
2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 2016 1

Efficient computation of inverse dynamics and
feedback linearization for VSA-based robots

Gabriele Buondonno and Alessandro De Luca

Abstract—We develop a recursive numerical algorithm to
compute the inverse dynamics of robot manipulators with an
arbitrary number of joints, driven by Variable Stiffness Actuation
(VSA) of the antagonistic type. The algorithm is based on
Newton-Euler dynamic equations, generalized up to the fourth
differential order to account for the compliant transmissions,
combined with the decentralized nonlinear dynamics of the
variable stiffness actuators at each joint. A variant of the
algorithm can be used also for implementing a feedback lin-
earization control law for the accurate tracking of desired link
and stiffness trajectories. As in its simpler versions, the algorithm
does not require dynamic modeling in symbolic form, does not
use numerical approximations, grows linearly in complexity with
the number of joints, and is suitable for on-line feedforward and
real-time feedback control. A Matlab/C code is made available.

Index Terms—Flexible Robots; Compliant Joint/Mechanism;
Direct/Inverse Dynamics Formulation; Motion Control of Ma-
nipulators; Feedback Linearization

I. INTRODUCTION

THE use of compliant transmission elements in lightweight
robotic devices is one of the current trends in research and

applications, motivated by the (mutually non-exclusive) goals
of realizing more natural robot behaviors, improving safety
in human-robot interaction, optimizing energy consumption,
or being capable of explosive tasks with limited actuation
torque [1], [2]. The explicit introduction of (constant) elasticity
at the joints, once considered only a parasitic feature in
industrial robots, provides a first response to these objectives,
as soon as its effects are modeled and controlled. In fact, by
suitable model-based control designs [3] it is possible to obtain
a desired compliant behavior of the robot in response to con-
tact forces, without giving away accuracy in the execution of
reference trajectories, provided these are sufficiently smooth.

Even beyond this, one can achieve simultaneous control
of joint stiffness and link motion by taking inspiration from
bio-mechanical analogies. For this, two motors are used at
each robot joint, connected though nonlinear compliant trans-
missions to the driven link. In the last ten years or so,
there has been a consistent activity in the design of Variable
Stiffness Actuation (VSA) [4]. For single-degree-of-freedom
(single-dof) devices, the two motors work either in antago-
nistic mode, collaborating in a similar way to both control

Manuscript received: August 31, 2015; Revised November 21, 2015;
Accepted January 16, 2016.

This paper was recommended for publication by Editor Kevin Lynch
upon evaluation of the Associate Editor and Reviewers’ comments. This
work is supported by the European Commission, within the FP7 ICT-287513
SAPHARI project (www.saphari.eu).

The authors are with the Dipartimento di Ingegneria Informatica, Automat-
ica e Gestionale, Sapienza Università di Roma, Via Ariosto 25, 00185 Roma,
Italy (e-mail: buondonno@diag.uniroma1.it; deluca@diag.uniroma1.it).

Digital Object Identifier (DOI): see top of this page.

objectives (as in the VSA-II of the University of Pisa [5]
and the MACCEPA [6]) or in serial mode, where the smaller,
secondary motor is used only to modulate stiffness on line (as
in the DLR FVJ device [7] and IIT AWAS series [8]). These
elementary devices, suitably combined, are currently paving
the way to complete VSA-based manipulators and humanoids,
sometimes considered the robots of the next generation. Multi-
dof examples include the DLR Hand Arm System (HASy) [9],
the IIT CompAct arm [10], and the VSA CubeBot modular
series from Pisa, now commercialized as low-cost qbmove
kits [11]. Notably, a large class of these single-dof or multi-
dof VSA-based robots with complex nonlinear dynamics turns
out to satisfy, under mild conditions, the necessary and suf-
ficient conditions for feedback linearization and input-output
decoupling [12], [13], a result that generalizes from the rigid
case and from the case of robots with finite, but constant joint
stiffness [14].

Together with these technological developments, a need
arises to develop exact and efficient tools for addressing a
version of the inverse dynamics problem for VSA-based robots
with an arbitrary large number of joints, namely computing the
motor torque commands that smoothly execute desired link
and stiffness trajectories in nominal conditions. Similarly, we
would like to be able to evaluate in real time also the complex
but best performing feedback linearization control law using
state measurements obtained on line to track in a stable way
such trajectories. Moreover, it would be convenient if both
tasks did not require the analytic development of a dynamic
model in symbolic form.

In a recent paper [15], we designed a solution algorithm, that
we called EJ-NEA (Elastic Joints Newton-Euler Algorithm),
that works for robots with elastic joints (of constant stiffness)
as a direct extension of the well-known recursive Newton-
Euler Algorithm (NEA) for rigid robots [16]. For generic
VSA-based robots with antagonistic actuation, we propose
here a generalized version called Variable Stiffness Actuation
Newton-Euler Algorithm (VSA-NEA).

II. BACKGROUND

For a rigid robot consisting of an open kinematic chain with
N moving links and N joints, the dynamic model is

(M(q) +B) q̈ + n(q, q̇) = τ , (1)

where q ∈ RN is the link position, τ ∈ RN is the motor
torque, M(q) > 0 is the inertia matrix of the robot links,
B > 0 is the constant diagonal matrix with the drive
inertia moments (as reflected through the reduction ratios), and
n(q, q̇) = c(q, q̇) + g(q)+Dq̇ contains centrifugal, Coriolis,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54529107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 2016

and gravitational terms, as well as viscous friction (as a
dissipative term, with diagonal D ≥ 0).

Given a twice-differentiable trajectory qd(t), we compute
the torques needed to execute the motion (inverse dynamics
problem) in an efficient numerical way, especially when N is
large, using the recursive Newton-Euler Algorithm (NEA)

τ d = NEA(qd, q̇d, q̈d) = (M(qd)+B) q̈d + n(qd, q̇d). (2)

To achieve feedback linearization (and input-output decou-
pling), it is sufficient to let

τ = NEA(q, q̇,a) = (M(q)+B)a+ n(q, q̇), (3)

where a = q̈d +KD(q̇d − q̇) +KP (qd − q), with diagonal
matrices KP > 0 and KD > 0, for trajectory stabilization.

In the presence of joint elasticity, the link positions are
distinct from the motor positions. A robot with N elastic joints
(of constant stiffness, and with one motor per joint) will need
2N generalized coordinates Θ = (qT θTm)T ∈ R2N , where
θm ∈ RN is the motor position after the reduction gears.
Under the commonly used modelling assumptions introduced
by Spong [14], the dynamic model is

M(q)q̈ + n(q, q̇) = Σ(θm − q) (4a)

Bθ̈m +Dmθ̇m + Σ(θm − q) = τ (4b)

where Σ > 0 is the joint stiffness matrix and Dm > 0 is the
matrix of motor viscous coefficients, both diagonal. The elastic
torque τ e = Σ(θm−q) couples the link equation (4a) and the
motor equation (4b). A Newton-Euler algorithm for computing
inverse dynamics and feedback linearization control of elastic
joint robots modeled by (4a–4b) has been introduced in [15].

III. VSA-BASED ROBOTS

A. Modeling

In robots having Variable Stiffness Actuation, two actuators
are present at each joint to command both link position and
joint stiffness. This will require 3N generalized coordinates
Θ = (qT θTm1 θ

T
m2)

T ∈ R3N , where θm1 and θm2 are now
the motor positions after the reduction. Many different VSA
designs exist, the most common being the decoupled agonistic-
antagonistic setup. Defining the transmission deflections φ1 =
θm1 − q and φ2 = θm2 − q, under assumptions as in [14],
the dynamic model becomes

M(q)q̈ + n(q, q̇) = τe1(φ1) + τe2(φ2) (5a)

B1 θ̈m1 +Dm1 θ̇m1 + τe1(φ1) = τ 1 (5b)

B2 θ̈m2 +Dm2 θ̇m2 + τe2(φ2) = τ 2, (5c)

where τe1 and τe2 are the flexibility torques, which are
nonlinear functions of φ1 and φ2, decoupled for each
joint. The 6N -dimensional state of the system is given by
(q,θm1,θm2, q̇, θ̇m1, θ̇m2). The total flexibility torque acting
on the links is

τ e = τ e1(φ1) + τ e2(φ2) (6)

M(q)q̈ + n(q, q̇) = τ e (7)

An analytic formulation of τ e1 and τ e2 can be obtained from
the expression of the total elastic energy Ue of the system:

τek =
(
∂Ue
∂φk

)T
, k = 1, 2, τe = −

(
∂Ue
∂q

)T
. (8)

The stiffness matrices are physically defined as

Σk(φk) =
∂τek
∂φk

, k = 1, 2, Σ(Θ) = −∂τe
∂q

. (9)

Since the motors dynamics are decoupled, these are diagonal
matrices, with diagonals elements that can be arranged in the
N -vectors σ1, σ2, and σ. From (6) and (9), it follows

Σ = Σ1 + Σ2 (10)

σ = σ1(φ1) + σ2(φ2) (11)

B. Inverse dynamics

Given a desired four-times differentiable link trajectory
qd(t) and a desired twice-differentiable stiffness trajectory
σd(t) (with

....
q d and σ̈d possibly piecewise continuous), we

can compute the nominal input torques τ d1(t) and τ d2(t)
that realize this combined task trajectory. Both reference
trajectories qd(t) and σd(t) are chosen by the user, and thus all
their needed time derivatives are known by design. In the rest
of this section, we will omit time dependence and subscript d
for notational simplicity.

The first step is to compute the desired τ e from (7). Its
higher order derivatives are obtained similarly by differentiat-
ing (7) once1

M(q)...q + Ṁ(q)q̈ + ṅ(q, q̇) = τ̇ e (12)

and twice

M(q)....q + 2Ṁ(q)...q + M̈(q)q̈ + n̈(q, q̇) = τ̈ e, (13)

and by plugging in the desired values of q and its derivatives.
Next, from the desired values of τ e and σ, we need to

compute the associated joint deflections φ1 and φ2. These
are obtained by solving the following system of 2N nonlinear
equations {

τe = τe1(φ1) + τe2(φ2)

σ = σ1(φ1) + σ2(φ2),
(14)

where τe1(·), τe2(·), σ1(·), and σ2(·) are seen as functions
expressed in their analytical forms. In general, system (14)
needs to be solved numerically, exploiting the joint decou-
pling property which causes the split into N separate 2 × 2
subsystems (still nonlinear, though).

Next, we compute matrices Σ1, Σ2, Z1, Z2, Z, H1

and H2. These quantities are all obtained from the underlying
spring model, using the solutions of (14). Matrices Z1, Z2,
Z, H1, and H2 are diagonal, with elements defined as:

Zk,ii =
∂σki
∂φki

, k = 1, 2, Z = Z1 +Z2 (15)

Hk,ii =
∂2σki

∂φ2
ki

, k = 1, 2. (16)

1With Ṁ(q), we mean d
dt

[M(q)]. Obviously, this quantity depends on
q̇ as well as on q. Similar comments apply to ṅ and to higher derivatives.

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

BUONDONNO AND DE LUCA: INVERSE DYNAMICS FOR VSA-BASED ROBOTS 3

From (6) and (9), we have then (with dependencies omitted)

τ̇e = Σ1φ̇1 + Σ2φ̇2. (17)

Exploiting the decentralized structure of τ e1 and τ e2 and
using (15), we can differentiate (11) and obtain

σ̇ = Z1φ̇1 +Z2φ̇2. (18)

Putting (17) and (18) together, we set up the linear system(
Σ1 Σ2

Z1 Z2

)(
φ̇1

φ̇2

)
= A(φ1,φ2)

(
φ̇1

φ̇2

)
=
(
τ̇e
σ̇

)
, (19)

where A(φ1,φ2) is the decoupling matrix [13], in which we
have emphasized the dependency from φ1 and φ2. Provided
the decoupling matrix is nonsingular, system (19) can be
solved for φ̇1 and φ̇2 as(

φ̇1

φ̇2

)
=
(

Σ1 Σ2

Z1 Z2

)−1(
τ̇e
σ̇

)
. (20)

Differentiating now (17) and rearranging terms yields

Σ1θ̈m1 + Σ2θ̈m2 = τ̈e −Z1φ̇
2
1 −Z2φ̇

2
2 + Σq̈ = β1, (21)

where vectors φ̇
2

i (i = 1, 2) are squared component-wise.
Using (16), we can diffentiate also (18) and rearrange it as

Z1θ̈m1 +Z2θ̈m2 = σ̈ −H1φ̇
2
1 −H2φ̇

2
2 +Zq̈ = β2 (22)

Equations (21) and (22) provide another linear system,(
Σ1 Σ2

Z1 Z2

)(
θ̈m1

θ̈m2

)
=
(
β1

β2

)
, (23)

which has the same coefficient matrix A that appears in
eq. (19), making only one inversion necessary to obtain also
θ̈m1 and θ̈m2. Finally, the desired motor torques τ 1 and τ 2

are obtained from (5b) and (5c). Also, τ e1 and τ e2 can be
evaluated from the spring model using the computed values
of φ1 and φ2, while θ̇m1 = φ̇1 + q̇ and θ̇m2 = φ̇2 + q̇.

Some remarks are now in order.
• Computation will be terminated if (14) has no solution.

This means that the desired combined motion-stiffness
task is not attainable by the given actuator model. Instead,
existence of multiple solutions is not a source of prob-
lems. In fact, when the system is solved for a (discretized)
time sequence of desired data, at each instant the solution
is found by a numerical search, starting from the result
obtained at the previous step. Since the search is a local
process, the new solution will always be close to the older
one achieving continuity.

• If A is not invertible, the system is in a dynamic sin-
gularity, restricting the desired motion-stiffness task that
can be achieved. Thanks to the joint decoupling property,
A can be rearranged into a block-diagonal matrix with
2×2 blocks, which can be inverted separately from each
other. Thus matrix A is singular if and only if at least
one of these N blocks is singular. For instance, for a joint
i with two identical antagonistic springs, this will always
happen when φ1i = φ2i.

• If the initial values of φ1 and φ2 are known, we can
avoid the explicit solution of (14) at each time instant.

Instead, we can solve (19) and integrate for φ1 and φ2.
Caution must be taken, however, due to error drifts caused
by numerical integration.

We provide now some further insight on the solution of
system (14) in the case of identical springs with cubic flexible
torque on both sides of each joint

τ e1(φ1) = Kφ1 +Kcφ
3
1 (24a)

τ e2(φ2) = Kφ2 +Kcφ
3
2, (24b)

with constant, positive K =diag{Ki} and Kc=diag{Kci}.
Therefore, for each i = 1, . . . , N and k = 1, 2, we have

σki = Ki + 3Kci φ
2
ki (25)

ζ ki = 6Kci φki (26)
η ki = 6Kci (27)

The minimum possible stiffness for joint i is thus σi = 2Ki. In
order to avoid singularity problems, this lower bound should
never be reached. We solve now eq. (14) as follows. For each
joint i, consider the system

τei = Ki(φ1i + φ2i) +Kci(φ3
1i + φ3

2i) (28)

σi = 2Ki + 3Kci(φ2
1i + φ2

2i). (29)

Defining from (29)

R2
i = φ2

1i + φ2
2i =

σi − 2Ki

3Kci
, (30)

it can be seen that all solutions are parametrized by a scalar
ξi ∈ [0, 2π) such that φ1i = Ri cos ξi and φ2i = Ri sin ξi.
Replacing in (28) we get

(cos ξi+sin ξi)+
σi − 2Ki

3Ki
(cos3 ξi+sin3 ξi) =

τei
KiRi

, (31)

which is a single trigonometric equation in ξi. This equation
is sufficiently smooth, and thus easily solvable by a numerical
root finder. Note that at least one solution always exists if
|τe, i| ≤

√
2KiRi[1+0.5(σi−2Ki)/(3Ki)]. Furthermore, also

slightly larger values of |τe, i| are admissible when σi > 4Ki.
However, in the case of the cubic model (and also more in
general), it is recommended to set an upper bound to σi, in
order to keep spring deformations reasonably limited.

C. Feedback linearization control

The same procedure outlined in Sec. III-B can be used, with
minor modifications, to implement a feedback linearization
law for VSA robots. With the desired trajectories qd(t) and
σd(t), we compute the linear control signals vq and vσ from
the actual values of q, q̇, q̈,

...
q , σ, and σ̇

vq =
q d +K3(

...
qd −

...
q) +K2(q̈d − q̈) (32a)

+K1(q̇d − q̇) +K0(qd − q)
vσ = σ̈d +Kσ1(σ̇d − σ̇) +Kσ0(σd − σ), (32b)

where all six gain matrices are diagonal with their diagonal
elements being such that the two characteristic polynomials

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 2016

pq,i(s) = s4 +K3is
3 +K2is

2 +K1is+K0i (33a)

pσ,i(s) = s2 +Kσ1,is+Kσ0,i (33b)

are Hurwitz. Then, the motor torques achieving feedback
linearization control are obtained using the previous inverse
dynamics computations, by only replacing

....
q d with vq and σ̈d

with vσ . Use of high gains and possible addition of an
integral action to vq and vσ (with similar requisites on the
gain coefficients) can contribute to the controller accuracy and
robustness to dynamic modeling errors.

However, the computations cannot be performed as such
since they require, instead of desired values, measures of q̈,...
q , σ, and σ̇ that are difficult or impossible to obtain. In
the following, we assume that full state measurements are
available, with the values of q, φ1, and φ2 given, and those
of q̇, φ̇1, and φ̇2 obtained by numerical differentiation.

First, the values of τ e1, τ e2, Σ1, Σ2, Z1, and Z2 (as well
as of H1 and H2) can be immediately computed from φ1

and φ2. Next, τ e, σ, τ̇ e and σ̇ are obtained from (6), (11),
(17), and (18), respectively. We invert then (7) and (12) to find
the unknown values of q̈ and

...
q as

q̈ = M−1(q)
[
τe − n(q, q̇)

]
(34)

...
q = M−1(q)

[
τ̇e −

(
Ṁ(q)q̈ + ṅ(q, q̇)

)]
, (35)

where q̈ in (35) is the one just computed in (34). The solution
of (14) is no longer necessary. This means that no numerical
root finding is required for feedback linearization, which
also eliminates the possibility of failure at this step. Finally,
equations (7), (12), and (19) are also skipped as such.

IV. THE VSA-NEA ALGORITHM

Starting from the previous dynamic analysis in symbolic
form, we present now a numerical algorithm for computing the
desired motor torques τ d1 and τ d2 in the case of VSA-based
robots, starting from sufficiently smooth qd(t) and σd(t) and
without the need to have available a symbolic dynamic model
in closed form. The algorithm can be obtained as an extension
of the standard NEA. Indeed, τ e itself can be computed by
the standard NEA, the only difference being that the input
parameters do not include information about motor inertias.
The main difficulty lies in computing τ̈ e, and for this higher-
order dynamic equations need to be considered —see (12)
and (13). In particular, the recursive algorithm VSA-NEA will
go two differentiation levels further than the NEA, computing
higher derivatives of the motion variables.

As usual, all quantities will be conveniently expressed in
the moving reference frame of the considered link, since all
dynamic parameters of the robot will be constant in these
frames. Before proceeding, we recall the notations used in the
presence of multiple reference frames. The symbol ixj denotes
a quantity x (e.g., a velocity) of link j expressed in frame i, no
superscript denoting by default i = 0. Thus, for instance, we
have iγi = iR0

0γi = RT
i ω̇i. The orientation of frame i with

respect to i − 1 and the relative position of the two origins,
expressed in frame i, are described, respectively, by i−1Ri and
ipi,i−1, using the the standard Denavit-Hartenberg convention.

With ẑi, we mean the z-axis unit vector of frame i. It can be
easily seen that ẑ0 = (0 0 1)T , iẑi = ẑ0, ẑi = 0Riẑ0, and
iẑi−1 = iRi−1

i−1ẑi−1 = iRi−1ẑ0 .
The final forward and backward recursion are outlined next,

while proofs are reported in the Appendix. In the following,
we give the complete inverse dynamics algorithm, enabling to
compute τ 1 and τ 2 from given values of q, q̇, q̈,

...
q ,

....
q , σ and

σ̇ (all quantities are desired ones). At the end, we explain what
to change when computing the feedback linearization control
law.

A. Forward recursion

The following equations need to be propagated from the
robot base to the tip, for i = 1, . . . , N :
iωi = iRi−1(i−1ωi−1 + θ̇iẑ0) (36)
iγi = iRi−1(i−1γi−1 + θ̈iẑ0 + i−1ωi−1 × θ̇iẑ0) (37)
iιi = iRi−1[i−1ιi−1 +

...
θ iẑ0 +i−1 γi−1 × θ̇iẑ0

+ i−1ωi−1 × (2θ̈iẑ0 +i−1 ωi−1 × θ̇iẑ0)] (38)
iςi = iRi−1{ i−1ςi−1 +

....
θ iẑ0 + 3 i−1γi−1 × θ̈iẑ0

+ 3 i−1ωi−1 × (
...
θ iẑ0 + i−1ωi−1 × θ̈iẑ0)

+ 2 i−1γi−1 × (i−1ωi−1 × θ̇iẑ0)

+ i−1ωi−1 × [i−1ωi−1 × (i−1ωi−1 × θ̇iẑ0)

+ i−1γi−1 × θ̇iẑ0] + i−1ιi−1 × θ̇iẑ0} (39)
iai = iRi−1

i−1ai−1 + iωi × (iωi × ipi,i−1) (40)

+ iγi × ipi,i−1 + d̈i
iẑi−1 + 2ḋi(iωi × iẑi−1)

iaci
= iai + iωi × (iωi × ipci,i) + iγi × ipci,i (41)

iji = iRi−1
i−1ji−1 + 2 iγi × (iωi × ipi,i−1)

+ iωi × [iγi × ipi,i−1 + iωi × (iωi × ipi,i−1)]
+ i ιi × ipi,i−1 +

...
d i

iẑi−1 + 3d̈i iωi × iẑi−1

+ 3ḋi[iγi × iẑi−1 + iωi × (iωi × iẑi−1)] (42)
ijci

= iji + iιi × ipci,i + 2 iγi × (iωi × ipci,i) (43)

+ iωi × [iγi × ipci,i + iωi × (iωi × ipci,i)]
isi = iRi−1

i−1si−1+ iςi× ipi,i−1 + 3 iιi×(iωi× ipi,i−1)
+ 3 iγi × [iγi × ipi,i−1 + iωi × (iωi × ipi,i−1)]
+ iωi × [iιi × ipi,i−1 + 2 iγi × (iωi × ipi,i−1)]
+ iωi×{ iωi×[iγi× ipi,i−1+ iωi×(iωi× ipi,i−1)]}
+

....
d i

iẑi−1+4ḋi iιi× iẑi−1+8ḋi iγi×(iωi× iẑi−1)

+ 4ḋi iωi × [iγi × iẑi−1 + iωi × (iωi × iẑi−1)]

+ 6d̈i[iγi × iẑi−1 + iωi × (iωi × iẑi−1)]

+ 4
...
d i

iωi × iẑi−1 (44)
isci

= isi + iςi × ipci,i + 3 iιi × (iωi × ipci,i) (45)

+ 3 iγi × [iγi × ipci,i + iωi × (iωi × ipci,i)]

+ iωi × [iιi × ipci,i + 2 iγi × (iωi × ipci,i)]

+ iωi×{ iωi×[iγi× ipci,i + iωi×(iωi× ipci,i)]}.

The following symbols have been used:
ωi angular velocity of frame i;
γi angular acceleration of frame i;

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

BUONDONNO AND DE LUCA: INVERSE DYNAMICS FOR VSA-BASED ROBOTS 5

ιi angular jerk of frame i;
ςi angular snap of frame i;
ai acceleration of the origin of frame i;
aci

acceleration of the center of mass (CoM) of link i;
ji jerk of the origin of frame i;
jci

jerk of the CoM of frame i;
si snap of the origin of frame i;
sci snap of the CoM of frame i;
pci,i position of the CoM of augmented link i (i.e., of the

link plus the motor mounted on it) w.r.t. the origin of
frame i.

The initialization of the forward recursion is zero for all
quantities, with the exception of 0a0, which is set to −~g
to account for gravitational effects, ~g being the gravity ac-
celeration vector in frame 0. The above equations are valid
both for revolute and prismatic joints, with θi = qi in the
former case and di = qi in the latter. Moreover, if joint i
is prismatic, θ̇i = θ̈i =

...
θ i =

....
θ i = 0; if it is revolute,

ḋi = d̈i =
...
d i =

....
d i = 0, with considerable simplifications.

B. Backward recursion

The following equations need to be propagated from the
robot tip to the base, for i = N, . . . , 1:

iF i =mi
iaci

(46)
iḞ i =mi

ijci
(47)

iF̈ i =mi
isci

(48)
iN i = iIi

iγi + iωi × (iIi iωi) (49)
iṄ i = iωi × (iIi iγi + iN i) + iIi(iγi × iωi + i ιi)

+ iγi × iIi
iωi (50)

iN̈ i = iγi × (iIi iγi + 2 iN i) + iιi × iIi
iωi (51)

+ iIi[2(iιi × iωi) + iωi × (iωi × iγi) + iςi]

+ iωi×[iωi× iIi
iγi+2 iIi(iιi+ iγi× iωi)+ iṄ i]

if i = iRi+1
i+1f i+1 + iF i (52)

iḟ i = iRi+1
i+1ḟ i+1 + iḞ i (53)

if̈ i = iRi+1
i+1f̈ i+1 + iF̈ i (54)

ini = iRi+1
i+1ni+1 + ipci,i ×

iF i + ipi,i−1 × if i

+ iN i (55)
iṅi = iRi+1

i+1ṅi+1 + (iωi × ipci,i)×
iF i

+ ipci,i ×
iḞ i + (iωi × ipi,i−1 + ḋi

iẑi−1)× if i

+ ipi,i−1 × iḟ i + iṄ i (56)
in̈i = iRi+1

i+1n̈i+1 + 2 (iωi × ipci,i)×
iḞ i (57)

+ [iγi × ipci,i + iωi × (iωi × ipci,i)]×
iF i

+ [iγi× ipi,i−1 + iωi×(iωi× ipi,i−1) + d̈i
iẑi−1

+ 2ḋi iωi × iẑi−1]× if i + ipci,i ×
iF̈ i + iN̈ i

+ 2 (iωi× ipi,i−1 + ḋi
iẑi−1)× iḟ i + ipi,i−1× if̈ i

τei =

{
inTi

iẑi−1 +Diq̇i if joint i is revolute
ifTi

iẑi−1 +Diq̇i if joint i is prismatic
(58)

τ̇ei =

{
(iṅi + ini × iωi)T iẑi−1 +Diq̈i

(iḟ i + if i × iωi)T iẑi−1 +Diq̈i
(59)

τ̈ei =

[in̈i+2(iṅi× iωi)+ ini× iγi

+(ini× iωi)× iωi]T iẑi−1 +Di
...
q i

[if̈ i+2(iḟ i× iωi)+ if i× iγi
+(if i× iωi)× iωi]T iẑi−1 +Di

...
q i

(60)

〈τei , σi〉 7→ 〈φ1i , φ2i〉 (61)
τe1,i = τe1,i(φ1i) τe2,i = τe2,i(φ2i) (62)
σ1i = σ1i(φ1i) σ2i = σ2i(φ2i) (63)

ζ1i =
∂σ1i

∂φ1i
ζ2i =

∂σ2i

∂φ2i
(64)

ζi = ζ1i + ζ2i (65)

η1i =
∂2σ1i

∂φ2
1i

η2i =
∂2σ2i

∂φ2
2i

(66)

A−1
i =

1
σ1iζ2i − σ2iζ1i

(
ζ2i −σ2i

−ζ1i σ1i

)
(67)(

φ̇1

φ̇2

)
= A−1

i

(
τ̇ei
σ̇i

)
(68)

θ̇m1,i = φ̇1i + q̇i θ̇m2,i = φ̇2i + q̇i (69)

β1i = τ̈ei − ζ1iφ̇2
1i − ζ2iφ̇2

2i + σiq̈i (70)

β2i = σ̈i − η1iφ̇2
1i − η2iφ̇2

2i + ζiq̈i (71)(
θ̈m1,i

θ̈m2,i

)
= A−1

i

(
β1i

β2i

)
(72)

τ1i = B1i θ̈m1,i +Dm1,i θ̇m1,i + τe1,i (73)

τ2i = B2i θ̈m2,i +Dm2,i θ̇m2,i + τe2,i, (74)

where:
mi mass of augmented link i;
iIi central inertia tensor of link i, in frame i;
F i total force acting on the CoM of link i;
N i total torque acting on link i;
f i total force exerted on link i by link i− 1;
ni total torque exerted on link i by link i− 1;
σki is the i-th element of σk;
ζki is the i-th diagonal element of Zk;
ηki is the i-th diagonal element of Hk.

In (61), we denoted by the symbol 7→ the resolution of the
i-th subsystem of (14). For the initialization of the backward
recursion, fN+1 and nN+1 are, respectively, the forces and
torques exerted by the end-effector on the environment, i.e.,
the opposite of the external forces and torques acting on the
end-effector. If present, these are passed to the algorithm as
an additional input, otherwise they are set identically to 0. If
the external forces/torques are already expressed in frame N ,
then NRN+1 will be the 3× 3 identity matrix.

While mi represents the mass of the whole augmented link,
iIi accounts for all of the inertial properties of link i, except
for the drive inertia moments.

C. Variant for feedback linearization

A variant of the VSA-NEA algorithm can be used to
compute a feedback linearization control, as explained in
Sec. III-C. Equations (62)–(66) are evaluated first in a separate
initial loop; next, (6), (11), (17), (18), (34) and (35) are
evaluated. Indications on how to compute efficiently (34) and

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 2016

(35) can be found in [15]. During the execution,
....
q and σ̈

are replaced by vq and vσ , respectively. Equations (58)–(59),
(61)–(66) and (68) are skipped.

V. NUMERICAL RESULTS

The algorithms have been validated by several numerical
tests. For illustration, we show here some meaningful results
of the inverse dynamics computation. We consider a spatial
3-dof robot in the presence of gravity (acting on links 2 and
3), with the three rotational joints driven by antagonistic VSA
with cubic profiles of flexibility torques. Its parameters are
given in Tab. I.

TABLE I
KINEMATIC AND DYNAMIC PARAMETERS

1 2 3
αi rad π/2 0 0
ai cm 0 30 30
di cm 0 0 0
θi rad q1 q2 q3

mi kg 9.0478 6.7858 5.0894
ipcxi,i cm 0 -15 -15
ipcyi,i cm 0 0 0
ipczi,i cm 0 0 0
iIxxi kg m2 0.1299 0.0139 0.0104
iIyyi kg m2 0.0185 0.0578 0.0434
iIzzi kg m2 0.1299 0.0578 0.0434
Di kg m2/s 10−5 10−5 10−5

Bk,i kg m2 3.20 3.05 1.98
Dmk, i kg m2/s 10−4 10−4 10−4

Ki Nm/rad 400 400 400
Kc, i Nm/rad3 2000 2000 2000

The link motion qd was specified by a smooth rest-to-rest
trajectory (polynomials of degree 7, with zero initial and final
boundary conditions on velocity, acceleration, and jerk) lasting
T = 4 s. In a first test, σd was also specified by a rest-to-
rest polynomial trajectory of degree 3, identical for all joints,
with zero boundary conditions on σ̇ at t = 0 and t = T .
The stiffness of each joint goes from σmin = 850 Nm/rad,
which is close to the physical minimum possible stiffness,
to σmax = 1275 Nm/rad, achieving a 50% increase. Figure 1
shows the reference trajectories, while the obtained results are
reported in Figs. 2–3.

0 2 4
time [s]

q
 [
ra

d
]

 −5π/6

 −π/4

 0

 π/4

 2π/3
 5π/6

0 2 4
800

1000

1200

1400

time [s]

σ
 [
N

m
/r

a
d
]

Fig. 1. [Left] Joint position qd. Color codes for Figs. 1–3:
solid black = joint 1, dashed red = 2, blue with “+” markers = 3. [Right] Joint
stiffness σd (same profile for all joints).

We performed two other tests with the same joint trajectory
qd shown in Fig. 1, but one with σi identically equal to σmin
for all i, and a second with σi identically equal to σmax.
Since the joint movement is the same, the elastic torque τ e

0 2 4
20

40

60

80

100

time [s]

τ
1
 [
N

m
]

0 2 4
−100

−80

−60

−40

−20

0

time [s]

τ
2
 [
N

m
]

Fig. 2. [Left] Motor torque τd1. [Right] Motor torque τd2.

0 1 2 3 4
−10

0

10

20

30

40

time [s]

τ
e
 [
N

m
]

Fig. 3. Total elastic torque τ e = τ e1 + τ e2.

does not change with respect to Fig. 3. however, all the motor
torques τ 1 and τ 2 have much larger absolute values in the
second case. This shows how the motors spend considerable
energy in order to keep a higher level of stiffness. In Fig. 4, we
compare the desired nominal torques just for joint 1. It can be
seen how the initial values of τd1,1 and τd2,1 for σdi = σmin
(i = 1, . . . , 7) coincide with the initial values in Fig. 2, while
their final values for σdi = σmax coincide the final values in
the same figures.

The algorithm was implemented in Matlab, automatically
converted to C code, and then run as a mex function on a
standard personal computer. The execution times were always
in the order of 10−5÷10−4 s per iteration. Very similar times
have been obtained also for more complex robots such as
a 7-dof manipulator with the kinematics of a KUKA LWR
arm. All source codes are available in the multimedia material
accompanying this paper.

0 2 4
0

50

100

150

time [s]

τ
1

,1
 c

o
m

p
a
ri
s
o
n
 [
N

m
]

0 2 4
−150

−100

−50

0

time [s]

τ
2

,1
 c

o
m

p
a
ri
s
o
n
 [
N

m
]

Fig. 4. Comparison between the two motor torques τd1,1 and τd2,1 for joint
1 with σd1 = 850 Nm/rad (solid black lines) and σd1 = 1275 Nm/rad
(dashed red lines).

VI. CONCLUSIONS

An efficient numerical algorithm has been presented for
solving the inverse dynamics problem in a class of robots
with Variable Stiffness Actuation, as a generalization of the
one recently proposed by us for robots with elastic joints.

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

BUONDONNO AND DE LUCA: INVERSE DYNAMICS FOR VSA-BASED ROBOTS 7

The general procedure is conceptually divided in two dis-
tinct parts. The first one, which is the same as in robots with
elastic joints, is an extension of the recursive Newton-Euler
algorithm for rigid robots. Recursive equations are defined up
to the fourth differential order for link motion variables, and
up to the second time derivative for forces/torques. The core
of the second part of the algorithm requires solving for each
joint a two-by-two nonlinear system in terms of the desired
stiffness and computed total transmission torque. This system
depends on the specific technology of the VSA device and
its solution, which is in general obtained numerically by a
root finding method, has been illustrated here for antagonistic
transmissions with cubic torque profiles. The overall complex-
ity of the algorithm grows linearly with the number of VSA
joints.

A simple variant of the algorithm allows to compute also
the feedback linearization control law for the considered VSA-
based robots. Using full state measurements, this variant does
not require a numerical root finding method and can be easily
implemented as well in real time.

Just as their symbolic counterparts, the proposed numerical
algorithms are based on the knowledge of the robot dynamic
model. Thus, the quality of the results will depend on the ac-
curacy of the kinematic and dynamic parameters, in particular
for what concerns the nonlinear spring model. Future work will
focus on sensitivity analysis to perturbed dynamic parameters
and on the extension to Variable Impedance Actuators (VIA),
including variable damping.

APPENDIX: DERIVATION OF THE ALGORITHM

Equations (36), (37), (40), (41), (46), (49), (52), (55)
and (58) are simply the standard NEA, applied to elastic
robots. Equations (38), (42), (43), (47), (50), (53), (56)
and (59) first appeared in [17]; derivation of these formulas
can be found there. Thus, the only proofs shown here will be
those of (39), (44), (45), (48), (51), (54), (57), and (60)–(74),
along with some little intermediate results from [17].

A. Angular snap

Derivation of (39) can start from the expression of (38),
referred to base coordinates:

ιi = ιi−1 +
...
θ iẑi−1 + 2θ̈i(ωi−1 × ẑi−1)

+ θ̇iγi−1 × ẑi−1 + θ̇iωi−1 × (ωi−1 × ẑi−1). (75)

Differentiating it with respect to time, we obtain:

ςi = ςi−1 +
....
θ iẑi−1 +

...
θ i ˙̂zi−1 + 2

...
θ i(ωi−1 × ẑi−1)

+ 2θ̈i(γi−1 × ẑi−1) + 2θ̈i(ωi−1 × ˙̂zi−1)

+ θ̈i(γi−1×ẑi−1) + θ̇i(ιi−1×ẑi−1) + θ̇i(γi−1× ˙̂zi−1)

+ θ̈iωi−1 × (ωi−1 × ẑi−1) + θ̇iγi−1 × (ωi−1 × ẑi−1)

+ θ̇iωi−1 × (γi−1 × ẑi−1 + ωi−1 × ˙̂zi−1). (76)

Considering that

˙̂zi−1 = 0Ṙi−1ẑ0 = S(ωi−1) 0Ri−1ẑ0 = S(ωi−1)ẑi−1

=ωi−1 × ẑi−1, (77)

we can rewrite the previous equation in the following form

ςi = ςi−1 +
....
θ iẑi−1 + 3

...
θ iωi−1 × ẑi−1 + 3θ̈iγi−1 × ẑi−1

+ 3θ̈iωi−1 × (ωi−1 × ẑi−1) + θ̇i(ιi−1 × ẑi−1)

+ θ̇iωi−1 × [γi−1 × ẑi−1 + ωi−1 × (ωi−1 × ẑi−1)]

+ 2θ̇iγi−1 × (ωi−1 × ẑi−1). (78)

Describing the preceding equation with respect to the frame i
and rearranging terms, we obtain (39).

B. Linear snap

In the same way as done for ς , derivation of (44) can start
from the base frame form of j:

ji = ji−1 + ιi × pi,i−1 + 2γi × (ωi × pi,i−1) (79)

+ ωi × [γi × pi,i−1 + ωi × (ωi × pi,i−1)] +
...
d iẑi−1

+ 3d̈iωi×ẑi−1 + 3ḋiγi×ẑi−1 + 3ḋiωi×(ωi×ẑi−1).

Differentiating, we have

si = si−1 + ςi × pi,i−1 + ιi × ṗi,i−1 + 2ιi × (ωi × pi,i−1)
+ 2γi × (γi × pi,i−1) + 2γi × (ωi × ṗi,i−1)
+ γi × [γi × pi,i−1 + ωi × (ωi × pi,i−1)]
+ ωi × [ιi × pi,i−1 + γi × ṗi,i−1 + γi × (ωi × pi,i−1)
+ ωi × (γi × pi,i−1 + ωi × ṗi,i−1)] +

....
d iẑi−1

+
...
d i ˙̂zi−1 + 3

...
d iωi × ẑi−1 + 6d̈iγi × ẑi−1

+ 3d̈iωi × ˙̂zi−1 + 3ḋiιi × ẑi−1 + 3ḋiγi × ˙̂zi−1

+ 3d̈iωi × (ωi × ẑi−1) + 3ḋiγi × (ωi × ẑi−1)

+ 3ḋiωi × (γi × ẑi−1 + ωi × ˙̂zi−1). (80)

From (77) and (36), it is possible to rewrite ˙̂zi−1 as

˙̂zi−1 = ωi−1×ẑi−1 =(ωi−θ̇iẑi−1)×ẑi−1 = ωi×ẑi−1. (81)

Moreover, from geometrical considerations,

ṗi,i−1 = ωi × pi,i−1 + ḋiẑi−1. (82)

Substituting these and after some manipulations, we get

si = si−1 + ςi×pi,i−1+ιi×(ωi×pi,i−1+ḋiẑi−1) (83)

+ 2ιi × (ωi × pi,i−1) + 3γi × (γi × pi,i−1)
+ 2γi × [ωi × (ωi × pi,i−1 + ḋiẑi−1)]
+ γi × [ωi × (ωi × pi,i−1)] + ωi × (ιi × pi,i−1)
+ ωi × [γi × (ωi × pi,i−1 + ḋiẑi−1)]
+ ωi×[γi×(ωi×pi,i−1)] + ωi×{ωi×[γi×pi,i−1
+ ωi × (ωi × pi,i−1 + ḋiẑi−1)]}+

....
d iẑi−1

+ 4
...
d iωi×ẑi−1 + 6d̈i[γi×ẑi−1+ωi×(ωi×ẑi−1)]

+ 3ḋiιi × ẑi−1 + 6ḋiγi × (ωi × ẑi−1)

+ 3ḋiωi×(γi × ẑi−1) + 3ḋiωi×[ωi×(ωi×ẑi−1)].

Rearranging the terms, collecting similar expressions, and
referring s to the base frame, we obtain (44).

The linear snap of the CoM, i.e., sci , can be computed from
si. Equation (45) can be obtained from (44), by simply letting
i instead of i − 1, ci instead of i, and considering that ḋci

,
d̈ci

,
...
d ci

, and
....
d ci

are all equal to zero.

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2526072, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 2016

C. Force and torque derivatives on the centers of mass

Equation (48) is trivial, while (51) is obtained from

Ṅ i =ωi×Iiγi+ωi×N i+Ii[γi×ωi] (84)
+ Iiιi+ γi×Iiωi

N i =
d

dt
(Iiωi) (85)

İi =S(ωi)Ii − IiS(ωi), (86)

where S(ωi) is a skew-symmetric matrix computed from ωi
such that S(ωi)v = ωi×v for every vector v. Equation (85)
is Euler’s law of motion, while (86) is obtained from Ii =
0Ri

iIi
iR0, using the result 0Ṙi = S(ωi)Ri. Then:

iN̈ i = iγi × iIi
iγi + iωi × [S(iωi) iIi − iIiS(iωi)] iγi

+ iωi × iIi
iιi + [S(iωi) iIi](iγi × iωi)

− [iIiS(iωi)](iγi × iωi) + iIi(iιi × iωi)

+ [S(iωi) iIi − iIiS(iωi)] iιi + iIi
iςi

+ iιi × iIi
iωi + 2(iγi × iN i) + iωi × iṄ i

= iγi × iIi
iγi + iωi × (iωi × iIi

iγi) (87)

− iωi × iIi(iωi × iγi) + iωi × iIi
iιi

+ iωi × iIi(iγi × iωi)− iIi[iωi × (iγi × iωi)]

+ iIi(iιi × iωi) + iω × iIi
iιi − iIi(iωi × iιi)

+ iIi
iςi + iιi× iIi

iωi + 2(iγi× iN i) + iωi× iṄ i.

The final expression is obtained by collecting similar terms.

D. Generalized torques

Again, (54) is trivial, while (57) is computed from

ṗci,i = 0Ṙi
ipci,i = S(ωi)0Ri

ipci,i = ωi × pci,i (88)

ṅi = ṅi+1 + (ωi × pci,i)× F i + pci,i × Ḟ i (89)

+ (ωi×pi,i−1+ḋiẑi−1)×f i + pi,i−1×ḟ i+Ṅ i.

Differentiating (89), with the help of (82) and (88), yields

n̈i = n̈i+1 + [γi×pci,i + ωi×(ωi×pci,i)]×F i (90)

+ (ωi×pci,i)×Ḟ i+(ωi×pci,i)×Ḟ i+pci,i×F̈ i
+ [γi×pi,i−1 + ωi×(ωi×pi,i−1 + ḋiẑi−1) + d̈iẑi−1

+ ḋiωi × ẑi−1]× f i + (ωi × pi,i−1 + ḋiẑi−1)× ḟ i
+ (ωi × pi,i−1 + ḋiẑi−1)× ḟ i + pi,i−1 × f̈ i + N̈ i,

from which it is relatively easy to obtain (57). Finally, from
the base-frame form of (59) and using (81)

τ̈e, i = (n̈i + ṅi × ωi + ni × γi)T ẑi−1

+ (ṅi + ni × ωi)T (ωi × ẑi−1) +Di
...
q i

= (n̈i + ṅi × ωi + ni × γi)T ẑi−1

+ [ṅi × ωi + (ni × ωi)× ωi]T ẑi−1 +Di
...
q i (91)

where the well-known property of the scalar triple product
aT (b × c) = (a × b)T c has been used. Collecting for ẑi−1

and expressing all quantities into frame i will return (60).
This holds for revolute joints; for prismatic joints, the proof
is almost identical and is omitted.

Equations (62)–(63) are simply the model-based compu-
tations of the spring torques and stiffnesses for joint i,
while (64)–(66) are the joint-decoupled versions of equations
(15) and (16). Equation (67) gives the closed-form expression
of the i-th diagonal block of the rearranged matrix A, defined
in (23). Equations (68) solves (19) for joint i. Equations (70)–
(74) are the joint-decoupled versions of (21), (22), (20), (5b)
and (5c), in this order.

REFERENCES

[1] S. Haddaddin, “Optimal exploitation of soft-robot dynamics,” in Soft
Robotics, A. Verl, A. Albu-Schäffer, O. Brock, and A. Raatz, Eds.
Springer, 2015, pp. 92–99.

[2] S. Haddaddin and E. Croft, “Physical human-robot interaction,” in
Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2016
(in press).

[3] A. De Luca and W. Book, “Robots with flexible elements,” in Handbook
of Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2008, pp. 287–
319.

[4] B. Vanderborght et al., “Variable impedance actuators: A review,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1601–1614, 2013.

[5] R. Schiavi, G. Grioli, S. Sen, and A. Bicchi, “VSA-II: A novel prototype
of variable stiffness actuator for safe and performing robots interacting
with humans,” in Proc. IEEE Int. Conf. on Robotics and Automation,
2008, pp. 2171–2176.

[6] R. Van Ham, B. Vanderborght, M. Van Damme, B. V. B, and D. Lefeber,
“MACCEPA, the mechanically adjustable compliance and controllable
equilibrium position actuator: Design and implementation in a biped
robot dynamic computer simulation of robotic mechanisms,” Robotics
and Autonomous Systems, vol. 55, no. 10, pp. 761–768, 2007.

[7] S. Wolf, O. Eiberger, and G. Hirzinger, “The DLR FSJ: Energy based
design of a variable stiffness joint,” in Proc. IEEE Int. Conf. on Robotics
and Automation, 2011, pp. 5082–5089.

[8] A. Jafari, N. Tsagarakis, B. Vanderborght, and D. Caldwell, “AwAS-II:
A new actuator with adjustable stiffness based on the novel principle of
adaptable pivot point and variable lever ratio,” in Proc. IEEE Int. Conf.
on Robotics and Automation, 2011, pp. 4638–4643.

[9] Markus Grebenstein et al, “The DLR Hand Arm System,” in Proc. IEEE
Int. Conf. on Robotics and Automation, 2011, pp. 3175–3182.

[10] N. Kashiri, M. Laffranchi, N. Tsagarakis, I. Sardellitti, and D. Caldwell,
“Dynamic modeling and adaptable control of the CompAct arm,” in
Proc. IEEE Int. Conf. on Mechatronics, 2013, pp. 477–482.

[11] [Online]. Available: http://www.naturalmotioninitiative.com
[12] G. Palli, C. Melchiorri, and A. De Luca, “On the feedback linearization

of robots with variable joint stiffness,” in Proc. IEEE Int. Conference
on Robotics and Automation, 2008, pp. 1753–1759.

[13] A. De Luca, F. Flacco, A. Bicchi, and R. Schiavi, “Nonlinear decoupled
motion-stiffness control and collision detection/reaction for the VSA-II
variable stiffness device,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2009, pp. 5487–5494.

[14] M. Spong, “Modeling and control of elastic joint robots,” ASME J. of
Dynamic Systems, Measurement, and Control, vol. 109, no. 4, pp. 310–
319, 1987.

[15] G. Buondonno and A. De Luca, “A recursive Newton-Euler algorithm
for robots with elastic joints and its application to control,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2015, pp. 5526–
5532.

[16] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line computational
scheme for mechanical manipulators,” ASME J. of Dynamic Systems,
Measurement, and Control, vol. 102, no. 2, pp. 69–76, 1980.

[17] C. Guarino Lo Bianco and E. Fantini, “A recursive Newton-Euler
approach for the evaluation of generalized forces derivatives,” in Proc.
12th IEEE Int. Conf. on Methods and Models in Automation and
Robotics, 2006, pp. 739–744.

