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Abstract

This paper develops a new methodology for estimating and testing

the form of anisotropy of homogeneous spatial processes. We derive a

generalised version of the isotropy test proposed by Arbia, Bee and Espa

(2013) and analyse its properties in various settings. In light of this, we

propose a new approach that allows one to estimate and test under mild

conditions any form of anisotropy in homogeneous spatial processes. The

power of the test is studied by means of Monte Carlo simulations performed

both on regularly and irregularly spaced data. Finally, the method is used

to analyse the soybeans yields in the US.

1 Introduction

A stochastic spatial process is said to be isotropic whenever it is stationary
with respect to rotations of its index set about the origin (Ripley 1981, p. 10).

The assumption of isotropy may lead to inconsistent estimates if it is not
borne out by data, similarly to what happens when incorrectly assuming other
forms of stationarity. This is the main reason why it should be formally tested
before fitting any kind of isotropic model.

Over the last decades, the problem of testing isotropy of stochastic spatial
processes has received some attention, and isotropy tests have been proposed
for stochastic surfaces (Cabaña 1987), point processes (e.g. Guan, Sherman and
Calvin 2004), lattice data (Molina and Feito 2002), and (regularly or irregularly-
spaced) areal data (Arbia, Bee and Espa 2013). In this paper we focus on the
problem of testing isotropy in models for areal data.

In some cases, it is possible to apply isotropy tests like those of Guan, Sherman
and Calvin (2004) or Molina and Feito (2002) to irregularly-spaced areal data.
However, two features of areal data models may make such adaptations not
suitable, especially in econometric analysis.
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2 1 INTRODUCTION

First, the geometric distance between centroids of cells may not be the most
suitable criterion for assessing isotropy of a process which has been modelled
through a weight matrix. Indeed, most of the times the physical distance has
a minor or no role in defining the weight matrix of an econometric spatial
model. It follows that, in such cases, an isotropy test based on variograms (like
Guan, Sherman and Calvin 2004) or other functions of physical distance may be
inconsistent with the modelling approach being adopted.

Second, samples of irregular areal data are often rather small, especially in
econometric analysis. This implies that isotropy tests requiring large samples to
be applied cannot be used. This is the case, for instance, of the isotropy test
proposed by Molina and Feito (2002), which achieves the independence from
distance over a rectangular grid by randomly choosing observations from the
original sample, and considering just their mutual directions. Although such
method can be adapted to irregularly-spaced grids as well, it can provide precise
and reliable outcomes only in large samples.

The isotropy test proposed by Arbia, Bee and Espa (hereinafter ABE) has
been developed for econometric models, and overcomes both problems just
described. The ABE test requires the neighbours of each cell to be split into
two groups according to an arbitrary direction, and tests whether the spatial
dependence is statistically di�erent between them. The test works well in many
cases, but it may fail to detect some forms of anisotropies, as the following
example shows.

Example 1. Consider the spatial process {yst} defined on a rectangular lattice
Gn:

yst = –(ys≠1,t + ys,t+1

) + —(ys+1,t + ys,t≠1

) + Ást , (1)

where – ”= — are parameters, and {Ást} is an iid spatial process. The process (1)
is clearly anisotropic (since – ”= —).

If we observe the process {yst}, and test for isotropy by means of the ABE
test, we may split neighbours along the NW–SE direction, and fit the model:

yst = fl
1

(ys≠1,t + ys,t+1

) + fl
2

(ys+1,t + ys,t≠1

) + est . (2)

The isotropy assumption is not rejected if fl
1

and fl
2

are not statistically di�erent
from each other. For this specification of the test, model (2) coincides with the
data generating process (1), and it is possible to detect anisotropy provided that
the sample size is large enough.

Now assume that we split neighbours along to a di�erent direction. For
instance, we may choose the SW–NE direction, and fit the following model:

yst = fl
1

(ys≠1,t + ys,t≠1

) + fl
2

(ys+1,t + ys,t+1

) + ust . (3)

Both (2) and (3) are consistent with the ABE method. However, if model (3)
is fitted, the anisotropy cannot be detected, whatever the sample size is. This
happens because each coe�cient fl synthesises the spatial dependence originating
from a neighbour with coe�cient – and one with coe�cient —.

Example 1 reveals two problems. First, the ABE test is not rotation-invariant,
that is, its outcome depends on the direction chosen for splitting neighbours,
which may strongly a�ect the power of the test, as it will be formally shown below.
Second, there may be compensations between coe�cients of the neighbours
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belonging to the same half-plane, and this may result in a substantial reduction
of the power of the test.

The contribution of this paper is twofold. First, we extend the ABE test to
a generic number q of groups of neighbours (this will be called the q-directional
ABE test) and analyse the factors a�ecting its power and the kind of anisotropies
it is able to detect.

Second, in light of this analysis, we propose a new approach that allows
one to estimate and test the form of anisotropy of any given spatial process
without incurring the problems outlined above. This method leads to a semi-
parametric strategy for estimating and testing spatial anisotropy, based on a
Fourier expansion of the function that describes the directional dependence.
Unlike the q-directional ABE test, this technique does not su�er from multicol-
linearity problems when a fine estimation of the directional dependence function
is required.

This approach is flexible and can be easily extended to models for areal data
like SAR, SEM, SARMA, CAR, etc. Moreover, it allows one to detect many
forms of anisotropy by estimating a small number of parameters.

The paper is organized as follows. Section 2 formally analyses the ABE test,
develops a generalization, focuses on the kind of anisotropies that it can detect,
and studies its power. Section 3 introduces the new methodology and illustrates
how the form of anisotropy can be estimated and tested on both regularly and
irregularly spaced data. Section 4 illustrates the outcomes of the Monte Carlo
simulation experiments performed in order to assess the finite-sample properties
of the estimators and the power of the test. In Section 5 the method is used to
analyse the soybeans yields in 1430 US counties. Section 6 concludes.

2 The ABE isotropy test

2.1 The original ABE test

Consider the following spatial autoregressive model:
;

y = flWy + X— + Á
Á ≥ N n(0, ‡2I) , (4)

defined on a (regular or irregular) grid Gn of n cells, where W œ Rn◊n is a spatial
weight matrix, X œ Rn◊k is a matrix of k exogenous explanatory variables (which
may include a unitary column), — œ Rk, ‡ œ R+, and fl œ R is such that I ≠ flW
is positive definite (Ord 1975).

The ABE test requires that neighbours of each cell of Gn are divided up
into two groups according to a direction described by a straight line with slope
tan ◊ passing through the centroid of the reference cell. Formally, this result is
achieved by defining two directional matrices W

1

and W
2

as follows:

(Wj)kh © 1{(ch≠ck)œHj} wkh , j = 1, 2 , (5)

where wkh is the (k, h) element of W , ck, ch œ R2 are the Cartesian coordinates
of the centroids of cells k, h œ Gn, 1{·} is the indicator function, and H

1

, H
2

are
the half-planes generated by the straight line passing through the origin (0, 0)
and whose angle with abscissa is ◊.
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Consider the model
;

y = (fl
1

W
1

+ fl
2

W
2

)y + X— + Á;
Á ≥ N n(0, ‡2I). (6)

The ABE isotropy test is based on the comparison of (6) to (4) in terms of
goodness of fit, hence the null hypothesis to be tested is fl

1

= fl
2

, since, if the
data generating process {yst} is isotropic, the spatial dependence (captured by
autoregressive parameters fl

1

and fl
2

) should be the same along any direction.
Note that, from definition (5), the following properties hold:

W
1

+ W
2

= W ,

W
1

§ W
2

= 0 œ Rn◊n ,

where § is the Hadamard product (that is, the elementwise matrix product).
The first property guarantees that (6) coincides with (4) when the isotropy
assumption holds (that is, the models are nested), whereas the latter entails that
each neighbour of the cells is assigned (i.e. it has non-zero weight) either to W

1

or to W
2

.
In light of the notation we have introduced in this section, we may formalise

Example (1) as follows.

Example 2. Models (2) and (3) can be restated in matrix form as (6) without
the regressor matrix X. Define T h

1

T k
2

yst © ys+h,t+k, and assume that cells of
Gn are identified according to the matrix indexation.

Model (2) results from 0 < ◊ < fi/2. In particular, W
1

should include the
T ≠1

1

and T ≠1

2

spatial lags, while W
2

should pick T
1

and T
2

out. As explained,
in this case the ABE test will not reject the isotropy hypothesis, since both W

1

and W
2

include half spatial lags with coe�cient – and half with coe�cient —.
On the other hand, model (3) is implied by the condition ≠fi/2 < ◊ < 0. In

this case, if we include T ≠1

1

and T
2

in W
1

, and T ≠1

2

and T
1

in W
2

, the ABE test
will be able to detect the anisotropy of {yst}, since W

1

contains only the spatial
lags with coe�cient –, while W

2

includes the spatial lags with coe�cient —.

The problems we outlined in Example 1 and 2 are analysed in the framework
of a generalized version of the ABE test, where the neighbours are split into
q Ø 2 groups.

2.2 The q-directional ABE test

Consider a spatial process {yk} defined on a (regular or irregular) two-
dimensional grid Gn with n cells having centroids with Cartesian coordinates
{ck} (where ck = [ck1

ck2

]T). The process is defined as follows:

yk =
nÿ

h=1

g(k, h, wkh) yh + Ák ,

where g is a real function, wkh is the (k, h) element of the weight matrix
W œ Rn◊n, and {Ák} is an iid spatial process.

We assume that {yk} is homogeneous, thus the function g should depend just
on ch ≠ ck instead of k and h. Moreover, without loss of generality, we assume
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that W incorporates the e�ect of the Euclidean distance between centroids
(Îch ≠ ckÎ

2

). Hence, the resulting model is:

yk =
nÿ

h=1

f(◊kh) wkh yh + Ák , (7)

where ◊kh is the angle of the vector ch≠ck expressed in polar coordinates. Finally,
we assume that f : R æ R is periodic (with period 2fi) and it is expandable
as a Fourier series. We do not, however, make any assumption about the
fundamental period of f , that is, the minimum period of f : we only require that
f(Ê + 2fi) = f(Ê) for any Ê œ R. Hence, there may exist a positive constant
T < 2fi such that f(Ê + T ) = f(Ê) for any Ê œ R. Model (7) is isotropic if
f(◊kh) is independent of ◊kh, that is, if f(◊kh) is constant.

We may generalise the ABE test by dividing the neighbours according to
q Ø 2 directions. Consider the following Fourier expansion of f :

f(Ê) =
Œÿ

m=0

am cos(mÊ + Ïm) , (8)

and assume that the round angle is divided into q Ø 2 equal parts starting from
◊. That is, R is partitioned into intervals having the form Ir © [◊ + 2fi(r ≠
1)/q, ◊ + 2fir/q)] for r œ Z. We define:

flkh © q

2fi

⁄

IQ(◊kh)

f(Ê) dÊ , (9)

where Q : R æ Z is the function such that ◊hk œ IQ(◊kh)

, that is, Q(◊kh) gives
the value r such that ◊hk œ Ir.

By analogy with the basic ABE method, the q-directional version requires
the unrestricted model

y =
A

qÿ

r=1

flrWr

B
y + Á (10)

to be tested against the restricted model

y = fl

A
qÿ

r=1

Wr

B
y + Á , (11)

where flr and Wr (r = 1, . . . , q) are the directional parameters and matrices.
In particular, flr © flkh for every (k, h) œ Gn such that r = Q(◊kh), while
(Wr)kh © 1{r=Q(◊kh)}wkh. Thus, in this case, the isotropy hypothesis corresponds
to the restriction fl

1

= fl
2

= · · · = flq.

2.3 Factors a�ecting the power of the ABE test

Rearranging Equations (8) and (9), we obtain:

flkh = q

2fi

Œÿ

m=0

⁄

IQ(◊kh)

am cos(mÊ + Ïm) dÊ , (12)



6 2 THE ABE ISOTROPY TEST

and integrating (12) we have:

flkh = a
0

cos Ï
0

+ q

2fi

Œÿ

m=1

am

m

Ë
sin(mÊ + Ïm)

È---
◊+2fiQ(◊kh)/q

◊+2fi(Q(◊kh)≠1)/q
. (13)

As concerns (13), some remarks are in order.
First, as the angular frequency m of the associated harmonic increases, the

terms of the sum in (13) converge to zero regardless of the value of ◊ and ◊kh.
This implies that the power of the ABE test is low in detecting anisotropies
originating from high-frequency components of f . As (13) shows, the terms
converge to zero because of the factor m≠1, hence, given q, high-frequency
harmonics of f can be detected only if their amplitudes |am| are large enough to
counterbalance the e�ect of m≠1.

Second, the power of the ABE test can be increased for both low and high
frequency components of f by increasing the number of partitions q of the round
angle. This may be appreciated if we note that

sup
◊

;
range

r

3Ë
sin(mÊ + Ïm)

È---
◊+2fir/q

◊+2fi(r≠1)/q

4<
ø [≠1, 1] (14)

as q æ Œ. In fact, when the range in (14) is narrow, the power of the q-
directional ABE test in detecting anisotropy originating from the harmonic with
angular frequency m is low because the variability of the coe�cients flr is small.

Third, the power of the q-directional ABE test is significantly a�ected by the
reference angle ◊ through harmonics of f whose ratio am/m is relatively high,
and angular frequency is close to q/2. In order to prove this fact, some basics in
signal theory are needed (see e.g. Priemer 1991).

A typical problem of signal theory is to reconstruct an analogue signal (i.e. a
continuous function of time) from a finite number of observations. Such a task
can be easily handled when the signal is periodic, since Fourier analysis allows
one to decompose the original signal as a sum of sine and cosine waves (called
“harmonics”) with various amplitudes, phase, and frequencies.

In order to reconstruct the periodic analogue signal, it is necessary to observe
(sample) it several times throughout its period. As the number of observations
per period (the so-called “sampling frequency”) increases, the accuracy of the
reconstructed signal improves. This principle is formalised by the Nyquist-
Shannon theorem (see e.g. Bloomfield 2000), which states that when a periodic
signal is sampled at a certain frequency Ê, it is possible to identify only its
harmonics whose frequency is not higher than Ê/2. The critical frequency Ê/2
is known as Nyquist frequency.

Going back to the ABE test, we may consider the function f as an analogue
signal which has period 2fi and is sampled q times at regular intervals on
[0, 2fi) (hence, the angular sampling frequency is q). The observations resulting
from such a sampling scheme are the autoregressive coe�cients {fl

1

, . . . , flq} of
equation (10). In particular, unlike traditional signal sampling, the flrs do not
represent point values of f , but are its mean values over intervals of width 2fi/q,
as equation (9) clearly shows.

The peculiarity of the sampling scheme implied by the q-directional ABE
test does not prevent us from considering it as an approximation of the usual
signal sampling scheme as q diverges, since limqæŒ flkh = f(◊kh). Accordingly,
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q/2 represents the Nyquist frequency, that is the highest-frequency component
of f that can be identified.

The reason why only harmonics with angular frequency m ¥ q/2 have a
strong impact on the power of the q-directional ABE test through ◊ can be
understood if we note that harmonics with angular frequency m π q/2 are
identified with precision (there are many observations for each period), and thus
a change in ◊ does not substantially improve their estimates (the range in (14)
is not much a�ected). On the other hand, the impact of ◊ on flkh decreases for
harmonics with angular frequency m ∫ q/2 both because of the coe�cient m≠1

of the terms in (13), and because there is a confounding phenomenon (called
aliasing) that prevents form correctly identifying such harmonics (as stated in
the Nyquist-Shannon theorem).

To summarise, the power of the q-directional ABE test can be improved by
increasing q or by optimizing ◊. The first solution has some limitations, since as
q gets larger, the number of directional autoregressive parameters {fl

1

, . . . , flq}
increases, and this results in a loss of degrees of freedom. Moreover, a high
number of directional weight matrices W

1

, . . . , Wq gives rise to multicollinearity
problems among the regressors in (10). Last but not least, processing several
n ◊ n directional matrices may be computationally troublesome.

On the other hand, the optimization of ◊ is worthwhile when q is small and
the harmonics to be detected have angular frequencies close to q/2. Nevertheless,
the optimal reference angle ◊ú cannot be easily estimated because it depends on
f , which is obviously unknown. This problem may be overcome by performing
the q-directional ABE test for several values of ◊ in order to verify whether
anisotropy is detected for some ◊ œ [0, 1/q). Although no theoretical reason bars
this approach, the construction of many sets of directional matrices (W

1

, . . . , Wq)
may be computationally demanding.

The problem of finding the optimal values of q and ◊ is bypassed by the
isotropy test we are going to propose in Section 3, which may be interpreted as
a Œ-directional ABE test where the reference angle ◊ is unnecessary, and the
coe�cients of the Fourier expansion of f are estimated instead of the directional
autoregressive parameters flr.

3 A new isotropy test

The di�culties discussed in the previous section arise from the discretisation
of the interval [0, 2fi) and the consequent need of defining two partitioning
parameters (◊ and q) and integrating the function f . These drawbacks of the
q-directional ABE test are wiped out when q æ Œ.

When q æ Œ, the autoregressive parameters {flr} can no longer be estimated
because they are infinite. However it is possible to estimate the Fourier expansion
of f : although the Fourier coe�cients are infinite too, usually just a few of them
have to be estimated in order to detect anisotropies. For example, in Fourier
analysis the harmonic with angular frequency m is fully identified by only two
coe�cients, while the q-dimensional ABE test requires q Ø 2m, that is, at least
2m coe�cients should be estimated in order to detect the same harmonic.

A further advantage of the test is related to the orthogonality of the harmonics
in a Fourier series. This property allows us to improve the accuracy of the ap-
proximation of f without increasing the multicollinearity of regressors. This issue
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distinguishes this test from the q-dimensional ABE test, where multicollinearity
grows as q gets larger.

The new testing approach requires to restate (8) as

f(Ê) = fl +
Œÿ

m=1

[flcm cos(mÊ) + flsm sin(mÊ)] , (15)

where fl © a
0

cos Ï
0

, flcm © am cos Ïm, flsm © ≠am sin Ïm. It follows that (7)
can be rewritten as:

yk = fl

nÿ

h=1

wkhyh+

+
Œÿ

m=1

A
flcm

nÿ

h=1

cos(m◊kh)wkhyh + flsm

nÿ

h=1

sin(m◊kh)wkhyh

B
+ Ák ,

or, in matrix notation,

y =
A

flW +
Œÿ

m=1

[flcmAm § W + flsmBm § W ]
B

y + Á , (16)

where (Am)kh = cos(m◊kh), (Bm)kh = sin(m◊kh). Given the matrix of coordin-
ates of centroids C œ Rn◊2, the angles ◊kh can be computed as follows:

◊kh = arctan2
!
(Cy)kh, (Cx)kh

"
,

where:
Cx © (C [ 1 0 ]T ÿT

n)T ≠ (C [ 1 0 ]T ÿT
n) ,

Cy © (C [ 0 1 ]T ÿT
n)T ≠ (C [ 0 1 ]T ÿT

n) ,

and arctan2: R2 æ [≠fi, fi] is the inverse function of tan.
Model (16) potentially allows one to model, estimate, and test any form of

anisotropy based on any real function f : R æ R of period 2fi expandable in a
Fourier series. The isotropy condition is:

flc1

= flc2

= · · · = fls1

= fls2

= · · · = 0 , (17)

that is, (16) is isotropic when f has no harmonic components, so that it is
constant. If, in addition to (17), we require that fl = 0, we can test the
hypothesis of no spatial correlation.

As mentioned above, only a finite number of harmonics can be estimated and
tested, and this implies that only some terms of the sum in (16) can be included
into the model to be fitted. Nonetheless, a very small number of harmonics can
provide an accurate approximation of the functions f relevant for applications,
as the high-frequency components of f have a marginal role in defining the
form of anisotropy in econometric analysis. The following example considers a
commonly encountered anisotropy structure.

Example 3. The function

f(Ê) = 0.1 + – e≠2(Ê≠Ÿ)

2
, (18)
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-1.0

-0.5

0.0

0.5

1.0

0 fi/2 fi 3fi/2 2fi

Figure 1: Function (18) for Ÿ = fi/2

and various values of – (from top to bot-

tom): 0.85, 0.4, 0.15, 0, ≠0.05, ≠0.35,

≠0.6, ≠1.05.

0.09

0.12

0.15

0.18

0 fi/2 fi 3fi/2 2fi

Figure 2: Function (18) with Ÿ = fi/2

and – = 0.1 (solid line) and its Four-

ier series truncated at the second term

(dashed line) and at the third term (dot-

ted line).

plotted in Figure 1 for various values of – and Ÿ = fi/2 may be suitable for
describing the North-South asymmetries existing among regions or administrative
units in a country.

As Figure 1 shows, (18) with Ÿ = fi/2 defines a spatial dependence uniform
in all directions except for the North (Ê = fi/2): as Ê gets closer to fi/2, the
spatial dependence becomes stronger (when – > 0), weaker (≠0.1 < – < 0),
or negative (– < ≠0.1). The parameters – and Ÿ respectively determine the
strength and the direction of the anisotropy.

Figure 2 shows the Fourier expansions of f for – = 0.1 truncated at the
second and third term. The function is reasonably well approximated by a
Fourier expansion truncated at the second term. The reason why this happens is
related to the Fourier coe�cients of f displayed in Figure 3. Figure 3 shows that
the first two harmonics explain most of the variability of f , and only a negligible
improvement is achieved by including also the third or fourth harmonic.

Figure 4 reports the Fourier coe�cients of the step function:

f(Ê) = 0.1 + 0.1 · 1{Êœ(fi/4, 3fi/4)} , (19)

whose shape is rather di�erent from (18) with Ÿ = fi/2. It is worth noting that
also in this case the first two/three harmonics explain most of the variability
of (19).

The harmonics of f may be given a precise interpretation in terms of the
shape of the anisotropy of a process, especially when there are few components.
In general, the harmonic with angular frequency m describes a spatial dependence
stronger (or weaker) along m directions equally spaced on the round angle.

Consider, for example, the harmonic ≠ cos 2Ê illustrated in Figure 5a. In this
case the harmonic describes a positive and symmetric spatial dependence along
the direction identified by angles fi/2 (North) and 3fi/2 (South), and a negative
spatial dependence along direction 0 (East) and fi (West). In other words, the
e�ect of the harmonic ≠ cos 2Ê consists in (symmetrically) increasing the positive
spatial dependence along the North-South direction, and decreasing (or making
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Figure 3: Fourier coe�cients fl, flc1, . . . ,

flc10 (upper panel) and fls1, . . . , fls10 (lower

panel) of function (18) for Ÿ = fi/2 and

– = 0.1.
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Figure 4: Fourier coe�cients fl, flc1, . . . ,

flc10 (upper panel) and fls1, . . . , fls10 (lower

panel) of function (19).
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(a) f(Ê) = ≠ cos 2Ê.

0.00

0.05

0.10

0.15

0 fi/2 fi 3fi/2 2fi

(b) f(Ê) = 0.1 + 0.025 sin Ê ≠ 0.05 cos 2Ê.

Figure 5: The f functions associated to a single harmonic (Figure 5a), and to a

superposition of two harmonics with angular frequencies m = 1 and m = 2 (Figure 5b).

negative) the spatial dependence along the West-East direction. Obviously, the
overall form of the anisotropy depends also on the other harmonics of f , the
constant term and their relative amplitudes.

It is possible to describe a relevant class of anisotropies by means of only one
or two harmonics, as hinted in Example 3. Figure 5b displays the function

f(Ê) = 0.1 + 0.025 sin Ê ≠ 0.05 cos 2Ê ,

which consists of two harmonics (with angular frequencies m = 1 and m = 2
respectively) and a constant term. As Figure 5b shows, spatial dependence is
weak along the West-East direction (Ê ¥ 0 and Ê ¥ fi), while it gets stronger
and asymmetric along the North-South direction (Ê ¥ fi/2 and Ê ¥ 3fi/2). This
shape of f may be useful for describing a spatial dependence that is both stronger
(or weaker) and asymmetric along one direction.

The specification of model (16) requires some adaptations when observations
are regularly spaced. In fact, when the data come from regular lattices or other
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regular structures, the set of values taken by ◊kh is regularly spaced too, and
some components of f may be redundant or undersampled (i.e. there is aliasing).
If these components of f are not removed, the model is not identifiable from a
statistical point of view.

Consider, for example, a rectangular grid Gn. We have ◊kh œ {0, fi/2, fi, 3fi/2}
for all ◊kh œ Gn, hence the angular sampling frequency is 4. In this case, according
to the Nyquist-Shannon theorem, only harmonics with angular frequency 1
and 2 should be considered. Moreover, the component sin 2Ê is useless, since
sin 2◊kh = 0 for any (k, h) œ Gn. Thus, the symmetric anisotropies are captured
only by cos 2Ê, while asymmetries originate from sin Ê (along the North-Sourth
direction) and cos Ê (along the East-West direction). Hence, (16) becomes:

y = (flW + flc1

A
1

§ W + fls1

B
1

§ W + flc2

A
2

§ W ) y + Á .

The test illustrated in this section can be applied to hypotheses di�erent
from (17). As mentioned above, the restriction fl = 0 along with (17) defines
the hypothesis of no spatial correlation. It is worth noting that a test based on
these two restrictions may be more powerful in detecting spatial dependence
than a test for restriction fl = 0 alone. This happens whenever f has form (15)
with fl = 0 and some flcm or flsm di�erent from zero.

In some cases, it may be necessary to test for the presence of a specific form of
anisotropy or the presence of asymmetries or specific directions in f . Such kind
of hypotheses can be easily translated in terms of restrictions on the coe�cients
of the Fourier expansion of f and tested like any other parameter restriction.

Testing specific forms of anisotropy may be interesting in itself, or when the
data generating process have to be consistent with certain properties in order to
perform further analyses or to apply some estimation techniques. This is the
case, for example, of unilateral approximations (Arbia et al. 2014), which can
be used for fitting spatial models defined on a rectangular lattice only if the
underlying process is symmetric.

It is worth noting that the possibility of testing specific forms of anisotropy
represents a strong advantage of this approach with respect to other isotropy
tests such as the q-directional ABE test or the test suggested by Molina and
Feito (2002) which is implicitly based on a specification of (16) truncated at the
first term (that is, only the fundamental harmonic with unit angular frequency
and the constant term are considered).

In this section, the model used as a reference is (4), which is referred to
as SAR in the spatial econometric literature (see e.g. LeSage and Pace 2009).
However, our testing approach can be easily adapted to other econometric models
for areal data like SEM, Durbin, MESS (see e.g., LeSage and Pace 2009; Arbia
2014), CAR (see e.g. Wall 2004; Cressie 1993), and models based on multiple
weight matrices like SAC and SARMA (LeSage and Pace 2009).

4 Simulation Study

In order to study the power of the test in finite samples, we perform two
Monte Carlo simulation experiments on regular and irregular grids.

We consider a spatial process on a 20 ◊ 20 rectangular lattice defined as
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Figure 6: Empirical power of the isotropy

test for model (20) as a function of |fl1≠fl2|.
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Figure 7: Empirical power of the isotropy

test on the irregular grid as a function of

–, with n = 400, ‚ = 2, and ‡2
= 1 (solid

line), ‡2
= 1/2 (dashed line), and ‡2

= 1/4

(dotted line).

follows: I
y = (fl

1

W
1

+ fl
2

W
2

)y + X— + u

u ≥ N n(0, ‡2I)
, (20)

where y œ Rn, X œ Rn, — = 1, ‡2 = 1, n = 400. The directional weight matrices
W

1

and W
2

are defined as W
1

© C
1

§W and W
2

© C
2

§W , where C
1

œ {0, 1}n◊n

and C
2

œ {0, 1}n◊n are the contiguity matrices of neighbours along the vertical
and horizontal direction respectively. The matrix W œ Rn◊n results from a row-
standardization of a weight matrix based on the rook neighbourhood rule, and its
non-zero elements are independently drawn from the beta distribution B(2, 0.8).
The regressor X consists of a column of values drawn from the standard normal
distribution.

We consider several values of fl
1

and fl
2

(see Table 1). For each pair (fl
1

, fl
2

)
we simulate 1000 models and test the isotropy hypothesis (fl

1

= fl
2

). All the
models share the same directional weight matrices (W

1

and W
2

) and the same
regressor X.

The unrestricted model is based on f(Ê) = fl + flc2

cos(2Ê), so that the fitted
model is:

y = flWy + flc2

(A
2

§ W )y + X— + Á .

The isotropy hypothesis (flc2

= 0) is tested by means of the likelihood ratio
test at a significance level of 5%. Complete results are shown in Table 1, while
Figure 6 summarises the empirical power as a function of |fl

1

≠ fl
2

|.
As Figure 6 clearly shows, the power of the new test sharply increases as

the absolute di�erence between fl
1

and fl
2

exceeds 0.1, and it basically equals 1
when |fl

1

≠ fl
2

| is larger than 0.50.
The irregular grid Monte Carlo simulations are based on data generating

process (7) with a vector of regressor coe�cients — = ÿ
2

, and a regressor matrix
X = [ÿn, X

1

] œ Rn◊2 where X
1

is a vector of standard normal random variables.
The grid Gn consists of the unit square [0, 1]2 split into 400 irregular convex
polygons obtained by means of a Voronoi tessellation generated by 400 points
drawn from the uniform distribution on [0, 1]2. The weight matrix W results
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-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

≠0.90 – – – – – – – – – 1.000

≠0.80 – – – – – – – – 1.000 1.000

≠0.70 – – – – – – – 0.993 1.000 1.000

≠0.60 – – – – – – 0.766 0.943 0.995 1.000

≠0.50 – – – – – 0.157 0.436 0.725 0.947 0.990

≠0.40 – – – – 0.154 0.064 0.126 0.404 0.726 0.939

≠0.30 – – – 0.773 0.429 0.139 0.054 0.153 0.428 0.754

≠0.20 – – 0.992 0.945 0.752 0.422 0.141 0.042 0.140 0.417

≠0.10 – 1.000 1.000 0.993 0.950 0.751 0.414 0.139 0.051 0.148

0.00 1.000 0.999 1.000 1.000 0.991 0.933 0.751 0.392 0.144 0.035

0.10 – 1.000 1.000 1.000 1.000 0.991 0.913 0.727 0.402 0.142

0.20 – – 1.000 1.000 1.000 1.000 0.997 0.943 0.764 0.412

0.30 – – – 1.000 1.000 1.000 0.999 0.988 0.927 0.750

0.40 – – – – 1.000 1.000 1.000 1.000 0.995 0.943

0.50 – – – – – 1.000 1.000 1.000 1.000 0.995

0.60 – – – – – – 1.000 1.000 1.000 1.000

0.70 – – – – – – – 1.000 1.000 1.000

0.80 – – – – – – – – 1.000 1.000

0.90 – – – – – – – – – 1.000

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

≠0.90 – – – – – – – – –

≠0.80 1.000 – – – – – – – –

≠0.70 1.000 1.000 – – – – – – –

≠0.60 1.000 1.000 1.000 – – – – – –

≠0.50 1.000 1.000 1.000 1.000 – – – – –

≠0.40 0.987 1.000 1.000 1.000 1.000 – – – –

≠0.30 0.943 0.992 1.000 1.000 1.000 1.000 – – –

≠0.20 0.748 0.921 0.989 0.999 1.000 1.000 1.000 – –

≠0.10 0.400 0.725 0.938 0.995 1.000 1.000 1.000 1.000 –

0.00 0.113 0.408 0.732 0.936 0.992 1.000 1.000 1.000 1.000

0.10 0.060 0.148 0.423 0.748 0.941 0.995 1.000 1.000 –

0.20 0.127 0.045 0.143 0.436 0.740 0.958 0.991 – –

0.30 0.396 0.152 0.057 0.139 0.403 0.739 – – –

0.40 0.746 0.416 0.162 0.052 0.149 – – – –

0.50 0.935 0.759 0.429 0.131 – – – – –

0.60 0.991 0.939 0.795 – – – – – –

0.70 1.000 0.995 – – – – – – –

0.80 1.000 – – – – – – – –

0.90 – – – – – – – – –

Table 1: Empirical evaluation of the power of the isotropy test on model (20) for

various values of fl1 (columns) and fl2 (rows). The evaluation of the empirical power is

based on 1000 simulations for each couple (fl1, fl2). The coe�cient restriction has been

tested by means of the likelihood ratio test with a 5% significance level.

from row-standardization of a weight matrix W̄ built according to the contiguity
criterion, and whose non-zero elements equal the area of the neighbouring cell.
That is, the (k, h) element of W̄ is defined as:

(W̄ )kh ©
I

Ah if h is a neighbour of k

0 otherwise
,

where Ah is the area of cell h.
The function f is of type (18), and the simulation has been performed for

several values of –, provided that the invertibility condition is satisfied, that is
|f(Ê)| < 1 for any Ê œ [0, 2fi).

The unrestricted models include either the first two (‚ = 2) or the first
three (‚ = 3) harmonics. The innovation {Ást} is an iid Gaussian process with
variance ‡2 = 1, 1/2, 1/4. For each value of –, ‡2 and ‚, 1000 models have
been simulated, fitted, and tested by means of the likelihood ratio test, with a
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–
‚ = 2 ‚ = 3 ‚ = 2 ‚ = 3 ‚ = 2 ‚ = 3 ‚ = 2

‡2
= 1 ‡2

= 1 ‡2
= 1/2 ‡2

= 1/2 ‡2
= 1/4 ‡2

= 1/4 ‡2
= 1

n = 400 n = 400 n = 400 n = 400 n = 400 n = 400 n = 800

≠1.05 0.923 0.888 1.000 0.997 1.000 1.000 1.000

≠1.00 0.900 0.870 0.993 0.992 1.000 1.000 1.000

≠0.95 0.849 0.817 0.989 0.997 1.000 1.000 0.997

≠0.90 0.806 0.771 0.987 0.981 1.000 1.000 0.997

≠0.85 0.754 0.735 0.979 0.961 1.000 1.000 0.970

≠0.80 0.708 0.642 0.953 0.945 1.000 1.000 0.957

≠0.75 0.646 0.605 0.914 0.933 0.999 0.999 0.930

≠0.70 0.586 0.540 0.888 0.866 0.997 0.993 0.907

≠0.65 0.467 0.469 0.818 0.816 0.995 0.991 0.820

≠0.60 0.451 0.435 0.774 0.746 0.986 0.975 0.783

≠0.55 0.384 0.347 0.673 0.640 0.946 0.948 0.727

≠0.50 0.316 0.266 0.590 0.550 0.908 0.888 0.583

≠0.45 0.242 0.221 0.509 0.438 0.825 0.808 0.500

≠0.40 0.223 0.188 0.423 0.381 0.709 0.722 0.427

≠0.35 0.180 0.155 0.289 0.286 0.628 0.579 0.297

≠0.30 0.131 0.115 0.232 0.192 0.452 0.424 0.230

≠0.25 0.097 0.088 0.172 0.161 0.312 0.304 0.143

≠0.20 0.087 0.090 0.123 0.120 0.212 0.188 0.110

≠0.15 0.065 0.073 0.116 0.080 0.141 0.124 0.087

≠0.10 0.062 0.064 0.077 0.066 0.099 0.073 0.067

≠0.05 0.063 0.055 0.052 0.061 0.070 0.058 0.057

0.00 0.055 0.069 0.056 0.046 0.043 0.047 0.063

0.05 0.037 0.065 0.054 0.046 0.060 0.074 0.067

0.10 0.052 0.068 0.062 0.074 0.092 0.082 0.060

0.15 0.078 0.069 0.102 0.092 0.149 0.121 0.087

0.20 0.083 0.083 0.139 0.121 0.220 0.206 0.147

0.25 0.129 0.112 0.177 0.171 0.342 0.334 0.157

0.30 0.139 0.128 0.250 0.222 0.487 0.453 0.243

0.35 0.171 0.181 0.344 0.330 0.628 0.607 0.280

0.40 0.217 0.207 0.428 0.380 0.794 0.760 0.487

0.45 0.277 0.275 0.587 0.526 0.864 0.860 0.537

0.50 0.336 0.312 0.635 0.657 0.938 0.941 0.657

0.55 0.395 0.372 0.734 0.716 0.968 0.978 0.730

0.60 0.467 0.451 0.824 0.804 0.990 0.986 0.800

0.65 0.573 0.535 0.901 0.888 0.996 1.000 0.893

0.70 0.659 0.600 0.935 0.927 1.000 1.000 0.923

0.75 0.728 0.690 0.966 0.969 1.000 1.000 0.960

0.80 0.770 0.767 0.975 0.989 1.000 1.000 0.990

0.85 0.832 0.818 0.995 0.991 1.000 1.000 0.990

Table 2: Empirical evaluation of the power of the isotropy test for model (7) based

on function (18) with Ÿ = fi/2 for various values of –, ‡2 n, and ‚. The number

of replications used for evaluating the empirical power is 1000 for all models where

n = 400, and 300 for the single model with n = 800. The coe�cient restriction has

been tested by means of the likelihood ratio test with a 5% significance level.

significance level equal to 5%. All the models with the same –, ‡2 and ‚ share
the matrix of regressors X and the weight matrix W . The grid Gn is shared too.

In addition to the experiments just described, we have also performed a
simulation on an irregular grid with n = 800 cells. This simulation has been
structured like the previous one with ‚ = 2 and ‡2 = 1, except for the number
of replications, equal to 300 instead of 1000.

Table 2 reports the complete results, while Figure 7 displays the power of
the test as a function of – for models where ‚ = 2 and n = 400. According to
Table 2, there are no benefits from including the third harmonics, which indeed
seems, in many cases, to reduce the power of the test, although the di�erence
is not statistically significant at the 5% level. This result is consistent with
Figure 3, according to which the first two harmonics (along with the constant
term) can explain most of the variation of f .
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Figure 7 shows that the power of the test is rather sensitive to the variance of
the innovation process. Moreover, the power function in the case with n = 800
and ‡2 = 1 is not statistically di�erent (again at the 5% level) from the case
with n = 400 and ‡2 = 1/2.

5 Application to real data: US soybean yields

The method illustrated in this paper allows one to both test and estimate
the form of anisotropy which characterises a given spatial process. The SAR
model (16) can be generalised by adding a matrix of regressors X œ Rn◊k and
restated as: ;

y = (F
�

§ W )y + X— + Á
Á ≥ N n(0, ‡2I) , (21)

where — œ Rk, � œ Rn◊n is the matrix of angles such that (�)kh = ◊kh, and
F

�

œ Rn◊n is the matrix whose elements are defined as (F
�

)kh © f(◊kh).
It can be verified that:

y ≥ N n

1
(I ≠ F

�

§ W )≠1X—, ‡2

#
(I ≠ F

�

§ W )T(I ≠ F
�

§ W )
$≠1

2
.

Hence, a proper modelisation of the anisotropies leads to a better estimation of
the correlation matrix of the spatial process, and this is valid also for econometric
models other than the SAR (e.g. SEM, CAR, SARMA, Durbin,. . . ).

A precise and reliable estimation of the correlation matrix is particularly
important in risk management, where a slight variation in the correlation amongst
the returns or in the probabilities of default of financial assets heavily a�ects the
possibility to reduce the overall risk of a portfolio by means of diversification.

A point of contact between risk management and spatial analysis may be
represented by agriculture, and in particular the analysis of crop yields for
insurance purposes. This issue has been considered in Zhu, Ghosh and Goodwin
(2009), where the corn yields were analysed at a county level in Iowa between
1926 and 2007. By means of a modelling approach similar to the basic ABE
test, the authors verified that the spatial dependence was not independent of
the direction, and ascertained that this would have a sensible impact on the risk
assessment outcomes of the insurance companies.

In this section, we have applied the anisotropy test to data on soybeans
yields for 1430 counties in the United States. The data are provided by the
National Agricultural Statistics Service (NASS) of the United States Department
of Agriculture (USDA), and result from the survey on soybeans yields in 2014.
Soybeans yields are measured in bushels per acre1 as the ratio between the total
production (first plus successive harvests) in 2014 and the whole (irrigated and
non irrigated) harvested area.

We have modelled the logarithm of the soybeans yields by means of a SAR
model like (21), where the weight matrix W resulted from a row-standardisation
of a contiguous binary matrix B œ {0, 1}n◊n (where n = 1430). As regressors, we

1The US bushel (symbol bu) is a unit of measure of volumes, however, in case of dry
agricultural products, it is used as a measure of weight. For soybeans, the United States
Department of Agriculture adopts the following conversion for statistical purposes: 1 bu =
27.2 kg. On the other hand, 1 acre (symbol ac) equals 4046.873 m2, it follows that 1 bu/ac ¥
67.212 388 kg/ha. All this information is taken from Weights and Measures Division Technology
Services (2006).
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Figure 8: Map of the counties in the Contiguous United States coloured by soybeans

yields level in 2014 (counties out of the sample are gray coloured).
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Figure 9: The f function (solid line) of the SAR model on soybeans yields estimated

by means of the first six harmonics in Cartesian (Figure 9a) and polar (Figure 9b)

coordinates. The shaded area represents the 95% confidence interval on f . The dashed

line is the mean value of f .

included nine dummy variables for each hydrographic basin where the counties
in the sample are located. These variables aim at capturing large-scale spatial
e�ects such as the di�erences in climate and hydrological conditions of the soil.

Figure 8 shows the map of Contiguous United States where all the 1430
counties are located along with the boundaries of the hydrographic basins, as
determined by the National Operational Hydrologic Remote Sensing Center
(NOHRSC) of the National Oceanic and Atmospheric Administration (NOAA).
We have assigned the counties to hydrographic basins according to the position
of their centroids.
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‚ = 0 ‚ = 1 ‚ = 2 ‚ = 3 ‚ = 4 ‚ = 5 ‚ = 6

fl̂
0.4194 0.4190 0.4192 0.4200 0.4189 0.4190 0.4186

[0.0165] [0.0165] [0.0165] [0.0165] [0.0165] [0.0164] [0.0165]

*** *** *** *** *** *** ***

fl̂c1
– 0.0071 0.0072 0.0062 0.0064 0.0065 0.0065

– [0.0041] [0.0041] [0.0041] [0.0041] [0.0041] [0.0041]

. .

fl̂c2
– – -0.0030 -0.0037 -0.0041 -0.0041 -0.0045

– – [0.0045] [0.0045] [0.0046] [0.0046] [0.0046]

fl̂c3
– – – 0.0071 0.0071 0.0071 0.0072

– – – [0.0046] [0.0046] [0.0046] [0.0046]

fl̂c4
– – – – 0.0037 0.0037 0.0037

– – – – [0.0034] [0.0034] [0.0035]

fl̂c5
– – – – – 0.0029 0.0029

– – – – – [0.0033] [0.0033]

fl̂c6
– – – – – – 0.0007

– – – – – – [0.0029]

fl̂s1
– 0.0071 0.0066 0.0055 0.0050 0.0050 0.0054

– [0.0044] [0.0044] [0.0044] [0.0044] [0.0044] [0.0044]

fl̂s2
– – 0.0063 0.0055 0.0049 0.0048 0.0054

– – [0.0049] [0.0049] [0.0049] [0.0049] [0.0049]

fl̂s3
– – – 0.0094 0.0093 0.0090 0.0089

– – – [0.0044] [0.0044] [0.0045] [0.0045]

* * * *

fl̂s4
– – – – 0.0060 0.0059 0.0066

– – – – [0.0040] [0.0040] [0.0041]

fl̂s5
– – – – – -0.0004 -0.0003

– – – – – [0.0032] [0.0032]

fl̂s6
– – – – – – 0.0048

– – – – – – [0.0031]

loglik 603.31 605.85 606.94 610.58 612.37 612.77 613.95

p-value – 0.07899 0.12278 0.02408 0.02033 0.04119 0.04626

Table 3: Results of the regressions estimated for testing isotropy with various numbers

of harmonics (‚ = 0, . . . 6). The table reports only the coe�cients of the components

of the function f , their standard errors (in brackets), and the level of significance (“ . ”

for p-values between 0.1 and 0.05, “ * ” for p-values between 0.05 and 0.01, “ ** ” for

p-values between 0.01 and 0.001, “ *** ” for p-values smaller than 0.001, and nothing

when the p-values are higher than 0.1). All the coe�cients of the dummy variables

have a p-value lower than 0.001 for all models. At the bottom of the table we show the

maximized log-likelihood of the estimated model and the p-value of the anisotropy test.

We have performed the isotropy test by including various numbers of harmon-
ics (from a minimum of one, up to a maximum of six). The results are summed
up in Table 3. The data have a slight form of anisotropy, significant at the 5%
level. The only singularly significant harmonic at the 5% level is the third one.

The shape of the anisotropy estimated by means of the first six harmonics is
plotted in Figures 9a and 9b. It can be noticed that the spatial dependence is
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slightly stronger along the East-North-East (Ê ¥ fi/8), North-West (Ê ¥ 3fi/4),
and South (Ê ¥ 3fi/2) directions, whilst it is weaker along the West (Ê ¥ fi),
and the East-South-East (Ê ¥ 7fi/8) directions. The function f estimated with
a smaller number of harmonics (‚ < 6) is rather close to that plotted in Figure 9,
although some peaks are less pronounced.

The results show that there is anisotropy in the soybeans yields in the US
counties in 2014. Although the directional variation in the spatial dependence
is small, this may have a remarkable e�ect on the systemic risk of a portfolio
of insurance policies or derivatives on crop yields. It follows that a proper
modelisation of the anisotropy of the spatial process is needed for an accurate
pricing of financial risk.

6 Conclusion

The modelling approach proposed in this paper allows one both to estimate
and test the form of the anisotropy of a spatial process. The semi-parametric
nature of this method makes it applicable to various models for areal data
based on weight matrices, while the algebraic properties of the Fourier series
minimise the multicollinearity problems which may be originated by an accurate
specification of the anisotropy function f .

The test relies on the assumption of homogeneity of the data generating
process, and this may be, in some cases, a rather strong assumption. The
generalisation of the test to non-homogeneous spatial processes is a subject that
deserves further research.
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