 2.39 1.85 2.91 2.62

14 6.07* 4.36 2.53 3.03 4.44* 3.70

15 6.41* 5.05 3.05 3.00 4.58 4.16

16 7.50* 6.15 2.82 3.17 4.90* 4.43

17 7.84* 5.27 3.03 3.15 5.66* 5.50

18 5.48 5.64 3.86 3.47 6.53* 6.30

19 7.67* 5.27 3.89 3.51 5.87 4.64

20 7.64* 6.43 3.91 3.49 8.21* 7.82

For each length range the number of tested loops is 30. The columns report

the average and standard deviation RMSD values measured between the model

and native loop backbone conformations. Asterisks indicate statistically signifi-

cant differences (95% confidence level) based on an unpaired t-test with respect

to the LoopIng model. Underlined values represent the best results between

LoopIng and LEAP. The values reported in the FREAD and LEAP columns are

taken from Choi and Deane (2010) and Liang et al. (2014), respectively.
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Table 2. Performance of the LoopIng method on the FREAD benchmark. For each length range the number of tested loops is 30. The columns report the average and standard deviation RMSD values measured between the model and native loop backbone conformations. Asterisks indicate statistically significant differences (95&percnt; confidence level) based on an unpaired t-test with respect to the LoopIng model. Underlined values represent the best results between LoopIng and LEAP. The values reported in the FREAD and LEAP columns are taken from Choi &amp; Deane (2010) and Liang etal (2014), respectively.
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 minutes
2GB
 hours
,
in order 
Table 3. LoopIng performance using native and modeled protein structure. The performance, in terms of backbone RMSD with respect to the native loop conformation, using (a) the native structure for the remaining portion of the protein (LoopIng_Native) and (b) the best CASP10 predicted model (LoopIng_Model). (c) Percentage of cases where the RMSD difference between LoopIng_Native and LoopIng_Model is &leq; 0.1&Aring;. (d) Percentage of cases where the RMSD difference between LoopIng_Native and LoopIng_Model &leq; is 0.5&Aring;.
(
,
))
,
 &plusmn; 
&Aring;
 &plusmn; 
75&Aring;
1&Aring;
1&Aring;
0&Aring;. 
CONCLUSIONS
1&Aring;.
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efficiently modeled using ab-initio methods (i.e. LEAP) due to the

small number of degrees of freedom, which permits an adequate ex-

ploration of the conformational space, while long loops are more ef-

fectively predicted using template-based methods (i.e. LoopIng).

We believe that the method can be a useful addition to the pres-

ently available protein structure prediction tools and could be effect-

ively and easily integrated in comparative modeling pipelines.
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